
Automating Interactive Theorem Provers and Certifying Automated Theorem
Provers

by

Arjun Viswanathan

A thesis submitted in partial fulfillment
of the requirements for the Doctor of Philosophy

degree in Computer Science in
the

Graduate College of
The University of Iowa

December 2024

Thesis Committee: Cesare Tinelli, Thesis Supervisor
Omar Chowdhury
Chantal Keller
Garrett Morris
Alberto Maria Segre

Acknowledgements

This thesis and the PhD that it attests to is a culmination of an enormous amount of effort
over a long period of time. This would not have been possible without all the support I have
had over the years. It’s likely that, I will accidentally omit some names that deserve to be
here, due to a recency bias, if not by general oversight. Regardless, I am sincerely grateful
to everybody who has helped me directly or indirectly through the years of my PhD.

All of the work described in this document is either built on or makes use of established
tools. I thank all the authors of citations as well as all developers of the tools mentioned in
this section, for providing the foundation for my work. All three contributions have some
connection to the SMTCoq tool [5]. cvc5’s abduction solver [84] is used for contribution 1.
The alethe proof format [88] used in contribution 2 is still evolving and the developers have
been open to feedback during its evolution. The invertibility conditions [72] that we verify
in contribution 3 were synthesized by members of the cvc5 group.

I thank Haniel Barbosa, Clark Barrett, Burak Ekici, Chantal Keller, Andrew Reynolds,
Cesare Tinelli, and Yoni Zohar — my co-authors from the following submissions: (1) the
FroCoS (International Symposium on Frontiers of Combining Systems) 2023 paper submis-
sion [52] on verifying invertibility conditions, a previous version of which was submitted as an
extended abstract to PxTP (Workshop on Proof eXchange for Theorem Proving) 2019 [51],
and (2) the submission to LPAR (International Conference on Logic for Programming, Arti-
ficial Intelligence and Reasoning) 2023 on extending SMTCoq with abductive reasoning [9].
Large parts of the text from these submissions are used in this thesis. Some images have
been borrowed from previous presentations of SMTCoq, and I thank the original authors.

Thanks to Kathleen Shaughnessy, Danielle Land, and everybody else who ran the thesis
writing workshops at the University of Iowa. Thanks to Cesare Tinelli, Chantal Keller, Omar
Chowdhury, Yoni Zohar and Alex Ozdemir for their suggested improvements to the thesis.

Thanks to Chantal Keller for being an excellent collaborator and mentor, and for hosting
me in France. Thanks also to Valentin Blot, Louise Dubois de Prisque, Andrew Samokish
from the Laboratory of Formal Methods at Université Paris-Saclay.

The CS Department at the University of Iowa has professionally backed me throughout
my time in this program, and I am grateful to the staff, faculty and students for their
assistance, mentorships and friendships. Special mention to Tanmay Inamdar, Shreyas Pai,
Tejaswi Rohit, Jamil Gafur, Matthieu Biger, Sheryl Semler, Catherine Till, Alli Rockwell,
Tina Kimbrell, Alberto Segre, Denise Szecsei, Sriram Pemmaraju, and Kasturi Varadarajan,
among the numerous people from this department who deserve my gratitude.

Having to deal with immigration is difficult and stressful. Thanks to the International

i

Student and Scholar Services at the University of Iowa for their continuous assistance in
dealing with the same. Special thanks to Sushant Kaura and Rachel Tobe for opening their
home to me during my travels through Chicago.

All members of the CLC group, both past and present, have ensured that my research
field remains alive and well, and it has been very enjoyable sharing the same space with
these friends and colleagues over the years: Anthony Cantor, Mudathir Mohamed, Christa
Jenkins, Andrew Marmaduke, Moosa Yahyazadeh, Daniel Larraz, Apoorv Ingle, Rob Lorch,
Alexander Hubers, Hans-Jörg Schurr (whose thesis served to inspire this one!), Kartik Sab-
harwal, Shweta Rajiv, Muhammad Mazhar, Baoluo Meng, Abdalrhman Mohamed, Joyanta
Debnath, Fareed Arif, Ananda Guneratne, Richard Blair, Alain Mebsout, Ruoyu Zhang, and
Mitziu Echeverria.

The ever-expanding cvc5 group has given me some of the best colleague I’ve ever had.
Yoni Zohar, Haniel Barbosa, Andrew Reynolds, Aina Niemetz, Mathias Preiner, Hanna
Lachnitt, Alex Ozdemir, Andres Nötzli — thank you for serving as a motivation to do better
research, and long may our friendships continue.

Participating in a doctoral committee in itself entails a significant amount of work. I owe
the members of my committee special thanks for sticking through it with me and guiding
me through the rough patches — Omar Chowdhury, Juan Pablo Hourcade, Chantal Keller,
Garrett Morris, Andrew Reynold, Alberto Segre, Aaron Stump, and Cesare Tinelli.

The Men’s Soccer Club at the University of Iowa played a huge role in keeping my
mental health intact during the trials and tribulations of academic research. In addition to
camaraderie and valuable friendships, it gave me the opportunity to play the sport I love at
a level that satisfied my appetite for competition.

Thanks to Malissa, Jeff, Mary-Beth and Nolan Schroeder for teaching me the value of
family and for never letting me miss mine too much.

Iowa City has been a perfect fit for me, I’ve loved my years here. People smile at you
like they mean it, there is always enough room to watch the gorgeous sunset from the stairs
of the Old Capitol Building, the stars shine down on you at night, and the snow eventually
melts away. I’ve built so many relationships here that I hope will stand the test of time and
distance. Thank you Haniel Barbosa for always being open to one more drink and Samantha
Nagle for the friendship and hospitality; Dan Crouch for being a big brother and Mikayla,
Ella, and Charlotte Crouch for being family; Joe Rattenni and Julia Bobinet for all the
love and kindness; Sada Shiva for always making the time to visit and lend a helping hand.
Thanks also to Aaron Junho Yoon, Anel Dozo, Salah Ibrahim, Tejas Mallela, Tom Walch,
Mike Schumacher, Peter Rodd, and the rest of the 2 Dogs gang among many others locals.

My friends from back home in Hyderabad and from Bangalore who have not only managed
to remain friends despite the distance but have found a way to back me from whichever part
of the world they have ended up in — Kopal Sharraf, Kaushik Varma, Sachin Sanil, Akash
Elichipuram, Anvesh Reddy, Prudhvi Kolaventy, Sada Shiva, Sai Kameshwar Rao, Srinivas
Varma, Ashutosh Billa, Nithin Paidikalva, CK, Arushi Koul, Rishi Raj Sakya, Rakendu Jois,
& family, Srikanth Vasudevan & family, Anirudh Varma & Amna Aunty & family, Rishmeet
Singh, Vinayak Bhatt, Ratankumar Takhellambam, and the list goes on.

ii

All these people have become like family to me over the past decade, but I am fortunate
to also have family away from home — Janhavi Viswanathan, Ashwin Sampath, Janani
Thyagarajan, Kaushik Sridhar, Ganesh Ramachandran, Smitha Radhakrishnan, Abhi &
Giri, Raghuram Thyagarajan; Kaushik, Poornima & family; Vishu, Kavita and family; Nagu
Mama and family; and Sriram Jayaram, to name few. I would be remiss if I didn’t give special
mention to my Bagya Periamma for always looking out for me; it is her ability to find the
right words for thoughts that in many ways got me started on this adventure.

Thanks to my best friend, little Tim. He continues to live his best life, perhaps unaware
at the impact he’s had on so many of us.

I owe a lot to Taanya Malhotra for giving me strength to endure the hard parts of this
journey and for her love, wisdom, and inspiration. Thanks also to her family for accepting
me as one of theirs.

I truly believe that Cesare Tinelli was the advisor I needed — nothing more and nothing
less. Arguably, it was his idea which he shared with me at a gas station somewhere in Kansas
that proved to be the genesis of this work. Apart from being a distinguished Professor to
look up to, his experience and wisdom, his network of leaders in industry and academia, his
expansive knowledge of formal methods and of computer science, have been invaluable for
my development as a doctoral candidate and have prepared me for life beyond my doctorate.
If not for his liberal attitude, I would never have attempted a PhD to start with; the same
attitude ensured that I didn’t quit when things got difficult.

My parents, Amma and Appa, have been staunch admirers of academia. Funnily enough,
they never brought up the possibility of me pursuing a PhD. I have no doubt that their
appreciation of scholarship made its way to me by more implicit means. Thanks to them
for nurturing, providing, guiding, and motivating me to become someone who decided to
embark on this journey and for their encouragement through it.

iii

Abstract

As software grows increasingly pervasive in our everyday lives, it is important to ensure that
the software we rely on, especially in safety-critical systems, behaves as expected. Whereas
software testing is a useful approach for detecting the presence of bugs, formal methods offer
tools and techniques to prove the absence of bugs. One class of such tools is theorem provers
— computer programs capable of proving mathematical theorems. Among other things,
theorem provers are used to prove the correctness of software with respect to a specification,
in an attempt to prevent buggy software.

Theorem provers are commonly classified as automated or interactive. Automated the-
orem provers (ATPs) such as satisfiability modulo theories (SMT) solvers aim to prove
logical formulas quickly and without human intervention. To this end, they rely on various
heuristics, decision procedures, and optimizations. Consequentially, ATPs are typically large
software systems and therefore prone to bugs themselves. On the other hand, interactive
theorem provers (ITPs), or proof assistants, restrict themselves to a (relatively) small trusted
computing base (TCB), giving strong guarantees of the proofs performed. They do so at the
cost of automation, and require elaborate proofs and higher user involvement.

Given ATPs’ and ITPs’ relative pros and cons, there are multiple avenues for leverag-
ing the strengths of one to address the weaknesses of the other. We discuss three such
possibilities, and our contributions to each kind, in the following.

1. External ATPs can be used to automate sub-goals within ITPs. SMTCoq is one such
tool that is able to dispatch subgoals to an external SMT solver without extending the
Coq proof assistant’s TCB. In a traditional interaction, SMTCoq relies on the SMT
solver’s ability to do deductive reasoning — a call to a solver either succeeds with a
proof in Coq, or fails with a possible counterexample. We enhance this interaction with
an SMT solver capable of performing abductive reasoning so that in cases of failure,
the solver may ask for additional facts that can convert a failure to a success.

2. An ATP’s result can be certified by checking it in an ITP. We adapt SMTCoq to
check more refined proofs from SMT solvers. We do this through the alethe proof
format which is supported by both the cvc5 and veriT SMT solvers. This has the
added benefit of increasing goal coverage by external SMT solvers in Coq, which also
categorizes it as a contribution previously discussed in 1.

3. An ATP can be certified by checking its algorithm (or modular parts thereof) in an ITP.
In this direction, we verify results called invertibility conditions, that are critical to the

iv

operation of some SMT solvers, in Coq. Such solvers use a set of these invertibility
conditions during solving in the theory of quantified bit-vectors. We prove a previously
unverified subset of these conditions, increasing confidence in the results of bit-vector
solvers that use invertibility conditions for quantified formulas.

v

Public Abstract

Computers are ubiquitous in today’s world and have been integrated into every aspect of
our lives and work. They have wide-ranging applications such as in defense systems, health-
care systems, banking, and infrastructure. A computer is operated using interfaces called
software. It is important to ensure that a software behaves as it is instructed to. When a
software produces undesirable behavior, we call the source of this behavior a bug. Avoiding
software bugs is especially important in safety-critical systems — computer systems whose
misbehavior could result in serious injury or loss of life. Examples of these include software
that runs airplane systems, drones, cars, medical devices, and power plants.

Given (i) a specification of how a software should behave, as a set of logical formulas,
and (ii) either a model or an implementation of the software, a theorem prover is a tool
that can be used to ensure that the software behaves as it’s supposed to. Theorem provers
can be broadly classified as automated or interactive. Automated theorem provers (ATPs)
aim to prove logical formulas quickly without external human help. Achieving this takes
a substantial amount of code, which makes ATPs typically large computer software that
are themselves prone to bugs. On the other hand, interactive theorem provers (ITPs) are
smaller pieces of software that strictly follow certain principles that prevent bugs in their
code. However, they provide a limited amount of automation, and hence, proving logical
formulas in an ITP requires significantly more effort from a user. An ideal tool for software
verification would offer both proof automation and strict guarantees of software correctness.
This thesis presents three integrations between ATPs and ITPs that leverage the higher level
of automation in ATPs and the higher level of trust in the proofs produced by ITPs to offer
faster and more reliable provers for software systems. Provers integrated in these ways would
prevent bugs in our software.

1. External ATPs can be used within ITPs to automate proofs. Such an integration can
preserve the high level of trust in the ITP by internally following the steps taken by
the ATP to prove the formula. Often, an external ATP can fail in such an integration
because the ATP does not have sufficient information from the ITP to prove a formula.
The first contribution of this thesis enhances a typical ATP-ITP integration so that
the ATP can ask for extra information to prove a currently failing goal. Our work’s
experimental evaluation suggests that such an enhancement reduces the number of
failures that can occur when an ITP calls an external ATP to automatically prove
formulas for it.

2. An ATP’s result can be externally verified by checking it in an ITP. This increases trust

vi

in the results produced by an ATP. ATPs that produce additional certificates can have
their results verified in an ITP. The second contribution of this thesis generates an ITP
checker for certificates produced by two distinct ATPs. Our experimental evaluation
argues that this checker is more complete in its coverage than previous ITP checkers
for ATPs.

3. An ATP can be verified within an ITP. Although the size of modern ATPs makes this
a very challenging goal, ATPs can be separated into independent modules. The final
contribution of this thesis is to verify a set of results, called invertibility conditions in
an ITP. For ATPs that use them, the correct operation of one of their modules depends
on the correctness of these invertibility conditions. The verification of these conditions
in an ITP increases the reliability of the corresponding module of the ATP that relies
on them.

vii

Contents

List of Figures x

1 Introduction 1

2 Background 4
2.1 Preliminaries . 4
2.2 SMT Solvers . 6

2.2.1 Quantifiers . 7
2.2.2 Proof Certificates . 8

2.3 Resolution Provers . 9
2.4 Interactive Theorem Provers . 9
2.5 SMTCoq . 10

2.5.1 SMTCoq’s Tactics . 11

3 Thesis Outline 13

4 The abduce Tactic 15
4.1 Premise Selection . 15
4.2 Abduction for Premise Suggestion . 17
4.3 The abduce Tactic . 18
4.4 Abduction in cvc5 . 20
4.5 Evaluation . 22

4.5.1 Experimental Setup . 22
4.5.2 Zorder . 23
4.5.3 List . 25
4.5.4 Multiplication over Z . 32
4.5.5 Conclusion and Future Work . 34

5 The alethe Checker 36
5.1 Proof Certificate Formats . 37
5.2 smtcoq-certif . 41

5.2.1 smtcoq-certif Proof Rules . 41
5.3 alethe . 45

viii

5.3.1 alethe Proof Rules . 45
5.4 Coq Checker for alethe . 49

5.4.1 Correctness of Checking by Transformations 50
5.4.2 Transformations . 52

5.4.2.1 Ts: Subproof Flattening . 53
5.4.2.2 Tn: notnot Elimination . 56
5.4.2.3 Tc and Tt: Encoding Conversion Versions of Congruence,

Transitivity, and Reflexivity 56
5.4.2.4 Tr: Encoding Rewrites . 60
5.4.2.5 Tf : Handling Forall Instantiation 61
5.4.2.6 Ttr: Eliminating Trivial Clauses 62

5.4.3 cvc5 Rules and Rewrites . 64
5.5 Evaluation . 65

6 Proving Invertibility Conditions 67
6.1 Theory of Fixed-Size Bit-Vectors . 68
6.2 Invertibility Conditions . 69
6.3 The BVList Library . 70

6.3.1 BVList Without Extensions . 71
6.3.2 Extending BVList . 72

6.3.2.1 Weak Unsigned Inequalities 73
6.3.2.2 Left and Right Logical Shifts 74
6.3.2.3 Arithmetic Right Shift . 74

6.4 Proving Invertibility Equivalences in Coq . 74
6.4.1 General Approach . 75
6.4.2 Detailed Examples . 76

6.5 Results . 80

7 Conclusion and Future Work 82

A alethe Rewrite Encodings 85
A.1 Rewrites Over Conjunctions: andsimp . 85
A.2 Rewrites Over Disjunctions: orsimp . 89
A.3 Rewrites Over Negations: notsimp . 91
A.4 Rewrites Over Implications: impsimp . 92
A.5 Rewrites Over Equivalences: eqvsimp . 95
A.6 Other Boolean Rewrites: boolsimp . 99
A.7 Rewrites Over Equality: eqsimp . 105

Bibliography 107

ix

List of Figures

4.1 Interaction of SMTCoq with the SMT solver. 19
4.2 CEGIS procedure driving cvc5’s abduction solver. 21
4.3 Interactions with SMTCoq using the abduce tactic. 24
4.4 Summary of results of using abduce in Zorder. 25
4.5 Proof of lemmas app nil r and app nil r 2. 27
4.6 Summary of results of using abduce in List. 28
4.7 An example from the List library of firstn rev. 29
4.8 Using abduce to find rev length. 30
4.9 Locally asserting future rewrites to avoid abducing conjunctive solutions. . . 31
4.10 A workaround to prove some NIA (but effectively linear) goals using SMTCoq. 32
4.11 A workaround for proving some (effectively linear) NIA goals using abduce. . 33
4.12 Commonly occurring lemmas about multiplication used for testing abduce. . 34
4.13 Summary of results of using abduce to solve NIA goals in Coq. 34
4.14 Summary of results from all 3 experiments over abduce. 35

5.1 The inductive definition of a proof. 39
5.2 The recursive definition of the getAssumptions function. 40
5.3 Architecture of the SMTCoq checker. 51
5.4 Summary of results of checking proofs produced by CVC4, cvc5, veriT v2016,

and veriT on the set of reduced benchmarks. 65
5.5 Comparison of Lfsc Checker and Alethe Checker’s performance with CVC4

and cvc5 respectively . 65

6.1 The signatures Σ1 and Σ0 with SMT-LIB 2 syntax. 68
6.2 The level of confidence achieved by the different approaches. 70
6.3 Modular separation of BVList . 72
6.4 Definitions of ≤u in Coq. 73
6.5 Various definitions of <<. 75
6.6 A proof of one direction of the invertibility equivalence for >>a and <u using

dependent types. 77
6.7 Examples of lemmas used in proofs of invertibility equivalences. 78
6.8 Invertibility equivalence for >> and >u and some lemmas used by its proof. . 79
6.9 Sub-goals generated in the proof of first bits zero. 80
6.10 Proofs of invertibility equivalences in Σ0. 81

x

Chapter 1

Introduction

In the twenty-first century, software has become central to most things that we do and care
about. Examples include, but are not limited to, automobiles, military, banking, retail, ed-
ucation, and infrastructure. Software, however, is susceptible to bugs, and the consequences
of buggy software can be drastic, especially in safety-critical systems such as planes, cars,
medical systems, and weapon systems. Although software testing is a common measure
against such bugs, testing is non-exhaustive. Additionally, while testing is a useful appara-
tus to detect bugs, in most cases, it is not capable of proving the absence of bugs. To this
end, formal methods have been developed to provide techniques and tools that can model
hardware and software systems, and argue that they perform correctly with respect to a
specification. Theorem provers are one such utility used to prove mathematical properties
about systems and provide guarantees about their functionalities. However, theorem provers
are themselves pieces of software, and are therefore subject to similar scrutiny. Classifying
theorem provers as automated or interactive can help us better understand this problem and
some state-of-the-art solutions.

