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Abstract

Human-robot interactions situated in a dy-
namic environment create a unique mix of
challenges for conversational systems. We
argue that, on the one hand, NLG can con-
tribute to addressing these challenges and
that, on the other hand, they pose interest-
ing research problems for NLG. To illus-
trate our position we describe our research
on non-humanoid robots using non-verbal
signals to support communication.

1 Introduction

Our research is about interaction strategies for
robots who have to approach and communicate
with strangers in busy public spaces (Cass et al.,
2015, 2018). For example, in one of our target sce-
narios a delivery robot in a busy academic build-
ing on a college campus has to solicit help to op-
erate the elevator from humans passing by. In an-
other scenario a robot is recruiting survey partici-
pants in a shopping mall. In order to develop so-
lutions that will work in a real-world deployment,
we collect data and study human-robot interaction
not just in laboratory experiments but also in field
studies conducted in the wild.

In these field studies we have encountered chal-
lenges that are traditionally not addressed by
the natural language generation (NLG) pipeline.
However, we would like to argue that an NLG sys-
tem aware of these issues can contribute to a bet-
ter solution and that they also pose interesting re-
search problems for NLG.

In particular, the following two sources of chal-
lenges have stood out to us. First, the robot is sit-
uated in a dynamic environment with human in-
teraction partners that can act while the robot is
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speaking or planning an utterance. As in other
situated communication tasks (Koller et al., 2010;
Smith et al., 2011) the timing of the robot’s ut-
terances is important. For fluent interactions the
robot needs to monitor the human’s actions and
changes in the environment and react to them in
a timely manner, potentially by interrupting itself
or modifying an utterance mid-stream (Clark and
Krych, 2004).

Second, many environmental factors may hin-
der communication and are not controllable by us
or the robot. For example, in a busy public space
the background noise level may be high, making it
hard for people to hear the robot. People may be
passing by and even in between the robot and the
addressee. The robot will encounter many differ-
ent reactions from addressees; some will be sur-
prised, scared, or embarrassed to interact with it.

One approach to these challenges would be to
solve these issues first in order to create a situa-
tion where a “traditional” NLG pipeline, based on
NLG for text generation, can be used optimally.
For example, we could try to develop a module
that perfectly times utterances, make sure to ad-
just the audio level to always be above the en-
vironmental noise level, and only communicate
with addressees that are directly in front of the
robot. However, these goals may be impossible
to achieve. For example, while it makes sense to
optimize the timing of utterances, most contribut-
ing factors are out of our control, so that the robot
will always have to be prepared to deal with unex-
pected actions by the human addressee, changes in
the environment, or network delays. Furthermore,
this approach may lead to suboptimal results. For
instance, if the robot only communicates with peo-
ple if they are positioned right in front of it, in a
busy space with people passing through, many op-
portunities for interaction may be lost.

Therefore, we believe that NLG should be



aware of these issues and can contribute to a so-
lution. For example: An incremental NLG mod-
ule may be able to better time utterances and re-
act to unexpected changes (Allen et al., 2001;
Buschmeier et al., 2012). When the environment
is noisy or the robot is far away from the ad-
dressee, generating shorter utterances using sim-
pler words and complementing natural language
with non-verbal signals might be more effective.
Previous work has explored the problem of adapt-
ing the form and content of generated utterances
to situational constraints (e.g. Rieser et al., 2014;
Walker et al., 2007; Rieser et al., 2014), but typi-
cally not in the context of human-robot interaction.

In order to illustrate our position, we will de-
scribe some results and observations from our on-
going research on making human-robot communi-
cation more robust using non-verbal signals. A lot
of work has been done on generating non-verbal
signals, like gestures, facial expressions, and pos-
ture for animated characters (known as embodied
conversational agents or virtual humans). Some of
this work has been transferred to humanoid robots.
However, because of our application scenario, the
use of humanoid robots is not practical for us. We
need robots that are tall enough to interact with
standing humans and that are not too expensive to
be deployed in a busy public space. We work with
robots that have a wheeled base and a mounted
screen (see Figure 1).

The research challenge is, therefore, to find out
what non-verbal signals are effective communica-
tive devices for these non-humanoid robots. These
signals may mimic human behaviors, or they may
be visual metaphors that express the robot’s inten-
tions in a way that is not modeling realistic human
behavior, similar to the way comics express a char-
acter’s movement or emotions.

2 Related Work

People accompany their speech with non-verbal
signals, which support and add to the content
of the speech and which help manage the di-
alog. For example, iconic hand gestures may
depict some features of an object or event be-
ing described (McNeill, 1992), eye gaze plays an
important role in regulating turn-taking in dia-
log (Kendon, 1967), and facial displays express a
speaker’s emotions (Ekman and Friesen, 2003) but
also serve pragmatic functions that help organize
the dialog (Chovil, 1991).