Automated theorem provers (ATPs), such as SMT (satisfiability modulo theories) solvers,
are able to (dis)prove formulas in an increasing number of logical fragments. While they were
initially created to be tools capable of performing deductive reasoning in quantifier-free log-
ics, where new facts are derived from a set of known logical premises, SMT solvers have
rapidly grown in capability. One particular functionality of interest is their ability to do ab-
ductive reasoning, or hypotheses finding with respect to a goal that needs to be true. Other
developments to SMT solvers include a steady increase in the number of supported theories,
and smart instantiation techniques to support reasoning over quantifiers. Due to the accel-
erated expansion of their abilities, and since they often implement many elaborate decision
procedures over possibly undecidable problem spaces, SMT solvers use many heuristics that
make them efficient but also result in an extremely large codebase, which is hard to check
and might itself be susceptible to bugs.

On the other hand, interactive theorem provers (ITPs), such as Coq, rely on a small,
trustworthy kernel of code. One must write tedious machine-checkable proofs in them as one
would on pencil and paper. As a consequence, it is harder to prove properties in ITPs, and
moreover, automation is limited. Their results, however, are highly reliable since the user
must stay faithful to a relatively small trusted computing base (TCB) while going through

1

proofs.
Software certified by ITPs, then, are — while burdensome to verify — the most desirable

in safety-critical applications. Due to this loose hierarchy of verification standards imposed
on ITPs and ATPs, much recent research has focused on integrating these two kinds of
provers to achieve a best-of-both-worlds scenario. An integration can benefit both the ATP,
by validating its results in a proof assistant, and the ITP by automating proofs to increase
efficiency. SMT solvers are evolving to emit, in addition to their results, proofs of the results
that can be externally verified in an ITP. SMTCoq [50] is a certified checker for such proofs
in Coq, invoking (among other proof-producing solvers) CVC4 [14] and veriT [27] to dis-
patch goals automatically. SMTCoq has some general limitations. First, although complete
automation of Coq goals by an external SMT solver is very useful, there are practical restric-
tions on the number of goals that are amenable to such automation, and on the completeness
of the automation. Often the solver may fail to prove a goal due to a lack of information
about terms in the goal, rather than the goal being invalid in Coq. Moreover, even when
the solver does succeed, it’s proof might be incomplete. For example, some fine-grained
steps, such as the rewriting of input formulas, may be left unjustified in the proof. Second,
SMTCoq’s representation of SMT formulas in Coq does not permit quantified formulas, and
thus its checker is restricted in its ability to certify reasoning in quantified logical fragments.
Towards addressing these limitations and in furthering the integration between ATPs and
ITPs, this thesis makes the following three contributions:

1. Towards increasing goal coverage of SMT solvers in ITPs, we extend SMTCoq to
leverage an SMT solver’s abductive capabilities. In cases where the solver finds the
Coq goal to be invalid, this feature allows the SMT solver to request the Coq user to
provide more information about terms in the goal that would allow the solver to prove
the goal, thus increasing interaction between the Coq user and the SMT solver.

2. Towards completely automating proofs of goals in ITPs, we implement a certified
checker for refined SMT proofs in Coq. The implementation takes the form of a
checker for alethe — a new proof format for SMT solvers that aims to unify multiple
proof-producing solvers. Importantly, we provide support for checking fine-grained
proofs from solvers including justifications of formula rewrites. Our checker works by
reducing alethe proofs by a sequence of sound proof transformations, so that they are
checkable by SMTCoq. It has the dual benefit of expanding SMT-driven automation
in Coq, as well as increasing trust in the solvers that produce alethe proofs.

3. Towards certifying SMT solvers for quantified reasoning, we formalize and prove in
Coq certain properties called invertibility conditions, which are used by SMT solvers
for quantified reasoning over bit-vectors. By proving the correctness of these conditions
in Coq, we certify a quantifier instantiation technique for bit-vectors in Coq, increasing
the reliability of the solvers that use this technique.

Chapter 2 establishes the background necessary for the rest of the document. Chap-
ter 3 formally describes our contributions using terms introduced in the Background section.

2

Chapters 4, 5, and 6 detail the work done towards contributions 1, 2, and 3; and Chapter 7
summarizes the contributions of the thesis and presents avenues for future research.

3

Chapter 2

Background

2.1 Preliminaries

Our logical setting is that of classical many-sorted first-order logic with equality, the base
logic of SMT [12]. We define set S of sort symbols containing a distinguished symbol called
Bool, and set X of variable symbols, each associated with a sort in S. A signature Σ is
composed of:

� ΣS ⊆ S, the sort symbols

� set ΣF , the function symbols

� total mapping ra : ΣF → (ΣS)+, where + is the regular expression operator that
indicates one or more occurrences of the preceding element.

Each function symbol f in ΣF has arity n and rank ra(f) = σ1 . . . σnσ, with n ≥ 0. Function
symbols with arity 0 are called constant symbols. Σ-terms and Σ-formulas are defined as t
and φ respectively in the following grammar.

t := x | f(t1, ..., tn)

φ := xBool | False | t1 = t2 | ¬φ | p(t1, . . . , tn) | φ1 ∨ φ2 | ∃x.φ

A Σ-term of sort σ is either a sorted variable x, or an application of f ∈ ΣF with rank
σ1 . . . σnσ to terms t1, . . . , tn such that the sort of each ti is σi for i = 1, . . . , n. A Σ-formula
— a Σ-term of sort Bool — is either a variable of sort Bool (distinguished by specifying
the sort as a superscript), False (the expression representing falsity); the equality between
two terms (t1 = t2); the negation of a formula (¬φ); an application of p ∈ ΣF with rank
σ1 . . . σnBool (also called a predicate symbol) to terms t1, . . . , tn such that the sort of each ti
is σi for i = 1, . . . , n; the disjunction of two formulas (φ1 ∨ φ2); or an existentially quantified
formula ∃x.φ where x is a variable with sort in ΣS. We write ψ[x1, . . . , xn] to represent a
formula whose free variables are from the set {x1, . . . , xn} and ψ[x1 7→ c1, . . . , xn 7→ cn] to
represent the substitution in ψ of terms c1, . . . , cn respectively for variables x1, . . . , xn.

For convenience, we naturally extend formulas to include True for logical truth; and
conjunctive (φ1 ∧ φ2), implicative (φ1 → φ2) and universally quantified formulas (∀x.φ).

4

These extensions are defined in terms of basic formulas as usual. Often, we distinguishe
equalities between formulas (φ1 =Bool φ2 where we drop the sort when clear from context, or
unnecessary) — as equivalences or if-and-only-ifs — from equalities over other types. We also
allow for quantifiers to bind multiple variables to a formula, conjunctions and disjunctions
to be naturally extended to any non-zero arity, and introduce the shorthand 6= for negation
of an equality. As we have done for variables in the grammar rule for formulas above, we
use a superscript to denote the sort of a term, when necessary. An atomic Σ-formula is a Σ-
formula that has no proper subterms of sort Bool. A Σ-literal is an atomic Σ-formula or the
negation of one. A clause is a disjunction l1 ∨ · · · ∨ ln of literals. We often represent clauses
as sets of their constituent literals ({l1, · · · , ln}, where sometimes we omit the braces), and
denote the empty clause by 〈 〉. A formula is in conjunction normal form (or CNF) if it is a
conjunction c1 ∧ · · · ∧ cn of zero or more clauses.
For each signature Σ and set Y ⊆ X of sorted variables, a Σ-interpretation I over Y maps

� each sort σ ∈ ΣS to non-empty set Iσ, the domain of σ in I, such that the domain of
Bool is {>,⊥};

� each variable x ∈ Y of sort σ to an element xI ∈ Iσ (we call this mapping a valuation
VI);

� each function symbol f ∈ ΣF of rank σ1 . . . σnσ to a total function fI : Iσ1×. . .×Iσn →
Iσ

The notion of substitutions introduced above naturally extends to interpretations and valu-
ations as well. We use notation {x1 7→ c1, . . . , xn 7→ cn} for a valuation mapping x1, . . . , , xn
to c1, . . . , cn respectively. An evaluation of a Σ-term with respect to a Σ-interpretation I is
recursively defined as the function J KI :

� For variable x, JxKI = VI(x)

� Jf(t1, . . . , tn)KI = fI(Jt1KI , . . . , JtnKI)

� JTrueKI = > and JFalseKI = ⊥

� Jt1 = t2KI = > if Jt1KI = Jt2KI ; otherwise, Jt1 = t2KI = ⊥

� J¬φKI = > if JφKI = ⊥; otherwise, J¬φKI = ⊥

� Jφ1 ∨ φ2KI = > if Jφ1KI = > or Jφ2KI = >; otherwise, Jφ1 ∨ φ2KI = ⊥

� J∃xσ.φKI = > if there exists v ∈ Iσ such that JφKI[x 7→v] = >; otherwise, J∃xσ.φKI = ⊥

A Σ-interpretation I satisfies a Σ-formula φ — denoted I |= φ — if JφKI = >. Then,
I is called a model of φ. Often, we only care about the valuation of variables and take the
rest of the interpretation to be standard when talking about satisfying models. A theory is
a pair T = (Σ, I) where Σ is a signature and I is a non-empty class of Σ-interpretations
called the models of T or T -models. A Σ-formula is T -satisfiable or satisfiable modulo T if

5

it has a T -model, and T -unsatisfiable or unsatisfiable modulo T otherwise. Two formulas
are T−equisatisfiable if they are both T−satisfiable or both T−unsatisfiable. A set Γ of
formulas T -entails a formula ψ, written Γ |=T ψ, if every model of T that satisfies all the
formulas in Γ is also a model of ψ. A Σ-formula φ is weaker (in T) than a formula ψ if
{ψ} |=T φ. Some theories from the SMT-LIB 2 [11] standard for SMT solvers that we
will reference (often using the parenthesized abbreviations) are the theories of equality over
uninterpreted functions (EUF), linear integer arithmetic (LIA), bit-vectors (BV), and arrays
with extensionality (AX).

2.2 SMT Solvers

Propositional satisfiability (SAT) is the problem of determining whether a propositional
formula is satisfiable. Satisfiability modulo theories (SMT) is concerned with the satisfiability
of formulas with respect to some background theory [13].

Example 2.2.1. For propositional variables P , Q, and R (variables of sort Bool), the
propositional formula P ∧Q∧¬R is satisfiable, and a satisfying assignment is {P 7→ >, Q 7→
>, R 7→ ⊥}. A formula with a similar propositional structure (a = b)∧ (b = c)∧¬(a = c) is
unsatisfiable modulo the theory of equality (EUF). The analogous assignment {(a = b) 7→
>, (b = c) 7→ >, (a = c) 7→ ⊥} is inconsistent by transitivity of equality, which requires a = c
to hold given that a = b and b = c hold.

SMT solvers are commonly used to drive various software and hardware verification tools
and techniques such as model checking [7], symbolic execution [8], program synthesis [26],
and interpolant generation [54]. They can also be used as provers, since a formula is valid if
its negation is unsatisfiable. In fact, the unsatisfiability of the formula from Example 2.2.1 is
an acceptable proof of the transitivity of equality over literals a, b and c: (a = b)→ (b = c)→
(a = c), since the negation of this formula is logically equivalent to (a = b)∧(b = c)∧¬(a = c).
Conversely, satisfiability of the negation of a formula is a disproof, or a proof of its invalidity,
and a satisfying model is a counterexample witnessing the invalidity.

Conceptually, it is useful to think of formulas as entailments over some theory T between
a (possibly empty) set ({H1, . . . , Hn}) of hypotheses H and a goal G:

H |=T G

An SMT solver is able to deductively prove (resp. disprove) this entailment if it is able
to prove the negation of the formula H1 ∧ · · · ∧ Hn → G unsatisfiable (resp. satisfiable).
When such an entailment does not hold (H 6|=T G), abduction is the problem of finding some
formula φ — an abduct — such that:

� φ is consistent with H in T , that is, H ∧ φ is T -satisfiable.

� H ∧ φ |=T G

6

Syntax-restricted abduction is the problem of finding an abduct that is in the language
generated by a given context-free grammar R.

For quantifier-free reasoning, a typical SMT solver composes a SAT solver with multiple
theory solvers in an abstraction-refinement cycle, where the SAT engine tries to find a
satisfying model of the propositional abstraction of a given set of constraints, and the theory
solvers find a refutation of the refinement of the model, if one exists. This cycle is guided
by the DPLL(T) [55] algorithm, which is an extension of the DPLL [69] (Davis-Putnam-
Logemann-Loveland) algorithm with theory-level reasoning. An SMT solver converts its
input constraints into conjunction normal form (CNF); the DPLL(T) algorithm then tries
to find a satisfying assignment for these clauses, and otherwise, by exhaustion concludes their
unsatisfiability. The steps taken to conclude unsatisfiability can be translated (roughly) into
a chain of resolutions of the input clauses to conclude the empty clause from them, which is
the most basic form of unsatisfiability.

2.2.1 Quantifiers

For quantified logics, quantifier handling methods are overlaid on the DPLL(T) architecture.
Skolemization is a technique used to eliminate existential quantifiers, and the most popular
method that SMT solvers use to deal with universal quantifiers is quantifier instantiation
where ground (variable-free) terms are substituted for universal variables repeatedly, until
either an unsatisfiable set of instances is found (implying that the original formula is un-
satisfiable), or a model for the original formula is found. This process is not necessarily
terminating, and its efficiency depends on problem-specific factors such as the theories and
ground terms involved, and technique-specific factors, particularly, the quantifier instantia-
tion technique employed. Some popular instantiation methods are E-matching [42, 37, 56]
conflict-based instantiation [86], enumerative instantiation [83], counterexample guided in-
stantiation [85], and model-based instantiation [57, 87].

Our contributions are relevant to SMT-LIB 2’s theory of bit-vectors which we briefly
describe here. A more expansive description is presented in Section 6.1. The signature ΣBV

of the SMT-LIB 2 theory of fixed-width bit-vectors includes a unique sort for each positive
integer n, denoted σ[n], representing the bit-vectors of length n. In the following, we look at
examples of 32-bit bit-vectors from σ[32] and describe the functions we use inline.

Example 2.2.2. This example is borrowed from Jonáš et al. [67]. Consider the following
formula φ where x and y are 32-bit bit-vector variables and 2 and 3 are 32-bit bit-vector
constants, <u is the less-than predicate over bit-vectors that interprets its arguments as
unsigned, and · is bit-vector multiplication.

3 <u x ∧ ∀y(x 6= 2 · y)

Let G abbreviate the quantifier-free part — 3 <u x, and ∀y. Q the quantified part —
∀y(x 6= 2 · y). An SMT solver using model-based instantiation works as follows.

7

1. It checks the quantifier-free part of the formula. Finding it unsatisfiable is an easy way
to conclude the unsatisfiability of the entire formula. Here, it finds G to be satisfiable
with model M = {x 7→ 4}.

2. Next, it checks whether M is a model of ∀y. Q by checking whether ¬QM is un-
satisfiable, where QM is the quantifier-free formula obtained by substituting for free
variables and uninterpreted function symbols fromM. IfM is a model of ∀y. Q (¬QM
is unsatisfiable), the solver can conclude that φ is satisfiable. However, this is not the
case, since 4 = 2 · y is satisfiable with model N = {y 7→ 2}.

3. Now the solver has model N (of ¬QM) which it uses to rule outM as a model. This is
done by conjoining the original formula with instance Q[y 7→ 2], the formula obtained
by substituting for the variables in Q based on N , and then repeating.

So, after one iteration, we have equisatisfiable formula 3 <u x∧ x 6= 2 · 2∧ ∀y(x 6= 2 · y) and
its quantifier-free component is satisfiable with model M′ = {x 7→ 5} which is also a model
of ∀y. Q, so φ is satisfiable with model M′.

In Example 2.2.2, the efficiency of the solver depends on the models found for x. If the
solver tried all even numbers greater than 3 (modulo 32) for possible values for x before
trying any odd ones, it would take much longer to find a model of φ. Recent approaches
have leveraged syntax-guided synthesis [3] to do quantifier instantiation [82]. In Chapter 6,
we describe one such technique used by cvc5 for quantifier instantiation in the theory of
bit-vectors, that helps overcome the dependence on the model-finder from Example 2.2.2.
This technique is based on the validity of certain properties called invertibility conditions
expressed over bit-vectors.

2.2.2 Proof Certificates

To increase reliability in their results, many SMT solvers are able to justify these results. A
satisfying model is used to justify a satisfiable formula, and for unsatisfiable formulas, we
define proof certificates in Section 5.1. Roughly, a proof certificate applies proof rules to
(the negation of) the input formulas of an SMT solver and reduces them to 〈 〉 (the empty
clause), a standard form of unsatisfiability. Although all SMT solvers agree on the high-level
aspects of what proof certificates should look like, there hasn’t been a convergence on a proof
certificate format for SMT solvers. One reason for this is that SMT solvers differ in their
solving approaches. More importantly, they differ on the parts of solving that they justify
(for example, CNF conversion and term-rewriting steps may be unjustified by some solvers),
and on the granularity of detail in their proofs. Proofs generated by the z3 SMT solver [38],
for instance, are more coarse-grained than the ones produced by cvc5 and veriT. Thus,
various SMT proof formats exist, supported by different SMT solvers. CVC4 [14] emits
resolution proofs via LFSC [94] (Logical Framework with Side Conditions), a framework
that offers a dependent type theory as a language for describing proof rules, as well as a
checker for these proofs. z3 uses a set of coarse-grained rules and an internal format over

8

which it produces proofs [25]. The veriT solver’s first proof format [18] was inspired by
the SMT-LIB 2 standard for SMT solvers. Subsequent formats supporting more expressive
rules have remained faithful to this motivation. The most recent iteration of veriT’s proof
format is the alethe proof format [88]. alethe implements a natural deduction style calculus
for proofs of unsatisfiability. It contains extended rules that cover term rewriting steps done
by SMT solvers and also provides support for quantified reasoning. Recently, cvc5 has also
made advances in producing fine-grained proofs over multiple formats [10]. These include an
internal proof format, a proof format checkable in the Lean theorem prover [39], an improved
version of the LFSC format, and the alethe proof format. This makes alethe the first proof
format supported by multiple SMT solvers.

2.3 Resolution Provers

Another set of popular automatic theorem provers (ATPs) are called superposition provers,
or resolution provers [6]. These differ from SMT solvers in that they focus on proving
conjectures rather than finding a satisfying model for a set of formulas. Although both these
problems are duals of each other, picking one over the other makes a difference to the kinds
of instances that become solvable, owing to the complexity of the problem space — the SAT
problem is NP-complete and quantification and theory reasoning often lead to undecidability.
The input problem to a superposition prover is formulated as a set of axioms that relate to
the problem space, a set of assumptions, and a conjecture to prove. Whereas theories are
built into SMT solvers, they need to be externally axiomatized for most resolution provers.
As such, superposition provers are better suited for quantified formulas and minimal theory
reasoning, whereas SMT solvers do well on problems that contain constraints in theories
and quantified formulas slow them down. Within ATPs, our focus in this work is almost
exclusively on SMT solvers.

A note on terminology: many consider resolution provers to be the only kind of automatic
theorem provers and consequentially use the terms interchangeably. This thesis treats both
SMT solvers and resolution provers as different types of ATPs and distinguishes them from
ITPs (described below). To make matters worse, since we focus on SMT solvers, we often
use the terms SMT solvers and ATPs interchangeably.

2.4 Interactive Theorem Provers

Interactive theorem provers (ITPs), or proof assistants are provers that have a small trusted
computing base (TCB), especially in comparison to ATPs. They offer strong guarantees
of properties proved within this TCB. A lineage of ITPs that can be traced back to Au-
tomath [36] implement the Curry-Howard isomorphism, where properties — stated as logical
formulas — are also types and can be proven by constructing terms of the corresponding
type. Some examples of such ITPs include Agda [77] and Lean [39]. The one that we use
in this work is Coq [33]. Via so called conversion rules [45] a proof term in Coq can have
multiple types as long as they are computationally equivalent. The Coq type-checker plays

9

the role of its TCB’s guarantor. While a user can provide a term of the right type to Coq
as a proof, Coq offers an interface to construct proof terms via scripts called tactics. Tactics
range from single, one-word invocations of previously proven theorems to complicated scripts
involving nested case-splittings that may involve inductive reasoning. In this document, we
use the Goal keyword to specify unnamed theorems and the Theorem keyword for named
ones in Coq; a proof term is specified between the Proof. and Qed. keywords, and a failed
proof is closed using the Admitted. keyword. Multi-line comments in Coq are enclosed
within (* and *).

When external tools are used for providing automation in an ITP, care must be taken so
that the TCB is not extended. One way to ensure this is to re-implement and prove correct
the external tool within the ITP [68, 53]; another is to use the external tool as a guide and
reconstruct its proofs within the ITP [19, 35, 20]. Tools that perform such a reconstruction
are called hammers. A third potential route is computation reflection, which allows the
proof assistant to replace a proof by a computation. Such a computation can be driven by
an external prover and requires: (i) a represention of the external prover’s formulas in the
ITP (in the case of Coq, one can use Coq’s programming language, Gallina [64] to do this),
and (ii) a proof of the correspondence between these represented formulas, and formulas in
the language of the ITP. This method leverages Coq’s conversion rules to replace a proof
term by a computation over a certificate produced by an external prover. One of the earliest
known tactics to use external SMT solvers in Coq via computational reflection is the kettle

tactic [29] that is able to do reasoning over equality and linear integer arithmetic. In this
work, we use a tool called SMTCoq [5] which also provides proof automation in Coq via
computational reflection.

2.5 SMTCoq

SMTCoq is a Coq plug-in that enables a skeptical cooperation between Coq and external
SAT and SMT solvers. SMTCoq requires the external solvers to produce proof certificates,
so that their results can be validated via Coq’s TCB. This is done using Coq’s computational
reflection capabilities to construct proof terms for goals using the certificates from the solver.

In contrast to the many-sorted first order logic used by SMT solvers, Coq is based on
the Calculus of Inductive Constructions, a constructive higher-order logic with dependent
types [80]. SMTCoq resolves this mismatch by considering only goals of the form ∀l, b1 = b2
where l is a list of sorted variables, and b1 and b2 are quantifier-free expressions of type Bool

(a Boolean type defined in Gallina), as opposed to terms of type Prop, the designated type
for formulas in Coq. It has a separate mechanism for lifting such Bool formulas to Prop

formulas. SMTCoq offers multiple tactics that are described below.

Example 2.5.1. Coq’s Z.ltb, representing the less than operator over the integers, has
type Z → Z → Bool and infix notation <?. A formula in Coq stating that all integers are
lesser than 100 can be stated using this operator as:

∀x : Z, (x <? 100) = true.

10

We refer to a goal such as this one as using the less than predicate in its Bool form. SMTCoq’s
tactics can be invoked on such a goal (in this case, they will disprove the goal).

The majority of SMTCoq’s machinery provides a way to computationally reflect a proof
certificate from an external solver into a proof term in Coq of the correct type. In essence,
this consists of a checker for these certificates, supported by many efficient data structures
to improve scalability, and a proof of this checker’s correctness in terms of Coq’s logic. The
correctness proof of the internal SMTCoq checker boils down to a theorem stating, intuitively,
that if the checker accepts an external proof certificate as a proof of the validity of a Boolean
term φ in first-order logic, then the proposition ∀l, φ = true (where true is > for the Bool

type) is valid in Coq’s logic.
The goals that SMTCoq can deal with are restricted to a subset of the first-order frag-

ment of Coq’s logic. The Sniper [23] tool relaxes this limitation. It is built on top of SMTCoq
with the goal of proving more expressive goals. It achieves this via a modular set of trans-
formations that can be applied to a Coq goal to make it suitable for an external solver to
solve, and adding to Coq’s computational reflection mechanism to prove these goals while
staying true to Coq’s TCB.

SMTCoq’s tactics are considered push-button provers that can either succeed in proving
the subgoal or fail. Therefore, interaction between the user and the external solver is limited.
Currently, interaction comes only in the form of solver proofs with “holes” in them. When it
encounters such holes in an external solver’s proof, SMTCoq presents them as new subgoals
to the user. In Section 4, we enhance SMTCoq with more interactive capabilities.

2.5.1 SMTCoq’s Tactics

SMTCoq provides a suite of Coq commands and tactics. The commands, also called vernac-
ular commands or Coq vernacs, can be invoked to use SMTCoq as a proof checker, and create
theorems from proof files. SMTCoq’s commands to invoke its proof checker are explained
in Section 5.4. The tactics help in proof automation, and the relevant ones are described in
what follows.

� The verit bool and the cvc4 bool tactics respectively invoke the veriT and CVC4
SMT solvers on goals of the form ∀l, b1 = b2 where l is a list of sorted variables, and
b1 and b2 are quantifier-free expressions of type Bool. We will call goals of this type
Boolean goals.

� The prop2bool and bool2prop tactics can be used to change terms in the proof context
between their Bool and Prop forms. The type of terms that can be changed this way are
limited to the theories that SMTCoq supports and the predicates that the SMT solver
supports within those theories. These tactics are implemented using the SSReflect
library [58].

� The verit and cvc4 tactics invoke the respective solvers on supported goals of type
Prop (these include goals covered by verit bool and cvc4 bool) by first converting
them into their corresponding Boolean goals.

11

� The smt tactic, which is used most often in this document, combines the previous
tactics to invoke a combination of CVC4 and veriT on either Boolean goals or other
goals of type Prop.

Example 2.5.2. Example 2.5.1 introduces Z.ltb, the less than operator over integers that
returns a Bool. Terms over Z.ltb are embedded in coq’s Prop type by equating them
to other terms of type Bool (usually true or false). Coq also offers the operator Z.lt

with type Z → Z → Prop and infix notation <. We refer to a goal such as the one from
Example 2.5.1 that uses Z.ltb can be stated as:

∀x : Z, x < 100.

This goal is an example of the less than predicate being used in its Prop form. SMTCoq’s
prop2bool and bool2prop tactics allow the user to switch between such a goal and its
corresponding Bool form, given in Example 2.5.1. In order to do this, the tactics use the
following property:

∀(n m : Z), (n <? m) = true <-> (n < m).

where <-> is Coq’s equivalence operator. In the case of the less than predicate, the Coq
standard library provides this proof (lemma Z.ltb lt). For other predicates such a property
equating their Bool and prop forms is proved within SMTCoq.

In Chapter 4, we introduce a new addition to the SMTCoq tactics.

12

Chapter 3

Thesis Outline

Given that the lack of trustworthiness in ATPs and the lack of automation in ITPs can be
addressed by each other’s capabilities, this thesis proposes three integrations between ATPs
and ITPs, each focusing on at least one of these shortcomings. The contributions in this
document concern SMT solvers (the ATPs) and the Coq proof assistant (the ITP).

1. External ATPs can be used to automate proofs of goals within ITPs. The SMTCoq
plug-in described in Section 2.5 is one such tool that is able to dispatch sub-goals
from the Coq proof assistant to SAT and SMT solvers. We adapt SMTCoq to cvc5’s
abduction solver, offering an interactive tactic called abduce which allows the Coq
user to query the SMT solver for missing hypotheses that might allow it to prove a
currently failing goal. Chapter 4 introduces SMTCoq’s abduce tactic, scenarios in Coq
developments in which it may prove useful, and the underlying mechanism of abductive
reasoning in cvc5.

2. An ATP’s result can be certified by checking it via an ITP. To this end, SMT solvers
produce proof certificates, as described in Section 2.2.2, whose correctness can be
checked by an ITP. To reconcile the different certificate formats of different SMT
solvers, SMTCoq has an internal proof certificate format, and a translator for each
external format. We adapt SMTCoq to accept proofs in the alethe format, supported
by both veriT and cvc5. We do this via a sequence of modular transformations of alethe
proofs into SMTCoq proofs. The byproducts of this contribution are: (i) a checker for
the alethe proof format in Coq and (ii) support for finer-grained SMT proofs in Coq
including aspects such as rewrites and sub-proofs that weren’t previously supported.
Chapter 5 is dedicated to this contribution.

3. An ATP can be certified by checking modular parts of its algorithm in an ITP. Although
proof production by SMT solvers has become common for quantified theories, SMT-
Coq is limited in its ability to certify quantified reasoning by SMT solvers. Progress
in quantified SMT reasoning is a recent phenomenon in the theory of fixed-width bit-
vectors (which is supported by SMTCoq), owing to the development of theory-specific
quantifier instantiation techniques specializing the general techniques discussed in Sec-
tion 2.2.1. cvc5 uses instantiation by invertibility conditions, as described in Chapter 6,

13

and would benefit from the verification of these invertibility conditions, some of which
are trusted without justification. We verify a subset of these previously unjustified
invertibility conditions in Coq. This work increases trust in the correctness of the
quantifier-instantiation techniques used by cvc5’s bit-vector solver. Chapter 6 for-
malizes invertibility conditions, describes previous attempts at their verification, and
presents our Coq proofs as a complement to these attempts.

14

Chapter 4

The abduce Tactic

This chapter introduces the abduce tactic, our extension to SMTCoq — a Coq plugin that
invokes external SMT solvers to prove subgoals in Coq, without extending the ITP’s trusted
computing base (see Section 2.5 for more). SMTCoq offers a set of tactics that the user can
invoke to call the external solvers on a goal. We add the abduce tactic which allows a Coq
user to interact with the cvc5 SMT solver’s abduction engine.

4.1 Premise Selection

Given a goal G in an ITP that we want to prove using an external ATP, premise selection
is the problem of selecting the set H = {H1, . . . , Hn} of hypotheses or premises from the
ITP’s environment. Naturally, the goal of premise selection is to optimize this set H for both
success and time. In other words, we want to pick H such that the ATP can prove H |=T G
as fast as possible. However, a balance must be struck between the two optimization goals.
In theory, an obvious strategy to optimize for success would be to send all possible facts from
the ITP’s environment. For any decently sized proof development, this strategy would most
likely fail by overwhelming the external ATP with constraints. Similarly, sending no facts
to optimize for time would fail for a development of considerable complexity since provable
goals would likely depend on hypotheses not known to the external prover.

Hammers — tools used by ITPs to integrate external provers — have three possible
integrations with external ATPs.

1. The ATP is used as an oracle for automating proofs, which is undesirable since this
would extend the TCB of the ITP significantly. Using an ATP to disprove theorems
is generally more acceptable since it is incapable of introducing unsoundness. Coun-
terexample generators such as Nunchaku [34] and Refute [95] operate in this fashion.
Notice that even in this safer integration, the premise selection problem persists. A
theorem can only be disproved by an external solver if it can be argued that it had all
the premises necessary to prove the goal and still found a counter-example.

2. An external ATP is used as a relevance filter for an internal prover. The entire proof
is produced by the internal prover that is within the TCB of the ITP. The only role

15

that the external ATP plays is to reduce the set H from which G can be proved so
that the internal prover is not overwhelmed by facts. An SMT solver performs this
reduction via an unsatisfiability core — a subset of all the facts from the input that are
still unsatisfiable (recall that proving the validity of a formula is equivalent to proving
the unsatisfiability of its encoding).

3. A proof-producing external ATP is used to automate proofs within the ITP. The proof
produced by the ATP is reconstructed within the ITP. Each step in the proof is reproved
within the ITP using internal tactics or decision procedures, thus preserving its TCB.

Note that the ATP does not completely replace the premise selection process in any of its
three possible integrations with an ITP. An initial premise selection strategy is still necessary
because libraries of typical ITPs are huge, and any ATP would fail on the entirety of such a
library. Thus, a premise selection strategy is used to select a few hundred relevant hypotheses
to send to the ATP along with the goal, and in a successful invocation, the ATP further
reduces these hypotheses so that the entailment can be internally proved. CoqHammer [35],
a hammer for Coq offers integrations with external provers both via integrations 2 and 3.
It uses machine-learning algorithms to select its premises before calling the ATP. It offers
two tactics: sauto that tries to automate the proof of a goal without invoking any external
provers; and hammer which when triggered on some Coq goal, (i) submits the goal together
with a few facts gathered by its premise selection strategies to external provers, (ii) attempts
to reconstruct a returned proofs (if one exists) directly in the Coq tactic language Ltac [41],
and (iii) outputs the set of tactics closing the goal in case of success.

The HOL family of theorem provers (HOL [59], HOL Light [63], Isabelle/HOL [76]) follow
the LCF approach (originating from the LCF system [60]) to theorem proving where a theo-
rem is implemented as an abstract data type (ADT) in the ML programming language [70],
and the only way to create theorems within the system is through a set of functions over
the ADT that correspond to axioms and inference rules. So, while the LCF systems also
reduce proof checking to type checking, they differ from the Curry-Howard approach (used
in Coq) by their usage of an ADT. Isabelle/HOL, one of the most popular variants of this
family of theorem provers, is a proof assistant for higher-order logic offering multiple means
of automation to the user. One can invoke Metis [65], Isabelle/HOL’s internal theorem
prover, which is capable of proving theorems without extending its TCB. Moreover, Metis is
instrumented to be able to perform reconstruction of external proofs. External solvers can
be invoked in Isabelle/HOL via the Sledgehammer [81] tool. Sledgehammer offers all three
of the possible integrations mentioned above [81, 19]. Initially, it was built only to work with
resolution provers (see Section 2.3), but was later integrated with SMT solvers due to their
ability to solve from the set of problems that is complementary to those generally solvable by
resolution provers [19]. Its standard mode of operation is to call both resolution provers and
SMT solvers parallelly on a particular goal along with some premises, and then to use Metis
to reconstruct these proofs (integration 3). So the output of Sledgehammer is essentially a
list of calls to Metis to prove each step in the proof. As support for more complex proofs
by external provers was added, reconstruction began relying on other internal provers in
addition to Metis (for example, support for bit-vectors needed additional tactics [24]). For

16

premise selection, Sledgehammer relies on heuristics and machine learning algorithms based
on the symbols shared between the goal and the facts in Isabelle/HOL’s libraries.

4.2 Abduction for Premise Suggestion

Current methods for premise selection are implemented on the ITP side of the integration
so that a large set of facts within the ITP’s library can be reduced to a smaller set of facts
which can either be used by the external solver or further reduced by it. In other words,
given some goal G, the problem of finding the set H of hypotheses needed to prove G such
that H |=T G is recast as the problem of reducing some large set of facts L to a set H such
that an ATP (internal or external) can prove H |=T G. This reduction is often performed
by hammers using heuristics and possibly machine-learning techniques.

Example 4.2.1. Suppose our Coq development contains a binary function f of type Z →
Z → Z (where Z is Coq’s integer type), and many facts about f. We can invoke SMTCoq
through the smt tactic as follows. An external solver will consider f to be uninterpreted,
but the solver can still successfully prove certain kinds of goals.

1 Goal forall (x y : Z), x = y -> f x 1 = f y (21 - 20).
2 Proof. smt. Qed.

In the previous example, the external solvers (veriT and CVC4) successfully manage to
prove the goal by using equational and arithmetic reasoning, along with basic properties of
functions.

Example 4.2.2. Now, consider a more interesting goal that depends on the specific behavior
of f.

1 Goal forall (x y z : Z), x = y + 1 -> (f y z) = f z (x - 1).
2 Proof. smt.

The external solvers fail to prove this goal, and return a counterexample witnessing the
invalidity of the goal, shown to the user as the assignment:

{f 7→ λ x, y→ x, x 7→ 1, y 7→ 0, z 7→ 1}

Here, we use the λ notation to define a function with arguments x and y, that simply returns
x.

It is possible that the solver failed because the goal is indeed invalid. However, considering
that the solver does not have access to a definition of f or an axiomatization of its properties,
it is more likely that the solver is missing one or more of those additional facts from Coq as
hypotheses for the goal. The hammer approach would be to run an efficient premise selection
strategy on all available lemmas in Coq (including the ones about f).

An alternative approach is to look at the problem as one of hypothesis finding: given a
goal G, find an H such that H |=T G. Solvers capable of performing abductive reasoning

17

can thus be used to try and solve this problem symbolically. We use cvc5’s abduction solver
in this manner so that the solver can be more directly involved in the premise selection
process. In other words, the solver can perform premise suggestion as an alternative to the
integration tool’s premise selection. Consider again the goal from Example 4.2.2 on which
the external solver fails. Instead of either reducing the facts about f or trying to derive them
through the given counterexample, the user may invoke cvc5’s abduction capability to get
a suggestion from the solver. This may be invoked via the abduce tactic as demonstrated
next in Example 4.3.1.

A note on the usage of CVC4 and its successor cvc5: SMTCoq supports external SMT
solvers CVC4 and veriT in their deductive capabilities. The proofs produced by cvc5 are
not backwards compatible with those produced by CVC4 due to which SMTCoq cannot use
cvc5 as one of its external solvers to automate proofs in Coq. The contributions presented in
Chapter 5 are a step in the direction of integrating SMTCoq with cvc5 using a proof format
supported by the latter. To use an external abduction solver, SMTCoq does not need it to
be proof producing. Therefore, SMTCoq uses CVC4 deductively and cvc5 abductively.

4.3 The abduce Tactic

We now introduce our addition of the abduce tactic to SMTCoq which enables the Coq user
to interact with the SMT solver when the latter fails to prove a goal. Consider Example 4.2.2
where this is the case. As mentioned in Section 4.2, the more likely cause of failure by the
external solver is the underspecification of f from the solver’s point of view. In such a
situation, the user may invoke cvc5’s abductive capability to get a suggested premise from
the solver.