Embodied conversational agents (ECAs) or vir-
tual humans are animated characters that engage
with humans in a dialog using both verbal and
non-verbal communication (Cassell et al., 2000;
Poggi et al., 2005; Thiebaux et al., 2008). Typical
research in this area closely analyzes human non-
verbal behavior and aims to model these behaviors
in the animated character.

Some of this work on generating non-verbal
behaviors for animated conversational characters
has been transferred to physical humanoid robots.
Salem et al. (2012) and Hasegawa et al. (2010) use
gesture generation strategies developed for ECAs
on humanoid robots. Breazeal (2000) presents a
robot with a simple cartoonish face that can ex-
press emotions and interaction cues. Most expres-
sions are modeled on human facial expressions.
But the robot can also use its non-human, animal-
like ears to indicate arousal and attention.

While Breazeal’s (2000) work shows that even
with humanoid robots going beyond the normal
human repertoire of non-verbal signals can be ben-
eficial, non-humanoid robots often are not capable
of mimicking human non-verbal behaviors. It is
therefore essential to identify what behaviors of
non-humanoid robots can easily be interpreted by
humans (Cha et al., 2018). Recent work has, for
example, explored the interpretability of robot arm
movements (Dragan et al., 2013). In a study that
is most similar to our research, Cha and Matarić
(2016) have shown that a service robot can use
light and sound signals to indicate that it needs
help and to communicate levels of urgency.

3 Experiments Exploring Non-verbal
Signals for Non-humanoid robots

We describe three studies we have carried out
or are currently conducting to explore how non-
verbal behaviors can contribute to communication
between humans and non-humanoid robots. In
these studies we explore non-verbal robot behav-
iors modeled on human behaviors as well as robot
behaviors designed to communicate metaphori-
cally through movement.

The two robots we have used for this work,
SARAH and VALERIE, both have a mobile base,
a screen on which a simple cartoon face can be
displayed, and a suite of cameras and depth sen-
sors (VALERIE is shown in Figure 1). Impor-
tantly, the robots have a non-humanoid form, lack-
ing the typical mechanisms for human non-verbal



Figure 1: VALERIE

expression. Our experiments are conducted using
a Wizard of Oz (WoZ) protocol, in which a human
wizard remotely controls the robot unbeknownst
to the participants. The wizard interface provides
a set of pre-planned behaviors the wizard can ini-
tiate, as well as lower-level controls for the robot.

3.1 Robot eye gaze to support reference

In this ongoing study we look at whether humans
use our robot’s eye gaze to resolve referring ex-
pressions. Hanna and Brennan (2007) found that
humans use a human instruction giver’s eye gaze
to distinguish an object being described from its
similar looking distractors. We replicated their ex-
periment, in the laboratory, with VALERIE taking
the instruction giver’s place.

Participants stood opposite VALERIE with a ta-
ble between them. On the table was a sequence
of colored shapes, each of which also had a num-
ber of black dots. Some layouts contained dis-
tractor pairs, which are shapes of the same color
and form, but with a different number of dots.
VALERIE gave instructions of the form “Press
the button corresponding to the blue triangle with
three dots”, while either only moving her mouth
or, additionally, accompanying the instruction by a
movement of the pupils in the direction of the tar-
get shape. A preliminary analysis of the data sug-
gests that VALERIE’s eye gaze helps participants
pick out the right target more quickly in situations
where the layout contains a distractor shape that is
sufficiently far away from the target shape that it
can be distinguished by eye gaze.

This shows that the participants do indeed inter-
pret the robot’s eye gaze and use it to guide their
own behavior. From an NLG point of view, the
generation of eye gaze is interesting because eye
gaze has to be coordinated with the natural lan-
guage utterance it accompanies, while also pro-
ducing natural looking eye movements.

Limitations and future work: This study was
done in a laboratory environment using a repeti-
tive and unrealistic task. We plan to conduct a fol-
low up study that tests the effectiveness of robot
eye gaze as a communicative device in the wild.

3.2 Robot body movement and orientation to
attract attention and initiate interactions

In this experiment in the wild, the robot behav-
ior was designed to (very crudely) mimic the be-
haviors humans might use to initiate an inter-
action with a passer-by in a busy public space.
SARAH was stationed in a popular hallway. She
would greet people (“Hello! Can you please help
me?”) either while standing still or accompanied
by a rotational movement that followed the sub-
ject we wished to engage. People who approached
SARAH were then asked to press a specific num-
ber on a keypad.