Given the goal of proving the entailment H |=T G (for some theory T), SMTCoq encodes
H and G respectively as SMT formulas H ′ and G′, phrases the entailment between them
as an implication, and sends the negation of this implication to the SMT solver. Thus,
the goal of showing that H |=T G holds is converted to that of showing that H ′ ∧ ¬G′ is
T -unsatisfiable. For any particular Coq goal supported by SMTCoq, and sent to the SMT
solver, there are three possible outcomes:

(i) the solver proves the goal, by finding H ′ ∧ ¬G′ to be T -unsatisfiable;

(ii) it disproves the goal, by finding H ′ ∧ ¬G′ to be T -satisfiable;

(iii) it produces an “unknown” answer for having run out of resources.

An acceptable certificate for outcome (i) is a proof of unsatisfiability — the SMT solver
produces a formal proof that derives 〈 〉 (the empty clause) from H ′ ∧ ¬G′ (explained in
Chapter 5). An acceptable certificate for outcome (ii) is a counterexample, a valuation
of the (free) variables of H ′ ∧ ¬G′ that satisfies H ′ and falsifies G′. Example 4.2.1 is an
illustration of outcome (i), and Example 4.2.2 demonstrates outcome (ii) (where H would
be just True). Figures 4.1a and 4.1b show the interaction between Coq and the SMT solver
for both situations.

18

Certificate C

(a) cvc5 finds query to be unsatisfiable

Counter-example

(b) cvc5 finds query to be satisfiable

Abduct p

(c) cvc5 returns an abduct

Figure 4.1: Interaction of SMTCoq with the SMT solver. H = {H1, . . . ,Hn} is the set of hypotheses
sent to the solver.

An important caveat to outcome (ii) from above is that the solver disproves the goal in
its current context (H ′) by finding H ′ ∧ ¬G′ to be T -satisfiable. As suggested previously,
it is a likely possibility that the solver’s context is underspecified (in other words, H ′ is
missing some relevant facts from the ITP). It is this possibility that our new abduce tactic
in SMTCoq attempts to address. With the abduce tactic, a Coq user can ask cvc5 for
abducts that would entail a currently failing goal. An integer argument allows the user
to request a particular number of independent abducts — with each abduct separately
entailing the goal (equivalently, with the disjunction of all abducts entailing the goal) along
with the hypotheses. The tactic invokes cvc5’s abduction solver which we will elaborate on
in Section 4.4.

Example 4.3.1. We can use the abduce tactic on the goal from Example 4.2.2, since smt

fails.

1 Goal forall (x y z : Z), x = y + 1 -> (f y z) = f z (x - 1).
2 Proof.
3 (* smt. *) (* Commented out because it fails with a counter-example *)

4 abduce 3. (* Temporarily added, to get candidate hypotheses *)

This presents three abducts to the user: z = y; z + 1 = x; and f z y = f y z. The third
abduct tells the user that cvc5 would prove the goal if it was told that the function f is
commutative over z and y. If one of the previously proven facts about f is

comm f : ∀ m n, f m n = f n m

19

the user can easily instantiate it in Coq for the necessary variables. A subsequent call to the
smt tactic, with this instantiated fact in scope would successfully close the proof.

1 Goal forall (x y z : Z), x = y + 1 -> (f y z) = f z (x - 1).
2 Proof. intros. assert (f z y = f y z). { apply comm_f. } smt. Qed.

The intros tactic introduces x, y and z, and the hypothesis x = y + 1 into the scope of
the proof. assert is a way to locally introduce a fact into scope, and we use it to state the
chosen abduct. The abduct is easy to prove by an application of comm f. At that point,
the smt tactic can successfully prove the current goal (f y z) = f z (x - 1) from the
(automatically collected) local hypotheses x = y + 1 and f z y = f y z.

Internally, a call to abduce is composed of:

1. A call to CVC4 to confirm that the goal in its current context is disproved by the
external solver. This call is in non-proof mode, meaning CVC4 isn’t made to produce
a proof certificate. If the goal is proved by the external solver then the tactic call ends
by suggesting to the user that they use the smt tactic instead.

2. If CVC4 is able to disprove the goal (find its negation to be satisfiable) in the current
context, the abduction solver from cvc5 is called, asking it for the specified number of
abducts; these are then printed out to the user as Coq formulas which can be asserted
verbatim and then proved locally.

The tactic always fails with an error message — if it is called on a goal that is provable
by an external solver, the error message indicates to the user that it cannot find abducts
and that the user should consider using a deductive SMTCoq tactic. Even in its successful
invocation, the abduce tactic returns the abducts to the user via an error message. That is
intentional as this is a tactic that does not change the state of the current proof in any way.
And so the only difference it makes to a proof development is to add messages that will be
printed out to the user. As a result, their invocations should be removed after they have
served their purpose, so they don’t clutter the output of the proof development.

We point out that in cases where SMTCoq disproves the goal (outcome (ii) above), the
abduce tactic can provide a more general explanation of the failure than a counterexample.
Counterexamples are single points over which the entailment H |=T G fails whereas an
abduct represent a general sufficient condition for the provability of the goal that the user
might be able to fulfill using the current Coq context. Since there are a large number of
additional hypotheses that might help in proving a given goal, it is impractical to send all
of them along with the goal. Abduction is then a way for the SMT solver to tell the user
what else it needs. Figure 4.1c illustrates this case.

4.4 Abduction in cvc5

cvc5 performs syntax-restricted abduction [84] via syntax-guided synthesis (SyGuS) [3]. As
defined in Section 2.2, given a background theory T , a context-free grammar R and a set of

20

hypotheses H and a goal G such that H 6|=T G, the problem of syntax-restricted abduction
is to find a formula A such that (i) A ∧ H is T -satisfiable; (ii) A ∧ H |=T G; and (iii) A
is generated by R. The grammar input is optional, and the solver defaults to the grammar
that generates the entire language of T .

Figure 4.2: CEGIS procedure driving cvc5’s abduction solver.

The solver is driven by a basic CEGIS [91] procedure (as depicted in Figure 4.2) where
candidate abducts A, formulas generated from R that satisfy the consistency requirement
(i) above, are validated by checking whether H ∧ A |=T G. Valuations that invalidate this
entailment (by satisfying H ∧A and falsifying G) are collected (in P) and used to guide the
search of a solution: future candidates A that are satisfied by any of those valuations are
immediately discarded as they are guaranteed to fail the entailment check. cvc5 refines this
basic CEGIS procedure with various optimizations and symmetry breaking strategies that
eliminate redundant solutions and aim at producing solutions quickly.

cvc5 generates a sequence of abducts for the same problem so that their disjunction is
typically weaker in T than the individual abducts. This has the effect of producing an
increasingly general (disjunctive) abduct at the cost of additional computation. This cost
can be controlled by the user by specifying the length of the abduct sequence. Each separate
disjunct is also a satisfactory solution to the abduction problem.

Related Work Several tools which perform abductive reasoning have also been developed
over the years. Echenim et al. [49, 47] modify the superposition calculus to present an
abductive algorithm for prime implicate generation in the theory of equality. In supporting
all of cvc5’s underlying theories, the cvc5 abduction solver comparatively supports a much
wider range of applications. It is also different in that it is built on top of SMT technology.
Other abduction solvers that use SMT solvers are GPiD [48] and EXPLAIN [43]. GPiD
uses CVC4, Z3, and Alt-Ergo [30] and like cvc5’s abduction engine, supports a wide range of
theories. An important operational difference is that GPiD requires as input a set of literals

21

over which abducts can be generated. Although analogous to the grammar parameter to
the cvc5 solver, the latter can be omitted (in fact, the interface of the abduce tactic is such
that the solver must always consider the default grammar). With abduce, we prioritized
building a tactic whose invocation would require the minimal amount of effort from the Coq
user. Future iterations of the tactic might offer to the user a means to customize the solution
space. EXPLAIN uses the Mistral [44] SMT solver which only supports the EUF and LIA
theories. Another similar tool is CAPI [62] which uses abduction in descriptive logics to
provide explanations for observations that do not hold.

4.5 Evaluation

We performed multiple experiments to evaluate the abduce tactic’s usefulness as a companion
to the smt tactic. We used lemmas proven by standard Coq tactics as a baseline and tried to
recreate these proofs, either in parts or in their entirety, using SMTCoq’s automation tactics.
We used a selection of proven lemmas from the Coq standard library [32] to evaluate abduce

on. The Coq standard library has well-documented proofs over a breadth of mathematical
and logical areas. Since it is included with Coq distributions, it is well maintained by the Coq
community, and its proofs have been improved over multiple iterations by Coq developers,
experts and researchers. We searched these libraries for steps within proofs that could be
replaced by a call to SMTCoq’s deductive tactics; in cases where these failed, we called the
abduce tactic to test if it could help us recreate the proof step in question (in an interactive
fashion, as illustrated in Section 4.3). In some of the experiments, the approach was reversed
— we explicitly looked for lemmas used by the proof and treated them as candidates for
abduction; removing such a lemma from a proof would most likely lead the deductive tactic to
fail, and necessitate the use of the abductive one. In what follows, we present our evaluation
of the abduce tactic on the proofs from three (sub-)libraries in the Coq standard library.

4.5.1 Experimental Setup

In the following, we describe three different sets of experiments we ran on the abduce tactic.
While we emphasize the results of the abduce tactic from these experiments, we are testing
it in conjunction with the smt tactic. In the first experiment we do this explicitly — a call
to smt is followed by a call to abduce if the former fails. In the subsequent experiments,
although we call only the abduce tactic, a deductive call to the SMT solver is implicit. We
expect this call to fail (the solver to disprove the goal), but if it is able to prove the goal the
abduce tactic lets us know, so we can add an explicit call to smt.

We ran all experiments on CoqIDE version 8.13.2 in a system with 16 GB RAM, running
Ubuntu 20.04.1 To call either of SMTCoq’s tactics from within a library file, a command
importing SMTCoq as a plug-in is added to the file. All three experiments identify goals
(also called test units) to test SMTCoq’s tactics on. These could be entire proofs of lemmas,

1Instructions and resources needed to reproduce our experiments can be found at https://github.com/
arjunvish/smtcoq/blob/thesis24/INSTALL.md

22

https://github.com/arjunvish/smtcoq/blob/thesis24/INSTALL.md
https://github.com/arjunvish/smtcoq/blob/thesis24/INSTALL.md

or smaller parts of larger proofs. The result of running SMTCoq’s tactics on a goal is an smt

success if the goal can be fully solved by the SMT solver (with no additional hypotheses).
Such a success may be achieved through either one of SMTCoq’s deductive tactics (smt,
verit, cvc4, etc.), but we count them towards the success of smt for convenience. In cases
where the solver (through smt) finds a goal to be invalid, we repeatedly call abduce n with
n = 1, 2, 3 . . . and a 20 second timeout per call, stopping as soon as we find a suitable abduct
or when the solver times out for some n. Recall that abduce n asks for n abducts, each of
which independently entail the goal. We classify the goal as an abduce success, if a call to
abduce produces (within the given timeout) an easily provable abduct which, once added
locally, allows smt to prove the goal. Otherwise, we classify the goal as a timeout. The
criteria for classifying an abduct as easily provable differs for each experiment.

Our first experiment set is described in Section 4.5.2 and it employs an automated ex-
perimental set-up, where we replace the entire body of the proof to try and abduce it. This
is an ambitious goal, as proved by the fact that we searched the entire standard library
and a large collection of (around 71,000) Coq proofs called CoqGym [96] for candidate tests
(within our supported theories). However, we ended up finding only one library where the
abduce tactic was useful. This is not surprising as we expect the tactic to be more use-
ful in automating smaller parts of large proofs, rather than proofs in their entirety. So we
switched our experimental setup to reflect this expectation in our other two experiment sets.
Section 4.5.3 describes our experiments on Coq’s standard list library, and Section 4.5.4
details the experiments involving lemmas about multiplication over integers used in the Coq
standard libraries.

4.5.2 Zorder

Here, we present a case study on applying the smt and abduce tactics in the Coq library
Zorder [66], with the goal of automating the proofs in it. The library contains theorems
about order predicates over Coq’s Z (integer) type. While this library is deprecated, its
lemmas are still available in the Coq core libraries. The Zorder library stands out in the
Coq standard libraries due to its short proofs, as a consequence of which SMTCoq’s tactics
could in principle automate entire proofs from it.

Our study demonstrates the utility of the smt tactic and provides a proof-of-concept use
case for interacting with the SMT solver via the abduce tactic in an IDE for Coq. Our
experimental setup is as follows. Within the Zorder Coq file, we import SMTCoq as a plug-
in, and for each goal, we first try the smt tactic, which attempts to solve the goal using a
combination of the SMT solver CVC4 [14] and veriT[27], both of which are well integrated in
SMTCoq. smt classifies the goal as an SMT success, or an invalid goal. In case of the latter,
we call abduce to find a suitable abduct within a 20 second timeout. We classify the goal as
an abduce success, if a call to abduce produces (within the given timeout) an easily provable
abduct which, once added locally, allows smt to prove the goal. Otherwise, we classify the
goal as a timeout. For the purposes of this experiment, we consider an abduct to be easily
provable if it is provable from the Coq context by just unfolding once any applications of the

23

1 Lemma Znot_le_succ n : ∼ Z.succ n <= n.
2 Proof. (* time abduce 1. *)

3 (* The solver finds the goal to be invalid; the abduce call runs

4 for 0.278 secs and returns the abduct n + 1 <= (Z.succ n) *)

5 assert (n + 1 <= (Z.succ n)). { unfold Z.succ. smt. } smt.
6 Qed.

(a) Example goal proven using smt and abduce where ∼ represents logical negation in Coq.

1 Lemma Znot_le_succ n : ∼ Z.succ n <= n.
2 Proof. (* time abduce 1. *) unfold Z.succ. smt. Qed.

(b) An alternative interaction with abduction

Figure 4.3: Interactions with SMTCoq using the abduce tactic.

integer successor or predecessor functions (Z.succ or Z.pred, respectively) in the abduct.2

The experimental results are presented in Figure 4.4. From the 93 goals in the file, 30
goals contain non-linear arithmetic, a theory currently unsupported by SMTCoq; 3 goals are
inexpressible in any known SMT theory; and 1 contains predicates unrecognized by SMTCoq.
From the remaining 59 goals, we found 33 (55.9%) smt successes, and 26 candidates for
abduction, over half of which were abduce successes.

Most goals found invalid by the SMT solver were so because they contained either Coq’s
integer successor or integer predecessor functions, Z.succ and Z.pred, which SMTCoq en-
codes as uninterpreted functions in the translation to SMT. When successful, the abduction
solver was able to suggest either (correct) definitions of Z.succ and Z.pred, or properties
satisfied by them in Coq. Both forms of abducts can be proven locally by unfolding the def-
initions of those functions, and applying some basic properties of inequalities over integers.
We further automate this process by calling smt on the unfolded sub-goal. For example,
consider goal Znot le succ in Figure 4.3a. time is used to output the duration of the tac-
tic being run, along with its regular output. The tactic abduce is designed to fail when it
successfully finds the abducts and to print the abducts as part of its error message. The call
to the tactic is commented out in the figure. We report its output in a comment as well.
An alternative way to view this tactic is presented in Figure 4.3b. The SMT solver fails to
prove the goal as given, but the abduct returned by the abduce tactic suggests that all the
user needs to do in this case is to unfold the definition of Z.succ.

Admittedly, this simple example may not seem very compelling since the user might have
guessed from the start that the definition of Z.succ is needed for the SMT solver to prove
the goal. Moreover, there is an alternative automated solution provided by the Sniper plug-
in [23] whose snipe tactic is able to identify function definitions relevant to the goal and send
them to the SMT solver. However, for more complicated functions, providing hypotheses
capturing relevant properties of the function, as in the case of function f from Example 4.3.1,
may be more effective than providing their definitions since proving such properties in the

2A more principled experiment would use a less stringent notion of easily provable formula.

24

Goals smt successes Invalid goals abduce successes Timeouts
59 33 26 16 12

Figure 4.4: Summary of results of using abduce in Zorder.

external prover may require inductive reasoning, something SMT solvers are not generally
capable of. The following subsections present examples of such functions that the abduction
solver has to reason about. So the abduce tactic can be seen as a complement to snipe

in helping the user prove goals. Although we allowed the tactic 20 seconds to find a useful
abduct, all 16 successful calls were made within 4 seconds. In fact, over half of them took
less than 1 second. Note that there were 14 successful goals but 16 invocations of abduce

because two goals required multiple calls, one for Z.succ and one for Z.pred.
Using the same test set, we also confirmed some of our hypotheses about the default

grammar to provide, and the configuration with which to call the abduction solver. The first
was to remove logical disjunction and the if-than-else (ITE) operator from the grammar.
Such operators are not crucial since the user can recover disjunctive information by asking
for more than one abduct. We found that eliminating these operators yielded more successful
abducts. Second, we tested the ability of cvc5’s abduction solver to generate conjunctive
solutions quickly through unsat-core learning [84]. We found that, although the solver was
much faster in generating solutions with this configuration, in almost all cases, at least one of
the conjuncts was too specific, rendering the entire solution useless as it was not entailed by
the Coq context. For instance, with this option enabled, one of the abducts for Znot le succ

from Figure 4.3a is (&& denotes conjunction):

n <= (Z.succ n) && (not (Z.succ n) = n) && (Z.succ -2) = n && n = -1

We can see that the first conjunct is a useful abduct in isolation, whereas the full conjunction
clearly does not hold for the successor function.

4.5.3 List

In the experiments over Zorder from Section 4.5.2, we regard the entire proof of each lemma
as a possible test unit — a proof that can be completed by the SMT solver after the abduction
solver finds a suitable abduct. However, due to Coq’s logic — the calculus of inductive
constructions — libraries often have inductive types and theorems over inductive terms. An
inductive type is defined using constructors – functions that produce terms of the type –
and is conducive to proofs by induction, where a theorem over an inductive term is proven
by proving it for multiple cases, one for each constructor of the corresponding type, and
by using proofs over smaller (in a particular ordering) subterms in the proving of larger
ones. Although cvc5 does have support for the theory of inductive types [15], it is not
proof producing for it and is therefore not integrated with SMTCoq for this theory. As a
consequence, SMTCoq’s tactics will most likely fail on proofs that would require induction
(unless the inductive type is natively supported by the solver and integrated with SMTCoq,
as is the case with integers). So large inductive proofs cannot be fully automated by an

25

external SMT solver; they still show room for automation, however. Particularly, within the
case for each constructor, these proofs often perform deductive steps. We try to identify such
deductive steps as candidate test units for abduce. With these goals in mind, we perform
our experiments on the Coq standard List library [1].

In these experiments over List, the smt tactic often does not work straight out of the
box for the following reasons:

1. As mentioned above, external SMT solvers aren’t integrated with SMTCoq to natively
support proofs over lists (which are inductively defined in Coq). Instead, SMTCoq
converts lists into uninterpreted types, and functions over lists into uninterpreted func-
tions. The SMT solver often does not have enough information about these types and
functions to reason about them.

2. While sub-goals within proofs about lists often involve arithmetic, especially the ones
over the length of the list, the arithmetic is over Coq’s natural number type rather
than the integer type. Natural numbers are currently not supported by SMTCoq
(although such support is being developed by others) and so the SMT solver must
reason considering natural numbers and functions over them to be uninterpreted.

These factors make the library a good candidate to test the abduce tactic on. One way to
account for the fact that most types and function symbols are going to be uninterpreted
for the SMT solver is to axiomatize them within the SMT solver. Axioms would take the
shape of quantified formulas, which SMTCoq has limited support for. Instead, we try to get
the SMT solver to suggest premises that it needs to prove lemmas about the uninterpreted
symbols. Moreover, abducts are quantifier-free. Thus, when successful, the solver would be
suggesting instantiations of axioms, which are well supported by SMTCoq.

To find test units for the abduce tactic, we considered all sites inside proofs in List

where a lemma was invoked to prove a step using either the rewrite or the apply tactic.
A lemma is a named formula from either within the local context of the current proof (in
which case, it is a local lemma); or, from the proofs in the current file that were closed before
the current proof; or, from one of the imported libraries/files (the latter two constituting its
global context). Such lemmas are most often invoked in Coq using the rewrite tactic that
rewrites terms in the proof context, or the apply tactic that is used to prove a (sub-) goal
using a lemma.

Example 4.5.1. Consider the lemma app nil r from Figure 4.5. list is the parametric
type of inductive lists in Coq, and l has type list A, where A is a type variable representing
an arbitrary type.

A list is an inductive type that can be constructed either by (i) nil ([]), the constructor
representing an empty list, or (ii) cons (::), the constructor representing a non-empty list
constructed from some element h (of type A) and some list t (h::t or cons h t is the
constructed list).

The ++ or append operator appends two lists, and app nil r states that appending the
empty list to an arbitrary list l results in l. The local proof context in the proof at the

26

1 Theorem app_nil_r : forall (l : list A), l ++ []= l.
2 Proof.
3 induction l.
4 + simpl. reflexivity.
5 + simpl. rewrite IHl. reflexivity.
6 Qed.
7

8 Theorem app_nil_r_2 : forall (l : list A), l = l ++ [].
9 Proof.

10 symmetry. apply app_nil_r.
11 Qed.

Figure 4.5: Proof of lemmas app nil r and app nil r 2 demonstrating inductive proofs and the
usage of the rewrite and apply tactics.

beginning of line 3 contains the entire goal forall l, l ++ [] = l with no hypotheses.
The induction tactic invokes inductive reasoning on l splitting the goal into two inductive
cases, one for each constructor of list. The + symbol indicates the beginning of the proof
of each case:

� In the base case (line 4) of the proof where l is constructed using the nil constructor,
the goal is to prove [] ++ [] = []. The simpl tactic can simplify [] ++ [] to []

leaving a goal that can be proved using reflexivity.

� In the inductive case (line 5) of the proof corresponding to the cons constructor, the
following represents the local proof context:

a: A l: list A IH: l ++ [] = l

Goal: (a :: l) ++ [] = a :: l

The way to read this is that given proof term of type l ++ [] = l (the inductive
hypothesis IH), the goal is to prove (a :: l) ++ [] = a :: l. The application of simpl
further simplifies the goal to a :: l ++ [] = a :: l. The rewrite tactic takes the proof
of an equality as its argument; pattern-matches for the left-hand-side of the equality,
and replaces it with its right-hands-side if it can find a match (it fails otherwise). Here,
its application further reduces the goal to a :: l = a :: l, which can now be closed
using reflexivity.

The proof of app nil r 2 simply uses app nil r. The apply tactic takes a lemma as argu-
ment and applies it to reduce the goal if it can pattern-match the two. symmetry changes
the goal from l = l ++ [] to l ++ [] = l so that app nil r can be applied.

We treat every occurrence of apply and rewrite as a potential test unit for the abduce

tactic. That is, we consider the proof before this step and see if the abduction solver can
reproduce either the step or a different step that is available to use from the global context

27

Goals smt successes Invalid Goals abduce successes Timeouts
122 25 97 28 69

Figure 4.6: Summary of results of using abduce in List.

of the proof. We assume that removing the step would cause SMTCoq’s deductive tactics
to fail, but this need not be the case as can be seen from the results below. We found that
successes often occurred when the lemma in consideration was being invoked at the end of a
proof or of a case within a proof. This makes sense — if the call to a lemma is followed by
a call to another lemma, an invocation of abduce before the first lemma is asking the solver
to abduce both lemmas conjunctively. Section 4.5.2 discusses the cvc5 abduction solver’s
limitations in producing conjunctive solutions. In light of this, we modify the experimental
setup to make each test site independent of any lemma invocations that follow it: suppose x
is the lemma that we are testing for; we collect all lemmas Y whose invocations follow that
of x until the end of the proof or case that the call to x is a part of; we assert all lemmas
in Y and then call abduce to see if it can find x. Now we are testing the ability of the
abduction solver to find only x rather than the formula conjoining x with all formulas in Y .
This modified experimental set-up increased the number of successes by 10. The results from
the experiment set (using this modified experimental setup) are summarized in Figure 4.6.

From the 122 goals that represented possibly automatable calls to a lemma via the
rewrite or apply tactic, 25 (20.5%) are deductively solvable by the SMT solver, leaving 97
candidates for testing abduce, over which the tactic succeeds on 28 (28.9%). The abduce

tactic took longer than 2 seconds to find a useful abduct in only a fourth of these 28 successful
invocations. We define a successful invocation of the abduce tactic as one that can suggest
to the user a formula that is entailed by the Coq (global) context at the location in the proof
from where the tactic is being invoked and which once available to it, will allow the SMT
solver to solve the goal. The proof term for the formula (if it exists) can be found using
Coq’s Search command, which allows the user to look up lemmas from the global context.
The Search command allows the user to generalize the formula being searched for by using
wildcard entries for variables. So when the abduce tactic prints a successful abduct, the user
can automate the goal by:

1. locally asserting the goal verbatim using the assert command;

2. searching for a generalized version of the abduct using the Search command within
the local sub-proof; and

3. if found, applying the lemma to close the local goal.

Once the abduct is in the local context, the smt tactic can be called to prove the goal.

Example 4.5.2. Consider the proof of firstn rev from Figure 4.7a where firstn n l is
a list that stores the first n elements of list l (if the list does not have at least n elements,
it stores the entire list); rev l is the reverse of list l; skipn n l stores all elements in the
list after the first n ones; length l is the number of elements in list l. After line 3 that

28

1 Lemma firstn_rev: forall x l, firstn x (rev l) = rev (skipn (length l -x) l).
2 Proof.
3 intros x l.
4 rewrite firstn_skipn_rev.
5 rewrite rev_involutive.
6 rewrite rev_length.
7 reflexivity.
8 Qed.

(a) Proof of lemma firstn rev from the Coq List library

1 Lemma firstn_skipn_rev: forall x l,
2 firstn x l = rev (skipn (length l -x) (rev l)).
3

4 Lemma rev_involutive : forall l:list A, rev (rev l) = l.
5

6 Lemma rev_length : forall l, length (rev l) = length l.

(b) Lemmas used in proof of firstn rev

Figure 4.7: An example from the List library of firstn rev.

introduces the variables into the local context, the local proof context is:

x: nat l: list A

Goal: firstn (x) (rev(l)) = rev(skipn (len(l)− x) (l))

where each function represents the Coq function of the same name except len for length.
Rewriting firstn skipn rev (which is stated along with the other lemmas used by the proof
in Figure 4.7b) changes the context to:

x: nat l: list A

Goal: rev(skipn (len(rev(l))− x) (rev(rev(l)))) = rev(skipn (len(l)− x) (l))

rev involutive further removes the double application of rev from the goal:

x: nat l: list A

Goal: rev(skipn (len(rev(l))− x) (l)) = rev(skipn (len(l)− x) (l))

Finally, rev length that asserts that the length of list is equal to the length of its re-
verse transforms the goal to:

x: nat l: list A

Goal: rev(skipn (len(l)− x) (l)) = rev(skipn (len(l)− x) (l))

which can be proved using the reflexivity tactic since the left and right-hand sides of
the equality are identical.

29

1 Lemma firstn_rev: forall x l, firstn x (rev l) = rev (skipn (length l -x) l).
2 Proof.
3 intros x l. rewrite firstn_skipn_rev. rewrite rev_involutive.
4 (* time abduce 2. *)

5 (* The solver finds the goal to be invalid; the abduce call runs

6 for 1.847 seconds and returns two abducts:

7 1. rev l = l

8 2. length (rev l) = length l *)

9 assert (length (rev l) = length l).
10 { Search (length (rev _) = length _).
11 (* rev_length: forall l : list A, length (rev l) = length l *)

12 apply rev_length. } smt.
13 Qed.

Figure 4.8: Using abduce to find rev length.

Figure 4.8 shows the result of treating the rewrite in line 6 (from Figure 4.7a) as a test
unit. The abduce tactic is called before this line (the call and its output are commented out)
and it takes about 2 seconds to come up with an instance of the rev length lemma. The
user can locally assert this lemma by copying the abduct into the parameter of an assert

command. This lemma needs to now be proven inside braces that represent the body of
a sub-proof. The user can use the Search command as in line 10 where the variable l is
generalized using the character. The output of the command (also shown in a comment)
returns the proof term that we need — rev length, and this can be applied to close the
sub-proof. Calling smt after this would result in a successful call (assuming that the type A

that the lists in this proof are parameterized over have decidable equality) since the lemma,
which is in the local context of the proof is now sent to the SMT solver as a hypothesis.

To understand our modified experimental setup, from the same proof of firstn rev,
consider as a test unit the rewrite of lemma rev involutive (line 5 in Figure 4.7a). Since
it is not the last rewrite in the proof, calling abduce from the beginning of this line is asking
the abduction solver to suggest the application of both rev involutive and rev length

before the goal can be solved deductively. Doing this in the unmodified iteration of the
experiment caused the tactic to timeout. Figure 4.9 illustrates the extra step taken to
separate rev involutive from the conjunct — the instantiation of rev length is locally
asserted before the abduction solver is called. Given this extra fact, abduce succeeds in
suggesting the correct instance of rev involutive to the user. Following this, the user can
use a similar approach as in Figure 4.8 to complete the proof. Notice that line 4 in the proof
in Figure 4.9 introduces a hole in the proof since it proves a local lemma using admit. This
assertion only serves the abduction solver and is, in fact, commented out along with the call
to abduce. Therefore, it doesn’t break the proof.

Although the rewrite tactic was invoked 241 times and apply 243 times within List, we
had to eliminate most of these invocations from consideration for one the following reasons.

30

1 Lemma firstn_rev: forall x l, firstn x (rev l) = rev (skipn (length l -x) l).
2 Proof.
3 intros x l. rewrite firstn_skipn_rev.
4 assert (length (rev l) = length l) by admit. (* rev_length *)

5 (* time abduce 2. *)

6 (* The solver finds the goal to be invalid; the abduce call runs

7 for 0.433 seconds and returns two abducts:

8 1. rev l = l

9 2. rev (rev l) = l *)

10 assert (rev (rev l) = l).
11 { Search (rev (rev _) = _).
12 (* rev_involutive: forall [A : Type] (l : list A), rev (rev l) = l *)

13 apply rev_involutive. } smt.
14 rewrite rev_length. reflexivity.
15 Qed.

Figure 4.9: Locally asserting future rewrites to avoid abducing conjunctive solutions.

� The test unit is nested within other automation tactics and isn’t easy to isolate. This
was an especially rare occurrence (only two such cases).

� Most often, the form of the current goal was unsupported by SMTCoq. This could be
due to quantifiers, non-linear arithmetic, higher-order logic, or unsupported predicates
(explained below).

As described in Section 2.5, SMTCoq’s checker supports only goals containing predicates in
their Bool form. A goal that contains a predicate in its Prop form must first be reduced
to its corresponding Bool form. Examples 2.5.1 and 2.5.2 illustrate this using the integer
less than predicate: SMTCoq’s checker is built to support goals over Z.ltb (<?) of type Z

→ Z → Bool. To support Z.lt (<) of type Z → Z → Prop, SMTCoq uses the following
property:

∀(n m : Z), (n <? m) = true <-> (n < m).

This property proves an equivalence between Z.lt and Z.ltb so that the former can be
reduced to the latter. A predicate in its Prop form is unsupported by SMTCoq if such a
reduction cannot be performed by SMTCoq’s tactics. We had to remove a large number of
invocations of rewrite and apply from our test set because they were over a Coq predicate
that could not be reduced to its Bool form. For example, the following goal is unsupported
by SMTCoq due its usage of the less-than-or-equal-to predicate over the natural number type:

x: A l, l1: list A H : x :: (l1 ++ l) = l

Goal: len(x :: (l1 ++ l)) <= len(l)

where the len returns the length of a list as a natural number. If the <= predicate over
natural numbers were supported by SMTCoq, such a goal would be easily solvable. Sim-
ilarly, plenty of our discarded test units contained predicates over natural numbers. We

31

1 Goal forall (x y : Z), x = y + 1 -> x * x = (y + 1) * x.
2 Proof. smt.
3 (* Solver error: (error A non-linear fact was asserted

4 to arithmetic in a linear logic.). *)

(a) Goal with non-linear integer arithmetic.

1 Definition mul’ := Z.mul.
2 Notation "x *’ y" := (mul’ x y) (at level 1).
3 Goal forall (x y : Z), x = y + 1 -> x *’ x = (y + 1) *’ x.
4 Proof. smt. Qed.

(b) A workaround.

Figure 4.10: A workaround to prove some NIA (but effectively linear) goals using SMTCoq.

expect that some of these might turn into either smt or abduce successes were support for
natural numbers added to SMTCoq.

4.5.4 Multiplication over Z

SMTCoq supports linear integer arithmetic (LIA) using external SMT solvers, but not non-
linear integer arithmetic (NIA). This is partly because at the time of SMTCoq’s inception,
proof production in NIA from SMT solvers had limited support. And so when the smt tactic
is called on a non-linear goal or sees a non-linear hypothesis in context, it will fail, letting
the user know that non-linear arithmetic isn’t supported. Figure 4.10a shows an instance
of such a failure (with the error message shown as a Coq comment). Notice though, that
in this case, the SMT solver does not need to know anything about multiplication to solve
the goal. It only needs to substitute y+1 for x in (the implicative consequence of) the goal.
Figure 4.10b demonstrates this by making multiplication an uninterpreted function — mul’

(respectively *’) is alternate syntax for mul (respectively *) which is Coq’s multiplication
operator over the Z type. The effect of this alternate syntax is that whereas Coq does not
differentiate the two, SMTCoq encodes the latter as an uninterpreted function, thus avoiding
the NIA error.

Such a workaround is limited in its usefulness. Often the SMT solver needs to know some
axioms about multiplication (to reason in non-linear arithmetic, in other words) to be able
to solve the goal. In such a situation, the EUF solver (the sub-solver of the SMT solver
responsible for the theory of the same name) will fail. Figure 4.11a shows a modification
of the goal from Figure 4.10 for which this workaround fails. The SMT solver returns the
following (fairly unhelpful) counterexample:

{mul’ 7→ λ x, y→ ite(x = −1, ite(y = 1, 2, -2), -2), x 7→ 0, y 7→ −1, z 7→ 1}

Although SMT solvers have made advances in NIA solving and proving, an integration
with ITPs via tools like SMTCoq is yet to be implemented. From the example in Figure 4.11a,
it is evident that, while the SMT solver needs to reason about multiplication, it only needs to

32

1 Goal forall (x y z: Z), x = y + 1 -> y *’ z = z *’ (x - 1).
2 Proof. smt.
3 (* Fails with counterexample *)

(a) Limits of uninterpreted multiplication.

1 Goal forall (x y z: Z), x = y + 1 -> y *’ z = z *’ (x - 1).
2 Proof. abduce 3.
3 (* cvc5 returned SAT.

4 The solver cannot prove the goal, but one of the following hypotheses

5 would make it provable:

6 z = y

7 x - 1 = z

8 (mul’ y z) = (mul’ z y) *)

9 intros. assert ((mul’ y z) = (mul’ z y)).
10 { apply Z.mul_comm. } smt.
11 Qed.

(b) Yet another workaround using abduce.

Figure 4.11: A workaround for proving some (effectively linear) NIA goals using abduce.

know limited facts about it. In fact, it only needs to know that multiplication is commutative.
Figure 4.11b shows how the abduce tactic can be used in such situations (the abducts
returned by the solver are commented as usual). The third abduct confirms that the solver
only needs to know that the multiplication function is commutative to be able to prove
the goal. This is easy to do for the Coq user, since Coq provides efficient ways to search
for lemmas about symbols from the current global context (such as the Search command).
Notice that mul’ from this example is simply a more specific version of f from Example 4.3.1
(except for this, the examples are identical).

In our third and final set of experiments we explore an alternative way of solving NIA
goals in Coq using cvc5’s abduction solver and an external SMT solver that supports the
theories of LIA and EUF.

Two files from the Coq standard library contain most of the definition/axiomatization
of multiplication over the Z type in Coq— BinIntDef contains the definition of the mul-
tiplication operator, and BinInt contains proofs of various properties over it. To find test
units for this experimental setup, we used properties of multiplication, defined in BinInt,
that were most often invoked within other proofs in the standard library. As with the List

experiments from Section 4.5.3, these properties were invoked either using the rewrite or
apply tactic. Furthermore, lemmas of the same name are used for the axiomatization of
multiplication over other types (such as natural numbers, positive numbers, etc.) as well.
From all invocations of lemmas with these names, we filtered out the invocations of the Z

types. Finally, we considered 8 lemmas related to Z.mul from BinInt that were invoked 100
times from other library files in the Coq standard library. Figure 4.12 lists the lemmas, the
property they prove, and the number of times they are called from within the Coq standard

33

Lemma Name Lemma Property No. of Invocations
mul 1 l 1 * n = n 48

mul add distr r (n + m) * p = n * p + m * p 20
mul 0 r n * 0 = 0 8

mul opp r n * - m = - (n * m) 8
mul 0 l 0 * n = 0 8

mul reg l p <> 0 -> p * n = p * m -> n = m 4
mul reg r p <> 0 -> n * p = m * p -> n = m 2

opp eq mul m1 - n = n * -1 2

Figure 4.12: Commonly occurring lemmas about multiplication used for testing abduce.

Goals smt successes Invalid Goals abduce successes Timeouts
84 11 73 17 56

Figure 4.13: Summary of results of using abduce to solve NIA goals in Coq.

library. From the 100 potential test units, we disregard 16 that are unsupported by SMTCoq
(for the same reasons that resulted in unsupported goals in Section 4.5.3). For each of the
remaining 84 test units, we made all occurrences of multiplication in the proof context unin-
terpreted (similar to Figure 4.10b), and called abduce before the invocation of the lemma in
question. The test was considered a success if cvc5 could abduce a formula entailed by the
current Coq context. As with the List experiments, lemmas could easily be found from the
environment using the Search command. Our results are summarized in Figure 4.13. In our
original experimental setup (for mul) where we simply replaced an invocation to one of the
lemmas with abduce, our tactic was successful for 11 of the 84 goals. In a similar manner
to the experiments from Section 4.5.3, we modified our experimental setup to separate a
conjunctive test unit into test units for each of its conjuncts. This modification increased
the number of abduce successes to 17 which is the number displayed in Figure 4.13, yielding
a 23% success rate for the abduce tactic. All but two abduce successes took less than 2
seconds to find a successful abduct, with over half taking less than 1 second. Failures can
be attributed to one of the following reasons:

� Goals were often expressed in terms of other types such as positive numbers and rational
numbers, which caused the generation of additional uninterpreted symbols that the
abduction solver had to deal with.