We collected video data of 14 one-hour sessions
over the course of 5 weeks. In total, 1658 peo-
ple passed by SARAH. Of those, only 714 en-
gaged with her in any way, including just look-
ing at her. Of the 714, 108 completed our task.
We found that movement of the robot statistically
significantly increased how many people looked
at SARAH (64% of passers-by noticed the still
robot, 88% the moving robot), but not the num-
ber of completed tasks (6.4% in the non-moving
condition, 6.7% in the moving condition). Given
a 30% increase in the number of people who no-
tice SARAH, we expected a similar increase in the
number of people who stop to interact with her.

A closer analysis of our video data indicates that
technical issues with the WoZ interface (which we
plan to address in follow-up experiments) as well
as issues related to SARAH’s communicative be-
havior may be the reason for why the increased
attention did not lead to more successful interac-
tions. First, it seems that SARAH’s intentions
weren’t always clear and, second, several people
in the study acted surprised or scared of SARAH
or embarrassed to interact with her. Both issues
point toward a need for better communicative non-
verbal behaviors to convey the robot’s intentions
and to lessen people’s apprehension.

As with eye gaze, these non-verbal behav-
iors have to be planned and coordinated with the
robot’s natural language utterances. An additional
challenge is that the signals we are exploring are
complex, involving eye gaze, facial expressions,



and different kinds of movement. Furthermore,
the optimal choice of non-verbal signals and form
or natural language utterance may depend on as-
pects of the environment, such as how busy and
noisy it is or how far away the addressee is. The
NLG system planning these utterances will have to
be able to coordinate diverse types of communica-
tive signals and to adapt to the current situation.

Future work: In our current work, we are study-
ing verbal and non-verbal behaviors that allow the
robot to better signal its wish to interact (e.g. mov-
ing toward the selected addressee, facial expres-
sions to indicate a need for help and a wish to
engage). This exploration is guided by what is
known about human behaviors in similar situa-
tions (Kendon and Ferber, 1973).

3.3 Robot gestures to express mental states
In the first two studies the robot used non-verbal
behaviors that were modeled on human behav-
ior. We now describe a pilot study, conducted
in the wild, that moves toward metaphorical ges-
tures. This study focused on gestures to express
the following mental states of the robot: agree-
ment, disagreement, uncertainty, and excitement.
In humans, facial expressions and head gestures
play an important role in expressing these mental
states. While SARAH can produce different fa-
cial displays, she does not have a movable head.
Based on our intuition, we devised the following
non-verbal behaviors.

agreement Smile and move forward and back-
ward a few inches.

disagreement Frown and rotate side to side by 35
degrees.

uncertainty With a neutral facial expression, turn
away from the addressee by 45 degrees,
briefly pause, then return.

excitement With surprised facial expression, spin
around 360 degrees.

SARAH recruited subjects in a busy hallway
on campus. She instructed subjects to retrieve an
index card with a set of yes/no questions from
a pocket attached to the robot and to ask those
questions. SARAH accompanied her spoken an-
swer either with facial expressions only or with
facial expressions and gestures. At the end of the
scripted interaction, SARAH said “Yay, we com-
pleted the task” and expressed excitement.

SARAH then asked the subjects to complete
a paper survey rating SARAH’s intelligence and

naturalness. In this pilot study, SARAH’s use of
gestures did not have a (statistically significant)
impact on people’s perceptions of her. And, unfor-
tunately, we did not collect data that allows us to
draw conclusions on whether humans interpreted
the gestures as intended.

Interesting research problems that arise are the
design of easy to interpret metaphorical gestures,
how to select which signals to use in a given dia-
log situation, how to coordinate different commu-
nicative signals, and how to transition between and
blend different non-verbal behaviors.

Future work: We are preparing a follow up
study that will evaluate the interpretability of vari-
ants of different gestures more systematically. Our
goal is to create a lexicon of robot behaviors that
can perform different discourse and dialog func-
tions. We are currently focusing on robot move-
ments, but we are also interested in other sig-
nals, like non-speech sounds and visual cues on
the screen that go beyond facial expressions mim-
icking humans.

4 Conclusion

The interactions between humans and robots in
public spaces are situated in an un-controllable
and only partially predictable environment. This
creates challenges for communication. We think
that NLG can contribute to a solution to these chal-
lenges by producing utterances and other commu-
nicative behaviors that are adapted to the situation.
In addition, we argue that these challenges give
rise to research problems that are interesting from
an NLG point of view.

In this paper, we have illustrated our position
by describing three studies that explore the gen-
eration of co-verbal communicative behaviors for
non-humanoid robots. This line of research tack-
les the following issues related to the generation
of multimodal utterances. We need to design non-
verbal signals that are mimicking human behav-
ior as well as signals that communicate metaphor-
ically. The robot behaviors are constrained by the
limited motor capabilities of the robot, but they
can also take advantage of expressive options that
are not available to humans. We need techniques
for generating multimodal utterances that coordi-
nate the different non-verbal signals and speech.
And finally, we need to understand how to choose
the most effective set of signals in a given dialog
situation.
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