� Even when the only type used in the proof context was Z (Coq’s integer type), the
formulas in the context contained other symbols such as those for division, and expo-
nentiation, which were also given to the SMT solver as uninterpreted symbols. These
often proved to be too much for the abduction solver.

4.5.5 Conclusion and Future Work

Figure 4.14 summarizes the results from each of the three experiments of the abduce tactic.
The tactic does especially well in the ZOrder library owing to the size of the proofs in

34

Experiment Goals smt successes Invalid abduce successes Timeouts
Set # % goals # %

ZOrder 59 33 55.93 26 16 61.53 12
List 122 25 20.49 97 28 28.86 69
Z.mul 84 11 13.09 73 17 23.28 56

Figure 4.14: Summary of results from all 3 experiments over abduce. Percentage of SMT success
is over the total number of goals, and percentage of abduce successes is over the number of invalid
goals.

the library and the definition of success unique to that experiment. In both the subsequent
experiments, it is able to automate around one-quarter of the available goals when used along
with Coq’s Search command. We noticed that when the abduction engine is unsuccessful,
it is usually because it either has to reason about too many uninterpreted symbols, or that
it has too many facts to abduce.

Furthermore, many of the suggested abducts in the case of abduce successes were a minor
modification of the goal (for example, a symmetric version of the goal), which arguably could
easily be guessed by a human user. Nevertheless, such a feature could be useful, especially if
we could automate the entire pipeline: the call to smt; a call to abduce when smt fails; the
search for a generalized version of each abduct; the local assertion of an abduct that could
be found via Search and the application of the lemma to close the sub-proof; and another
(now successful) call to smt. We propose the development of such an improved tactic for
future work.

With the increase of SMTCoq’s supported theories, we expect the abduce tactic to be
applicable in more settings where it can be useful in providing external automation. For
example, if SMTCoq natively supported the Coq natural number type, it would provide many
more interesting test units for abduce. With the development of SMT SyGuS technology,
and the consequent improvement of syntax-restricted abduction, we expect the quality of
abducts to also increase. An improvement in the quality of conjunctive abducts, for example,
would allow for the abduce tactic to be used earlier in proofs, whereas now all successes come
from invocations at the end of a proof or of a case within a proof.

35

Chapter 5

The alethe Checker

The ability of an SMT solver to produce a proof certificate in addition to a result increases its
trustworthiness. Proof certificates (or just proofs) — specified in a proof certificate format
— detail the steps taken by the solver in determining the validity of its input. The solver
proves its input to be valid by reducing the input’s negation to a form of falsity. Proofs
vary in their level of detail. For example, a fine-grained proof provides justifications for
steps that rewrite terms to equivalent ones, whereas a coarse-grained proof might avoid such
details. The steps in a proof can be verified to confirm the solver’s result. A proof checker
can automate this task.

Proof certificates are also integral to incorporating an SMT solver into an ITP so that the
solver can automate proofs of sub-goals within the ITP. An SMT solver whose steps are not
justified to the ITP would increase the trusted computing base (TCB) of an ITP that uses it,
which is undesirable. Proof certificates preserve the ITP’s TCB by guiding the creation of a
proof within the ITP’s framework. This process can be incomplete in that unjustified steps
in a proof can be returned to the user of the ITP as a sub-goal. Such a step is called a proof
hole. SMTCoq is a tool that offers both the above mentioned utilities — a checker for SMT
proofs in Coq that is certified so that it can be used to provide automation for Coq goals. An
SMT solver produces a proof certificate in a particular proof certificate format. SMTCoq
supports the CVC4 and (an older version of) veriT SMT solvers via the LFSC (Logical
Framework with Side Conditions) and the verit2016 proof certificate formats, respectively.
Towards supporting these proof formats and other SMT solver formats, SMTCoq uses an
internal proof certificate format called smtcoq-certif. The goal of integrating an SMT solver
with SMTCoq is then reduced to that of soundly converting a proof in the solver’s proof
certificate format to smtcoq-certif.

alethe is a new proof certificate format that is supported by both the cvc5 SMT solver
and a modern version of veriT. Besides supporting multiple SMT solvers, alethe permits the
generation of fine-grained proofs that justify steps such as term rewrites. Carcara [4] is a
standalone checker written in Rust for alethe proofs. This chapter presents the description
and evaluation of a Coq-certified proof checker for the alethe proof format. We implement the
checker by reducing alethe to smtcoq-certif, the internal proof format of SMTCoq. We argue
that our checker supports more fine-grained SMT proofs than were previously supported by
SMTCoq owing to (i) the alethe proof format’s ability to specify such steps in many cases,

36

and (ii) our efforts to elaborate other steps in terms of ones that are checkable by SMTCoq.
Consequentially, SMTCoq is able to offer more complete automation to Coq users through
our proof checker (through fewer proof holes). Our proof checker also offers an ITP-certified
alternative to Carcara.

Section 5.1 formally defines proofs and proof certificate formats, Section 5.2 and 5.3
specify smtcoq-certif and alethe, and Section 5.4 presents the proof certificate transformations
used to implement the alethe checker. Section 5.5 details an evaluation of the checker on a
set of benchmarks.

5.1 Proof Certificate Formats

A proof rule or a rule of inference takes the form

P1 . . . Pn
RuleName(arguments)

C

where P1, . . . , Pn are the premises (n ≥ 0); C is the conclusion; RuleName is the name of
the rule and arguments is a possibly-empty list of arguments to the rule. Both premises and
conclusion are formulas. The rule specifies that if the premises P1, . . . , Pn hold, then the
conclusion C holds. A rule that takes at least one premise is a conversion rule. We classify
non-conversion rules (rules that take no premise) as assumptions — with rule name assume;
subproofs — defined below; and, lemmas — all other non-conversion rules. A proof rule is
applied by an instantiation of its meta-variables to formulas. The application of a proof rule
to zero or more formulas to derive a formula is called a (proof) step. Each step in a proof
is uniquely identified by an ID. We specify steps either using the notation for a proof rule
above (with the ID on the left side of the rule), or as a tuple

(ID, RuleName[id(P1); . . . ; id(Pn)], C, (arguments))

where id(P) is the ID of the step that derives P .

Example 5.1.1. The proof rule for resolution is

φ1 ∨ · · · ∨ χ ∨ · · · ∨ φn ψ1 ∨ · · · ∨ ¬χ ∨ · · · ∨ ψm
res

φ1 ∨ · · · ∨ φn ∨ ψ1 ∨ · · · ∨ ψm
and the following is an example of a step that applies resolution:

1 assume
a ∨ ¬b

2 assume
b ∨ c

3 res
a ∨ c

Equivalently, this derivation can be represented in tuple form as follows:

(1, assume, a ∨ ¬b, ())
(2, assume, b ∨ c, ())
(3, res[1; 2], a ∨ c, ())

37

Given that two clauses hold, and a pivot — a literal that occurs with opposite polarities in
each clause (b in the above example) — the resolution rule concludes that the combination of
the two clauses without either occurrence of the pivot holds. While implementing a checker
for this rule, one must consider issues such as: whether the pivot can occur anywhere in each
clause; whether the pivot can occur exactly once within each clause; whether disjunction is a
binary or n-ary operator. If the proof certificate format doesn’t specify how such issues must
be addressed, then the burden falls on the checker to accept the most general form of the
rule. For instance, if the format doesn’t specify where in each clause the pivot must occur,
then the checker must search each clause to find a pair of literals with opposite polarities.

A proof or proof certificate P of H |=T G is a derivation of a formula G from formulas
H1, . . . , Hn (set H) by the application of one or more proof rules. Figure 5.1 presents an
inductive definition of proof certificates using recursive function getAssumptions (specified
in Figure 5.2) that given a step, returns a set of formulas — the assumptions that the step
depends on. We use either the tree notation or the tuple notation to represent proofs and
proof certificates in this document, as illustrated in Example 5.1.2. In our presentation of
proofs, we sometimes omit parts of a step such as the ID, rule name, premises, or arguments
either when it is clear from context, or unnecessary. We also often refer to clauses by their
IDs.

Example 5.1.2. This example shows the proof certificate for the unsatisfiability of a = b
and ¬(f a = f b) (conversely, the validity of a = b→ f a = f b). In the tree form:

assume
a = b

cong
f a = f b

assume
¬(f a = f b)

res
〈 〉

and in the tuple form:

(1, assume, a = b)
(2, assume, ¬(f a = f b))
(3, cong[1], f a = f b)
(4, res[3; 2], 〈 〉)

The cong rule states that if two (or more) terms are equal, then the equality between terms
obtained by applying the same function to them also holds.

38

A proof (or proof certificate) P can be inductively defined as follows:

� For non-conversion rule R (such that R is not subproof),

R
P

is a proof by R of P , or of
|=T P

� A subproof is used within a proof to prove a lemma by discharging locally in-
troduced hypotheses. A subproof that introduces hypotheses H1, . . . , Hn and dis-
charges them to prove G

assume
H1

...
assume

Hn

...
G

subproof
¬H1 ∨ · · · ∨ ¬Hn ∨G

is a proof by subproof of

|=T ¬H1 ∨ · · · ∨ ¬Hn ∨G

� For conversion rule R, and proofs P1, . . . , Pn with getAssumptions(P1) ∪ · · · ∪
getAssumptions(Pn) = {H1, . . . , Hm} ,

P1 · · · Pn
R

C

is a proof of
H1, . . . , Hm |=T C

Figure 5.1: The inductive definition of a proof.

Sometimes, we fragment a proof into multiple sequences of steps to make ordering con-
straints explicit. For example, for sequences of steps Π1 and Π2, the proof

Π1

Π2

39

getAssumptions(P) := match P with
| |=T H by assume, −→ H
| |=T S by subproof, −→ {}
| |=T H by a lemma, −→ {}
| H1, . . . , H1 |=T G by some R, −→ getAssumptions(H1) ∪ · · ·

∪ getAssumptions(Hn)

Figure 5.2: The recursive definition of the getAssumptions function, using the pattern matching
syntax from functional programs, necessary for the definition of proofs.

imposes an ordering on the steps so that no step in Π1 can have a step from Π2 as a premise.
As described in Section 2.2.2, many SMT solvers emit proof certificates, in addition to

unsatisfiability results, that can be externally checked to increase trust in the solver. Such
an SMT solver produces its proofs in a proof certificate format F . The proof certificate
format specifies the proof rules that can be used in a proof certificate. We denote a proof
P in proof certificate format F as PF . A proof is correct in a proof certificate format F if
it derives a proof by correctly applying only rules from F . We do not fully formalize the
correct application of a rule in F but such an application is specified by F , and generally
refers to sound instantiations of the meta-variables in the rule to terms or formulas. All our
examples show correct proofs, unless specified otherwise. A proof checker is able to check
whether a proof certificate is correct with respect to a proof certificate format. In the rest
of this section, we reference (and partially specify) three proof formats alethe, verit2016, and
smtcoq-certif; and refer to a proof P in each format as PA, PV , and PS respectively.

Given a proof PF of H |=T G in format F , we define a transformation T of PF to some
format F ′ as PF ′ .

T (PF) = PF ′

This transformation is sound if whenever PF is a correct proof of H |=T G in F , PF ′ is a
correct proof of H |=T G in F ′. In what follows, we propose a sound transformation (for a
restricted logical fragment) from proofs in alethe to proofs in smtcoq-certif.

Clauses vs Disjunctions As mentioned in Section 2.1, a clause is a disjunction of literals,
and we sometimes represent a clause as a set of its constituent literals. While we have been
using these notations interchangeably so far, SMTCoq differentiates clauses from disjunctions
in its representation. Furthermore, it provides rules to convert between the two. Moving
forward, we will also make this differentiation explicit — a clause is represented as a list
of its constituent literals (we will use a comma separated sequence of literals sometimes
enclosed in square brackets), whereas a disjunction of literals separates the terms by the ∨
operator. Note also that SMTCoq normalizes the ordering of literals in a clause based on
its internal representation, and so the order in which we present the literals of a clause are
inconsequential to the checker.

40

To understand the rules, it might be useful to think of a disjunction as giving implicative
information. This is evident from the fact that for two Bool terms x and y, ¬x ∨ y is
equivalent to x→ y.

Section 5.2 specifies smtcoq-certif, Section 5.3 specifies alethe, and Section 5.4 proposes
the transformation from alethe to smtcoq-certif, and a certified checker for alethe in Coq.

5.2 smtcoq-certif

Each proof producing SMT solver generally produces proof certificates in its distinctly de-
fined format: CVC4 uses LFSC, a meta-format or framework that allows one to specify
the proof rules over which proofs are defined; veriT (until recently) produced proofs in the
verit2016 proof certificate format whose syntax is similar to the tuple notation defined in Sec-
tion 5.1; z3 has its own internal format for coarse-grained proofs. In order to be compatible
with these and other possible formats, SMTCoq fixes its own internal proof certificate format
which we call smtcoq-certif, and preprocesses certificates from solvers into this format. In
smtcoq-certif, a certificate is a sequence of uniquely identifiable steps that eventually derive
the empty clause 〈 〉 from a set of assumptions.

The smtcoq-certif format can be traced back to the proof certificate format of the veriT
SMT solver, the first solver to be integrated with SMTCoq. Together with the ideas proposed
in Deharbe et al. [40], veriT was able to produce unsatisfiability proof certificates for the
theories of equality over uninterpreted functions (EUF) and linear integer arithmetic (LIA),
both with and without quantifiers. The format evolved to a format used by veriT version
v2016 which we call verit2016. smtcoq-certif is very similar to the verit2016 format.

Currently, smtcoq-certif has rules for propositional logic, reasoning in the theories of
equality over uninterpreted functions (EUF), linear integer arithmetic (LIA), bit-vectors
(BV), and arrays with extensionality (AX), and limited support for quantified reasoning.
We specify a representative set of rules of the smtcoq-certif proof certificate format in Sec-
tion 5.2.1 for propositional logic and the theories of EUF and LIA. The assume and res

rules are used to introduce hypotheses and to perform propositional resolution, respectively.
Propositional logic rules include standard connective introduction and elimination rules.
smtcoq-certif provides these rules in the form of lemmas specifying valid clauses as well as
conversion rules on clauses. The EUF rules occur only as lemmas and allow an implementa-
tion of the congruence closure algorithm [71]. SMTCoq uses a verified decision procedure in
Coq called Micromega [17] to check LIA rules: lia micromega is used to prove arithmetic
lemmas and spl arith is used to prove arithmetic transformations from premise to conclu-
sion. The checkers for both rules adapt the clause derived by the rule and the premises (if
any) to a form that can be sent to Micromega.

5.2.1 smtcoq-certif Proof Rules

Here, we present the rules from smtcoq-certif for propositional logic, the theories of EUF
and LIA, and the rule used for instantiating universally quantified formulas. Furthermore,

41

the rules are restricted by the connectives specified in Section 2.1. The rules are as follows.

� Assumption

assume
φ

An assumption represents a leaf of the proof-tree and as such, introduces a hypotheses
into the proof.

� Resolution

φ1 . . . φn
res

φ′1, . . . , φ
′
m

where n ≥ 1,m ≥ 0.
Resolution is the central rule for clause reduction. We define it for three separate cases:

1. When n = 1, res simply returns the premise unchanged.

2. When n = 2, res performs a single resolution step:

φ1, · · · , χ, · · ·φn ψ1, · · · ,¬χ, · · · , ψm
res

φ1, · · · , φn, ψ1, · · · , ψm
It takes 2 clauses with at least one pivot literal, a literal that occurs with op-
posite polarities in each clause, and returns a new clause that contains all the
literals from both clauses except all occurrences in either polarity of an aribitrar-
ily chosen pivot (typically solvers perform resolution so that there is only one
possible pivot).

3. When n > 1, res chains a sequence of pairwise resolution steps such that each
step returns a clause resolvable with the next.

� Weaken

φ1, . . . , φn
weaken

φ1, . . . , φn, ψ1, . . . , ψm

A clause can be weakened by adding arbitrary literals to it.

Propositional Rules

In the following, for rules that take arguments, we specify the expected argument given the
specified form of the rule; any other argument would make it an unsound invocation of the
rule. All rules derive clauses.

� Lemmas

true
>

false
¬⊥

42

andn
(x1 ∧ · · · ∧ xn),¬x1, · · · ,¬xn

orp
¬(x1 ∨ · · · ∨ xn), x1, · · · , xn

impp
¬(x→ y),¬x, y

eqvp1
¬(x =Bool y), x,¬y

eqvn1
(x =Bool y),¬x,¬y

eqvp2
¬(x =Bool y),¬x, y

eqvn2
(x =Bool y), x, y

andn, orp, impp, eqvp1, eqvp2, eqvn1, and eqvn2 are elimination rules. They enable
the indirect elimination of either a positive (p) or negative (n) occurrence of the corre-
sponding connective. A derivation of such an occurrence can be removed by resolving
it with the derivation of the corresponding rule.

orn (i)
(x1 ∨ · · · ∨ xn),¬xi

andp (i)
¬(x1 ∧ · · · ∧ xn), xi

impn1 (1)
(x→ y), x

impn2 (2)
(x→ y),¬y

orn, andp, impn1, and impn2 project an operand from their corresponding connective
and take as argument the index of the operand to project.

� Conversion Rules

¬(x1 ∧ · · · ∧ xn)
nand¬x1, · · · ,¬xn

x→ y
imp¬x, y

x =Bool y
eqv1¬x, y

x 6=Bool y
neqv1

x, y

x =Bool y
eqv2

x,¬y
x 6=Bool y

neqv2¬x,¬y

nand, imp, eqv1, eqv2, neqv1, and neqv2 are conversion forms of the elimination rules
for either the positive or negative (n) form of the corresponding connective.

x1 ∧ · · · ∧ xn
and (i)

xi

¬(x1 ∨ · · · ∨ xn)
nor (i)

xi

¬(x→ y)
nimp1 (i)

x

¬(x→ y)
nimp2 (i)¬y

43

and, nor, nimp1, and nimp2 are conversion forms of the projection rules of the respec-
tive operators. They also take an argument specifying the index of the projection.

EUF Rules

eqrefl
x =σ x

eqrefl proves the equality of some term x of sort σ — such that σ is not Bool — with a
syntactically equivalent term.

eqtrans
(x1 6=σ x2), · · · , (xn−1 6=σ xn), (x1 6=σ xn)

eqtrans proves the transitivity of equality over terms of any non-Boolean sort σ in the
lemma form.

eqcong
(x1 6=σ y1), · · · , (xn 6=σ yn), (f x1 · · · xn =σ f y1 · · · yn)

eqcong proves the congruence of equality for non-Boolean terms. Given that x1, . . . , xn are
equal to y1, . . . , yn respectively, eqcong proves that an application of n-ary function f to the
former is equal to its application to the latter.

eqcongp
(x1 6=Bool y1), · · · , (xn 6=Bool yn),¬(p x1 · · · xn), (p y1 · · · yn)

eqcongp proves the congruence of equivalence for Boolean formulas. Given that x1, . . . , xn
are equal to y1, . . . , yn respectively, eqcongp proves that an application of n-ary predicate p
to the former implies its application to the latter.

LIA Rules

lia micromega
x1, · · · , xn

x1, · · · , xn
spl arith

y1, · · · , ym

lia micromega proves lemmas in the LIA theory and spl arith proves conversions of clauses
that are valid in LIA.

Quantifier Rules

forall inst
¬∀x1, . . . xn.P ∨ P [x1 7→ t1] . . . [xn 7→ tn]

The forall inst rule allows instantiation of quantified variables x1, . . . , xn to terms t1, . . . , tn
in a universally quantified formula. t1, . . . , tn are inferred by the checker from the instantiated
form of P .

44

5.3 alethe

alethe is a proof certificate format for SMT solvers, aiming to provide an easy-to-use and
uniform set of natural-deduction style proof rules for proofs of unsatisfiability of first-order
formulas. Its syntax is an extension of the SMT-LIB 2 language, and its logic is the many-
sorted first-order logic used by SMT solvers. The format is fully supported by veriT and
partially supported by cvc5. Through alethe proofs, these solvers are being integrated with
the Isabelle/HOL proof assistant; our goal is to do the same with the Coq proof assistant.
alethe can be considered an extension of verit2016, with support for linear real arithmetic
and a richer set of rules enabling both fine- and coarse-grained proofs. Since the proof of
unsatisfiability from an SMT solver generally tries to reflect its internal reasoning, it will
have to account for various term rewrites performed by the SMT solver. The larger set of
rules in alethe are also inspired by the goal of covering such rewrite reasoning in the proofs.
The most practical advantage of alethe is that it is supported natively by both veriT and
cvc5, two state-of-the-art SMT solvers. Section 5.3.1 lists the rules in alethe that are not
already in smtcoq-certif. Most of these are rewrite rules (for example, andsimp). The rules
from the LIA theory in alethe are omitted from this section, since they are still evolving. As
mentioned in Section 5.2, SMTCoq uses a Coq decision procedure called Micromega [17] to
check LIA rules, so the transformation of the existing LIA rules in alethe to smtcoq-certif is
fairly straightforward: lemmas (including LIA rewrites) are converted to an application of
the lia micromega rule; and rules that derive from external premises are converted to an
application of spl arith. Another interesting difference from smtcoq-certif is the ability to
introduce lemmas via subproofs in alethe, as introduced in Section 5.1.

5.3.1 alethe Proof Rules

Since alethe is an extension of verit2016, which is the format that smtcoq-certif is based on,
alethe is effectively a superset of smtcoq-certif. The following is a presentation of the rules
from alethe that do not exist in smtcoq-certif.

Propositional Rules

Lemmas

notnot¬¬¬x, x
φ1, · · · , ψ, · · · ¬ψ, · · ·φn

tautology
>

The notnot rule eliminates double negations, and occurs in the lemma form. The tautology
rule simplifies a trivial clause — one that contains some literal such that its negation also
exists in the clause — to the singleton clause representing truth.

Rewrite Rules

45

All rewrite rule take the form of an equality/equivalence. They are indirectly applied to
terms in a proof in order to replace a term that takes the form from one side of the equali-
ty/equivalence by one that takes the form from the other side.

andsimp
(ϕ1 ∧ · · · ∧ ϕn) =Bool ψ

where the possible rewrites are:

� > ∧ · · · ∧ > =Bool >

� x1 ∧ · · · ∧ xn =Bool x1 ∧ · · · ∧ xn′ where the RHS has all > literals removed.

� x1 ∧ · · · ∧ xn =Bool x1 ∧ · · · ∧ xn′ where the RHS has all repeated literals removed.

� x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn =Bool ⊥

� x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xn =Bool ⊥ where xi =Bool ¬xj

orsimp
(ϕ1 ∨ · · · ∨ ϕn) =Bool ψ

where the possible rewrites are:

� ⊥ ∨ · · · ∨ ⊥ =Bool ⊥

� x1 ∨ · · · ∨ xn =Bool x1 ∨ · · · ∨ xn′ where the RHS has all ⊥ literals removed.

� x1 ∨ · · · ∨ xn =Bool x1 ∨ · · · ∨ xn′ where the RHS has all repeated literals removed.

� x1 ∨ · · · ∨ > ∨ · · · ∨ xn =Bool >

� x1 ∨ · · · ∨ xi ∨ · · · ∨ xj ∨ · · · ∨ xn = > where xi =Bool ¬xj

notsimp
ϕ =Bool ψ

where the possible rewrites are:

� ¬(¬x) =Bool x

� ¬⊥ =Bool >

� ¬> =Bool ⊥

impsimp
ϕ1 → ϕ2 =Bool ψ

where the possible rewrites are:

46

� ¬x1 → ¬x2 =Bool x2 → x1

� ⊥ → x =Bool >

� x→ > =Bool >

� > → x =Bool x

� x→ ⊥ =Bool ¬x

� x→ x =Bool >

� ¬x→ x =Bool x

� x→ ¬x =Bool ¬x

eqvsimp
(ϕ1 =Bool ϕ2) =Bool ψ

where the possible rewrites are:

� (¬x1 =Bool ¬x2) =Bool (x1 = x2)

� (x =Bool x) =Bool >

� (x =Bool ¬x) =Bool ⊥

� (¬x =Bool x) =Bool ⊥

� (> =Bool x) =Bool x

� (x =Bool >) =Bool x

� (⊥ =Bool x) =Bool ¬x

� (x =Bool ⊥) =Bool ¬x

boolsimp
ϕ =Bool ψ

where the possible rewrites are:

� ¬(x1 → x2) =Bool (x1 ∧ ¬x2)

� ¬(x1 ∨ x2) =Bool (¬x1 ∧ ¬x2)

� ¬(x1 ∧ x2) =Bool (¬x1 ∨ ¬x2)

� (x1 → (x2 → x3)) =Bool (x1 ∧ x2)→ x3

47

� ((x1 → x2)→ x2) =Bool (x1 ∨ x2)

� (x1 ∧ (x1 → x2)) =Bool (x1 ∧ x2)

� ((x1 → x2) ∧ x1) =Bool (x1 ∧ x2)

eqsimp
(ϕ1 =σ ϕ2) =Bool ψ

where the possible rewrites are:

� x =σ x = >, for any non-Boolean sort σ.

� (x1 = x2) =σ ⊥ if x1 and x2 are different numeric constants, for a numeric sort σ.

� ¬(x =σ x) = ⊥ if x is a numeric constant, for a numeric sort σ.

andsimp, orsimp, notsimp, impsimp, eqvsimp, and eqsimp specify possible rewrites over
the corresponding connectives. boolsimp specifies some useful equivalences about formulas.

EUF Rules

refl
x =σ x

x1 =σ x2 · · · xn =σ xn+1
trans

x1 =σ xn+1

x1 =σ y1 · · · xn =σ yn
cong

f x1 · · ·xn =σ f y1 · · · yn

These rules are similar to eqrefl, eqtrans, eqcong, and eqcongp except: (i) they take the
premise-conclusion form, that is, they are conversion rules (ii) they are more expressive since
σ can be any sort, including Bool (for instance, cong is as expressive as both eqcong and
eqcongp).

Subproof Rules

assume
H1

...
assume

Hn

...
G

subproof
¬H1, · · · ,¬Hn, G

The subproof rule can derive an implicative proof using a separate proof context: one
can prove H → G by proving G from the proof of H (this naturally extends to multiple
implicative premises). The assumptions and steps in the subproof constitute its local context
(since they cannot be accessed from outside the proof); the assumptions and steps outside
the box generated by the subproof, including the implication derived by the subproof rule,
constitute the global context.

48

5.4 Coq Checker for alethe

Currently, SMTCoq provides two Coq commands that invoke its internal checker:

� The Verit Checker command takes two arguments — the path of the SMT file and
the path of the proof file. It expects the proof to be in the verit2016 proof certificate
format. It converts this into a proof certificate in the smtcoq-certif format; and invokes
SMTCoq’s checker on the SMT file and the corresponding smtcoq-certif proof certifi-
cate. It returns true if the checker is able to check that the proof proves the assertions
in the SMT file, and false otherwise.

� Similarly, the Lfsc Checker command takes two arguments — the path of the SMT
file and that of the LFSC proof file; and invokes the SMTCoq checker on them after
converting the LFSC proof into an smtcoq-certif proof. It also returns a Boolean value
reflecting the success of the checker.

Both these commands call SMTCoq’s internal checker, which is proven correct in Coq. We
implement an integration between alethe-producing SMT solvers and Coq via a certified
checker for alethe in Coq, called Alethe Checker. This checker is principally implemented
in the same way as Verit Checker and Lfsc Checker — internally, we use SMTCoq’s
certified checker by reducing the alethe proof to a smtcoq-certif one. Since the rules in alethe
are a proper superset of those in smtcoq-certif, this reduction is done via a sequence of proof
transformations that gradually eliminate rules unique to alethe.

The goal of this integration is twofold. First, we want to implement a certified checker for
alethe in Coq. Carcara is the only alternative for checking alethe proofs; it is a stand-alone
proof checker for the alethe proof format implemented in Rust. A checker certified in Coq
carries with it the endorsement of Coq’s TCB, thus increasing the authenticity of the solvers
producing alethe proofs. Second, we want to address the issue of incomplete automation of
goals by SMT solvers due to rewrites of formulas performed by them. Because SMT solvers
often rewrite input formulas before they use them in a proof of unsatisfiability, the proof is
contingent upon the rewrites being valid, often given as subgoals to the Coq user, or causing
SMTCoq to fail. alethe has extensive rules documenting the rewrites of formulas by the veriT
SMT solver, and one of our proof transformations eliminates such rewrites. Alethe Checker

also handles rewrites produced by cvc5 by representing the cvc5 rewrite rules in terms of the
veriT ones.

We propose a sequence of proof transformations, most of them focusing on a particular
kind of proof rule from Section 5.3.1 (rules in alethe that are not in smtcoq-certif). We will
present all transformations necessary to reduce an alethe proof soundly to an smtcoq-certif
proof. This is a moving target since alethe is an evolving format. Currently, it supports
propositional logic, quantified reasoning, and the theories of equality over uninterpreted
functions (EUF), bit-vectors (BV), and linear arithmetic over integers and reals (LIA and
LRA), with a planned extension to the theory of arrays with extensionality (AX). We in-
tegrate SMTCoq with alethe for propositional logic and EUF, and for universal quantifier
instantiation.

49

We also add some support for alethe’s LIA rules but these extensions are incomplete and
not fully tested. One reason for the incompleteness is that alethe’s LIA rules are currently
evolving. For the stable LIA rules in alethe, we use the Micromega solver’s decision procedure
to check steps that use these rules. This approach is generally successful, except for rewrite
rules that combine the LIA theory with other theories. The Micromega solver fails on such
steps since it can only prove purely arithmetic steps. Due to its incompleteness, we omit the
formalization of the alethe checker for the theory of linear integer arithmetic.

5.4.1 Correctness of Checking by Transformations

As mentioned in Section 2.5, SMTCoq uses Coq’s computational reflection capabilities to
replace a proof term by a computation over a certificate produced by an external SMT solver.
To do so, it provides:

1. A representation of formulas used by external SMT solvers using an internal type
defined in Gallina. This type, form, represents a deep embedding of SMT formulas into
Coq. In contrast, representing an SMT formula directly as a term of Coq’s Bool type
constitutes a shallow embedding.

2. A Boolean checker, checker, for a deeply-embedded formula and a certificate (in the
smtcoq-certif format) that claims to prove it. The checker returns true if the certificate
indeed proves the formula, and false otherwise.

3. A proof of correctness of the checker, checker correct, that says that if the checker
returns true for a formula and a certificate that proves it, the corresponding formula
in the shallow embedding holds.

Given some formula f of type form (in the deep embedding), a certificate specifies how to
derive 〈 〉 from its negation, thus proving the validity of f . The certificate is composed of
steps, each of which corresponds to the application of a proof rule to a formula. checker is
modularly implemented as illustrated in Figure 5.3. It is composed of multiple small checkers
each of which checks a particular kind of step (for example, steps involved in the conversion
of a formula to CNF, and steps in the LIA theory). The main checker goes through the
entire certificate and calls the corresponding small checker for each step. After applying the
last step, it checks whether ¬f has been reduced to 〈 〉 and returns true if that is the case,
and false otherwise. Similarly, checker correct is composed of the correctness lemmas
for each small checker.

Given that alethe is a (proper) superset of smtcoq-certif, one way of extending SMTCoq
to check alethe proofs is by extending checker with steps that correspond to the new rules
(those that exist in alethe but not in smtcoq-certif). This would break checker correct,
which would also need to be adapted for the new rules. However, at least for the chosen
theories (propositional logic, EUF, LIA, and quantifier instantiation), while alethe is larger
than smtcoq-certif in terms of the number of rules, it is not more expressive. In other words,
the application of rules unique to alethe can be expressed in terms of the application of

50

Coq checker

Main
checker

CNF

Resolution
chains

EUF

LIA

Bit-vectors

Functional
arrays

Small checkersformula certificate

true false

Figure 5.3: Architecture of the SMTCoq checker.

the rules in smtcoq-certif. Consequentially, a second approach for extending SMTCoq to
support alethe rules is by transforming applications of new rules into applications of rules
that already exist in smtcoq-certif. In our implementation of Alethe Checker, when possible,
we choose this second approach. That is, we apply transformations to alethe certificates
to reduce them to smtcoq-certif certificates. We find transforming certificates to be less
complicated than extending checker correct, a complex proof with many intricacies. Our
transformations are performed in a pre-processing phase over the ASTs that represent the
alethe certificates in OCaml code. Although this is untrusted code, it does not effect the
soundness of Alethe Checker because a transformed alethe proof certificate simply tells
checker how to reduce the negation of the input formula into 〈 〉 via steps that it already
understands (in smtcoq-certif). The correctness of the checker in Coq guarantees that if
a certificate in the smtcoq-certif format can prove a formula in the deep embedding, then
the corresponding formula in the shallow embedding holds. It does not matter how the
certificate proves the formula; multiple certificates can do this as long as they are faithful to
the smtcoq-certif format. This is a significant advantage of computational reflection.

51

5.4.2 Transformations

We now present our certificate transformations. As already mentioned, we classify rules as
conversion and non-conversion rules, with the latter further classified into assumptions, sub-
proofs and lemmas. All proofs that we consider are aimed at reducing a set of assumptions
used to derive 〈 〉, and so each of our rule types can be seen as playing a part in this
reduction. Conversion rules directly modify clauses in some way, whereas non-conversion
rules do this indirectly. Assumptions are usually subject to (in)direct modification. Sub-
proofs and lemmas participate in clause modification via resolution steps. A clause that has
more than one literal is indirectly modified since all the direct modification rules expect a
clause of one literal.

Example 5.4.1. Whereas the and rule directly projects a conjunct from a conjunction as
follows:

a ∧ b
and(1)

a

the andp rule is used to do this indirectly:

a ∧ b
andp(1)

¬(a ∧ b), a
res

a

We now present some useful definitions for the specification of the proof transformations.
Consider some proof P that proves C1, . . . Cn |= G. For any clause C derived within P such
that sC = (iC , rC [p1, . . . , pn], C, ac) is the step that derives C, we define its path, path(C)
inductively as follows.

� sC ∈ path(C)

� Any step si = (i, r[p1, . . . , pm], Ci, a) ∈ path(C) if the steps pointed to by any of
p1, . . . , pm is also in path(C).

In other words, the path of a clause C starts at step sC that derives C and contains all steps
that use C directly or indirectly. Notice that only the first step of path(C) (the step that
derives C) can be a non-conversion rule. All other rules must be conversion rules.

A proof transformation might add a clause residue — some formula R — to a clause
C, derived by step sC in P . Assuming that the addition of R to C is sound, to maintain
soundness in the rest of the proof, the residue must be propagated down the path of C in
P . This is done using a function called extend cl that given a proof P and an ID i, such
that some residue R is added to clause C derived at i, replaces all conversion rules except
res (resolution) in path(C) to indirect modifications via res, as in Example 5.4.1; and then
adds the residue to all res derivations.

Example 5.4.2. Consider the following proof P :

52

1 assume
¬(a ∧ b)

2 nand
¬a,¬b

assume
c→ b

imp
¬c, b

res¬a,¬c
Consider proof P ′ that adds residue R to the assumption at ID 1.

1 assume
¬(a ∧ b), R

2 nand
¬a,¬b

assume
c→ b

imp
¬c, b

res¬a,¬c
This makes the proof unsound. Moreover, simply propagating this residue down path(1)
in P will not suffice for soundness, because the nand rule expects a singleton clause with a
negated conjunction as its premise. extend cl(P ′, 1) corrects for the added residue:

1 assume
¬(a ∧ b), R

andn
a ∧ b,¬a,¬b

res
¬a,¬b, R

assume
c→ b

imp
¬c, b

res
¬a,¬c, R

extend cl replaces the nand derivation by a derivation via its corresponding non-conversion
rule andn and res, and also adds the residue to all the res steps in path(1).

Similarly, all conversion rules (except resolution) have their respective non-conversion
rules that extend cl uses.

Terms vs Formulas An important difference between alethe and smtcoq-certif, especially
relevant to some of the transformations, comes from the internal representation of formulas
in SMTCoq. Particularly, the internal representation of SMTCoq differentiates formulas
(terms of type Bool) from terms of other types (which we will refer to as just terms when
comparing them with formulas). This differentiation comes from the rules in verit2016, which
treat them distinctly, and influenced the rules in smtcoq-certif, which in turn affected SMT-
Coq’s deep embedding. For example, smtcoq-certif has separate rules for congruence over
predicates (of return type Bool) and functions (of other return types). As a consequence,
SMTCoq’s internal representation of the equivalence operator (that is concerned with equat-
ing predicate applications) is independent from that of equality (for equating non-Boolean
function applications). alethe does not treat these differently — this is evident from the fact
that it provides a single congruence rule to account for both forms of congruence discussed
above. Therefore, a reduction from alethe to smtcoq-certif must often make the difference
between terms and formulas (equalities and equivalences) explicit so that the correct rules
can be applied from the smtcoq-certif format.

5.4.2.1 Ts: Subproof Flattening

To reiterate from Section 5.1, subproofs are used to prove lemmas locally inside a proof.
One can see a subproof as introducing a box inside the proof, one that is opened using

53

local assumptions and closed using the subproof rule. The following subproof introduces
hypotheses H1, . . . , Hn and discharges them to prove G inside the box, and the box derives
a proof of the clause ¬H1, · · · ,¬Hn, G.

assume
H1

...
assume

Hn

...
G

subproof
¬H1, · · · ,¬Hn, G

A subproof is a conceptualization of an implicative proof in natural deduction. The steps in
the subproof (including its assumptions) constitute its local context, and steps outside the
box (including the implication derived by the subproof rule) constitute the global context.

Example 5.4.3. Consider the following proof P :

assume
x ∧ y assume¬x

1 assume
x ∧ y

2 andp
x

3 subproof
¬(x ∧ y), x

res
〈 〉

Steps 1, 2, and 3 in P constitute a subproof that derives x form x∧y, generating a derivation
of the lemma ¬(x ∧ y), x. Steps 1 and 2 are in the local context of the subproof, whereas 3
is in the global context of P .

SMTCoq does not support the opening and closing of additional contexts within the
context of a proof, and so Ts flattens subproofs so that the resultant proof has one global
context. Consider the following proof, P , representing an arbitrary proof containing a single
subproof with a single hypothesis. The flattening can be naturally extended to multiple
subproofs, possibly containing multiple assumptions.

Π1

assume
H
Π2

G
subproof

¬H,G
Π3

〈 〉

Π1 is the sequence of steps before the subproof; the subproof assumes H and proves G via
the sequence of steps Π2; and Π3 follows the subproof step, to derive 〈 〉. Note that Π2 and
Π3 would have at least one step, the former deriving G from H and the latter deriving 〈 〉
from ¬H,G. Ts(P), the flattened version of P is presented as follows:

54

Π1

andn
H ∧ ¬G,¬H,G

Π′3

H ∧ ¬G (1)
andp

¬(H ∧ ¬G), H
res

H

Π2

G

(1)
H ∧ ¬G

andp
¬(H ∧G),¬G

res
¬G

res
〈 〉

Given that P derives 〈 〉 from H1, H2, . . . , Hn, Ts(P) performs the same derivation while
soundly eliminating the local context of the subproof. To understand why this derivation is
sound:

� First, notice that Π1 remains unchanged, as does its relative ordering with the rest of
the proof.

� The local assumption of H from the subproof is replaced by a sound derivation of H.
¬H,G — previously derived by the subproof — is now independently derived using
andn along with a residual H ∧ ¬G. Since Π3 derives 〈 〉 (the empty clause) from
¬H,G, it will derive the residue H ∧¬G from H ∧¬G,¬H,G after some modifications
to its steps. Specifically,

H ∧ ¬G,¬H,G
Π′3

= extend cl

(
H ∧ ¬G,¬H,G

Π3
, i

)
where i is the ID of the step that derives H ∧ ¬G,¬H,G. So, extend cl propagates
the residue through Π3, deriving Π′3. Finally, H is projected from this residue (using
andp).

� Π2 derives G from H, that is now in the global context.

� To derive 〈 〉, ¬G is projected from H ∧ ¬G and resolved with G.

Whereas Π2 precedes Π3 in P , Ts(P) reverses this order. This does not effect soundness,
since Π2 is within the subproof’s context, due to which no step from after the subproof
accesses any step from Π2. However, Π2 might access steps from the global context that
occur before the subproof, and so the the ordering between Π1 and Π2 is still maintained by
Ts.

Example 5.4.4. The flattening of P from Example 5.4.3 is given by Ts(P):

(1)
andp(0)

¬((x ∧ y) ∧ ¬x), x ∧ y
res

x ∧ y
and(0)

x

(1)
andp(1)

¬((x ∧ y) ∧ ¬x),¬x
res¬x

res
〈 〉

55

where (1) is derived as follows:

assume
x ∧ y assume¬x

andn
(x ∧ y) ∧ ¬x,¬(x ∧ y), x

res
(x ∧ y) ∧ ¬x (1)

5.4.2.2 Tn: notnot Elimination

Tn soundly eliminates all notnot steps in a certificate:

notnot¬¬¬x, x

alethe uses such steps to eliminate double negations in terms. For example, consider the
following sequence of steps that eliminates the double negation from ¬¬x, where C denotes
the remainder of the clause.

¬¬x,C notnot¬¬¬x, x
res

x,C

Since the term representation of SMTCoq implicitly simplifies double negations, such a rule
is unnecessary.
Tn removes each occurrence of the notnot rule, and also removes any call to a notnot

step from the premise list of any resolution in the rest of the certificate. The sequence of
steps previously mentioned, for example, is transformed to the following by Tn:

¬¬x,C
res

x,C

and SMTCoq’s internal representation (that we are not explicitly formalizing here) eliminates
the double negation.

5.4.2.3 Tc and Tt: Encoding Conversion Versions of Congruence, Transitivity,
and Reflexivity

The cong and trans rules from the alethe proof format encapsulate the congruence of equal-
ity/equivalence over function/predicate applications and the transitivity of equality/equiva-
lence, respectively:

x1 =σ x2 · · · xn =σ xn+1
trans

x1 =σ xn+1

x1 =σ y1 · · · xn =σ yn
cong

f x1 · · ·xn =σ f y1 · · · yn
for any sort σ.

smtcoq-certif has similar (non-conversion) rules:

56

eqtrans
(x1 6=σ x2), · · · , (xn−1 6=σ xn), (x1 6=σ xn)

eqcong
(x1 6=σ y1), · · · , (xn 6=σ yn), (f x1 · · · xn =σ f y1 · · · yn)

eqcongp
(x1 6=Bool y1), · · · , (xn 6=Bool yn),¬(p x1 · · · xn), (p y1 · · · yn)

where σ is a non-Bool sort. The goal of Tc (resp. Tt) is to encode cong (trans) in terms of
eqcong and eqcongp (eqtrans). This presents a few challenges since cong and trans are
significantly more expressive than their lemma counterparts.

Equality vs Equivalence While cong supports congruence over equality/equivalence
of both function and predicate applications, eqcong supports only the function case, and
eqcongp, the predicate case. Given a cong step, Tc case-splits on whether the congruence
is over an equality of function applications (case 1 below), or an equivalence of predicate
applications (case 2). Similarly, for transitivity, Tt case-splits on whether the conclusion is
an equality (case 1) or an equivalence (case 2). eqtrans, that supports only transitivity over
equality, is used to encode the former, while the latter is done using the equivalence rules
and resolution.

� Case 1
This case deals with encoding applications of cong and trans when the literals in the
premises and conclusion are equalities (between non-Bool terms).
For congruence, convert a step of the form:

x = a y = b
cong

f(x, y) = f(a, b)

to one of the form:

eqcong
x 6= a, y 6= b, f(x, y) = f(a, b) x = a y = b

res
f(x, y) = f(a, b)

For transitivity, convert a step of the form:

x1 = x2 . . . xn−1 = xn
trans

x1 = xn

to one of the form:

eqtrans
x1 6= x2, . . . , xn−2 6= xn−1, xn−1 = xn x1 = x2 . . . xn−1 = xn

res
x1 = xn

� Case 2
Here, we are concerned with encoding applications of cong and trans when the literals
in the premises and conclusion of the step are equivalences (between formulas).
For congruence, convert a step of the form:

57

x = a y = b
cong

P (x, y) = P (a, b)

to one of the form:

(1) (2) x = a y = b
res

P (x, y) = P (a, b)

where (1) and (2) are derived as follows:

eqcongp
x 6= a, y 6= b,¬P (x, y), P (a, b)

eqvn2
P (x, y) = P (a, b), P (x, y), P (a, b)

res
x 6= a, y 6= b, P (a, b), P (x, y) = P (a, b) (1)

eqcongp
x 6= a, y 6= b,¬P (a, b), P (x, y)

eqvn1
P (x, y) = P (a, b),¬P (x, y),¬P (a, b)

res
x 6= a, y 6= b,¬P (a, b), P (x, y) = P (a, b) (2)

For transitivity, convert a step of the form (we present transitivity over 2 premises,
but this is easily generalized to n premises):

a = b b = c
trans

a = c

to one of the form:

(1) (2)
res

a = c

where (1) and (2) are derived as follows:

eqvp1
a 6= b, a,¬b a = b

res
a,¬b

eqvp1
b 6= c, b,¬c b = c

res
b,¬c

res
a,¬c eqvn2

a = c, a, c
res

a = c, a (1)

eqvp2
b 6= c,¬b, c b = c

res
¬b, c

eqvp2
a 6= b,¬a, b a = b

res
¬a, b

res¬a, c eqvn1
a = c,¬a,¬c

res
a = c,¬a (2)

Reflexivity SMTCoq implements reflexivity using transitivity. As with eqtrans, eqrefl
works only for equalities, so reflexive equalities derived by refl can simply be derived by
eqrefl instead. However, reflexive equivalences derived by the refl rule are encoded using

58

a simpler version of the transitivity encoding from Case 2. We encode the following (for
formula x):

refl
x =Bool x

as the following:

eqvn1
x =Bool x,¬x

eqvn2
x =Bool x, x

res
x =Bool x

Logical Operators eqcongp does not support congruence over logical operators (that is,
cases where the predicate applied by congruence is a logical operator) whereas cong does,
warranting a separate encoding of congruence over each of the logical operators (∧, ∨, ¬,
→, and =Bool) using their corresponding introduction and elimination rules. For instance,
to encode congruence over the ¬ predicate, a step of the form:

x = a
cong¬x = ¬a

is encoded as:

(1) (2)
res¬x = ¬a

where (1) and (2) are derived as follows:

x = a
eqvp2

x 6= a,¬a, x
res¬a, x eqvn2¬x = ¬a,¬x,¬a

res
¬a,¬x = ¬a (1)

x = a
eqvp1

x 6= a,¬x, a
res¬x, a eqvn1¬x = ¬a, x, a

res
a,¬x = ¬a (2)

The encodings for the other logical operators, although more elaborate, do not pose any in-
teresting challenges and so they are omitted. The logical equivalence operator is an exception
that is addressed in what follows.

Congruence over Equality/Equivalence Consider congruence over equality/equiva-
lence, where the predicate applied to literals from the premises is itself equality/equivalence.

Example 5.4.5. Suppose a, b, x, and y are formulas. Then, the following is a valid appli-
cation of the cong rule.

x = y a = b
cong

(x = a) = (y = b)

Such an application is also valid if a, b, x, and y are non-Boolean terms.

59

As mentioned earlier, SMTCoq stores equalities and equivalences separately in its internal
format. So, congruence over =Bool is encoded as done for the other logical operators, and =φ

for all other sorts φ can be processed using eqcongp (Case 2 from the Equality vs Equivalence
paragraph of this section). Such a differentiation is also necessary for processing the trans

rule that combines reasoning for equivalence and equality.

Implicit Arguments Another difference between cong (trans) and its previous counter-
parts is that it supports implicit reflexive arguments. For example, in derivation

a = b
cong

f a x = f b x

x = x is an implicit argument. The rule as currently specified by alethe does not allow
implicit arguments for the cong rule (although this has been reported to the maintainers of
the alethe specification so that such an accommodation can be made), but solvers producing
alethe proofs generate such derivations. To be able to support such solvers, our encoding
permits implicit arguments. In our encoding, we search for implicit arguments and explicitly
prove them using refl for terms, or using eqvn1 and eqvn2 for formulas (see the Reflexivity
paragraph).

5.4.2.4 Tr: Encoding Rewrites

Rewrite rules specify rewrites that take the form of an equality/equivalence and are applied
(indirectly) to terms in the proof. For each possible rewrite specified by alethe’s rewrite rules
(specified in Section 5.3.1), Tr replaces the equality/equivalence by a derivation using rules
in the smtcoq-certif format. For each formula rewrite from alethe that takes the form of an
equivalence a =Bool b, Tr takes the following approach:

1. Derive ¬a, b by subproof, that is, by assuming a and deriving b.

2. Derive ¬b, a by subproof, that is, by assuming b and deriving a.

3. Use these to derive a =Bool b as follows:

eqvn1
a =Bool b,¬a,¬b

subproof
¬a, b

res
a =Bool b,¬a

eqvn2
a =Bool b, a, b

subproof
¬b, a

res
a =Bool b, a

res
a =Bool b

The subproofs are handled using Ts (Section 5.4.2.1). For each rewrite a =Bool b, the deriva-
tion of a from b for Step 1 and of b from a for Step 2 are specified in Appendix A.

The cvc5 solver’s rewrite rules are different from those used by veriT, and consequentially
from those specified in alethe. Instead the cvc5 rewrite rules are derived using the allsimp

rule. Since this one rule covers many possible equalities/equivalences, supporting it is a
non-trivial task, and is described in its own section below.

60

5.4.2.5 Tf : Handling Forall Instantiation

For our alethe integration with SMTCoq, we focus primarily on the quantifier-free theory
of EUF. This is compatible with Coq’s Bool type which serves as the deep embedding of
formulas for SMTCoq. Note, however, that quantified formulas aren’t expressible within
this type. Despite this restriction, SMTCoq supports certain proofs containing quantified
reasoning thanks to an extension by Blot et al. [22]. Particularly, it supports instantiations
of universally quantified hypotheses (in prenex normal form, where all the quantifiers are in
the prefix of the formula). Here, we summarize the extension by Blot et al. and describe
our adaptation of it for alethe’s quantifier instantiation rules.

Quantified hypotheses cannot be deeply embedded, but are represented in Coq as Props.
A quantified formula is eliminated from the proof by instantiating it to a quantifier-free
formula via the forall inst rule:

1 assume
∀x1, . . . xn. P

2 forall inst
¬(∀x1, . . . xn. P) ∨ P [x1 7→ t1] . . . [xn 7→ tn]

3 res
P [t1 . . . tn]

SMTCoq is unable to represent the clauses derived at IDs 1 and 2 in its deep embedding.
It performs the derivation of P [t1 . . . tn] outside of its computatational reflection mechanism
(while still maintaining its soundness guarantees). Specifically, it replaces the derivation at
ID 3 by a derivation of P [t1 . . . tn] via an application of the modus ponens rule (supported
by Coq’s logic, so it is applied at the meta level):

P → Q P
modus ponens

Q

Thus, to derive a proof of P [t1 . . . tn], SMTCoq needs a proof of ∀x1, . . . xn. P → P [t1 . . . tn]
and proof of ∀x1, . . . xn. P , both in Coq’s Prop type. The latter is available from the
assumption (ID 1). To prove the implication between the quantified formula and its instance,
SMTCoq uses a variant of the auto tactic [31]. In other words, auto proves the universal
quantifier instantiation, given the instance from the SMT solver. In this way, SMTCoq uses
the SMT solver to search for the instance, employing external help from Coq to complete
the proof. This constrains SMTCoq so that it can support only a very restricted form of
quantifier instantiation.

The checker for forall inst takes both the quantified hypothesis and its instance, and
invokes auto to prove the implication between them. However, both these pieces are not
always readily available within the same immediate derivation as in steps 1, 2, and 3 above.
The SMT solver often performs modifications of quantified formulas that include α-renamings
of its bound variables. Tf processes these modifications and eliminates them when possible
(unnecessary α-renamings, for example). It also finds the original hypothesis that is being
instantiatied and pairs it with its instance for the forall inst checker.

61

5.4.2.6 Ttr: Eliminating Trivial Clauses

A trivial clause is one that contains x as well as ¬x for some literal x. These arise in some
of our proofs, sometimes introduced by other transformations.

Example 5.4.6. The eqvp1 rule would introduce a trivial clause when applied to an equal-
ity between the same literal. Consider the following proof that contains such a trivial clause
introduced by eqvp1:

eqvp1
x = x, x,¬x

assume
x 6= x

res
x,¬x assume

x
1 res

x
assume¬x
res

〈 〉

It is straightforward to see that this proof is sound. However, the resolution checker
for SMTCoq will fail on this proof. Recursive function res checker(C1, C2) defines the
operation of the checker for resolution steps given two clauses C1 and C2:

res checker(C1, C2)

1: for each x in C1 do
2: if x ∈ C2 then
3: return x :: res checker(C1 \ x,C2 \ x)
4: else if ¬x ∈ C2 then
5: return (C1 \ x) ++ (C2 \ ¬x)
6: end if
7: end for
8: Fail

where :: is the list cons operator that given an element x of type A and a list l of elements
of type A, creates a new list with the element x added to l (here we treat clauses as lists of
literals which aligns with SMTCoq’s internal representation); for clause C and element x,
C\x is the clause identical to C except that it does not contain x.

res checker makes an optimization on line 3 assuming that a literal will never appear
in both polarities within the same clause. While this assumption might have been practical
to make in the past, solvers using alethe produce certificates that render this assumption to
be too strong. In Example 5.4.6, for instance, the optimization is applied at step 1 so that
the resolution between clauses [x,¬x] and [x] returns x::res checker([¬x], 〈 〉), making the
recursive call fail.

To prevent the checker from failing on certificates like this, we implement certificate
transformation Ttr that soundly removes trivial clauses. Particularly, Ttr soundly removes
any clause C such that x ∈ C, y ∈ C for some literals x and y that are negations of each other.
This includes syntactic negation (x and ¬x), negation modulo double negation elimination
(¬x and ¬¬¬x), and negation modulo symmetry of equality (x = y and y 6= x, when x and

62

y are not Boolean literals). Reasoning modulo double negation elimination and symmetry
of equality is necessary since SMTCoq reasons this way.

Recall that a clause with more than one literal is only indirectly converted by resolving
it with other clauses. And so given a trivial clause C1, x,¬x at ID t1, where C1 represents
the rest of the clause, we have some clause at t3 that resolves t1 with a clause at some ID t2.
t2 and t3 can take three possible forms based on three possible pivots:

1. t2 contains x, so that the certificate P can be generalized as:
(t1, , C1, x,¬x)

. . .
(t2, , C2, x)

. . .
(t3, res[L, t1,M, t2, N], C3, x)

where C1, C2, and C3 are placeholders for the irrelevant parts of the clauses; simi-
larly, L, M , and N represents irrelevant parts of the resolution chain, and denotes
the name of the rule that derives the clause.

2. t2 contains ¬x; the derivation of t3 is similar to the one above, except that it derives
C3,¬x instead.

3. t2 contains some y such that its negation is in C1. In this case, t3 will contain x and
¬x making it a trivial clause.

We specify Ttr for case 1 above; the transformation for case 2 is very similar, and for case 3
Ttr is recursively applied to the trivial clause created at t3. Given certificate P (from case
1), Ttr (P) soundly removes the step at t1:

. . .
(t2, , C2, x)

. . .
(t3a, weaken[t2], C1, C2, x)
(t3, res[L, t3a,M, t2, N], C3, x)

Recall that the weaken rule permits the weakening of a clause by adding arbitrary liter-
als to it. So the non-trivial part of t1 which is necessary for the soundness of the proof is
preserved using weaken, so that the trivial part can be eliminated from the proof.

Example 5.4.7. Ttr would transform the proof from Example 5.4.6 to the following proof:

assume
x

weaken
x = x, x

assume
x 6= x

res
x

assume¬x
res

〈 〉
Ttr removes the eqvp1 step that introduces the trivial clause and maintains soundness using
weaken.

63

Recall from Section 5.4.1 that there are two ways to adapt SMTCoq for a new rule: add
a checker for the rule and prove its correctness, or pre-process the rule to recast it in terms
of rules that SMTCoq already supports. While we follow the latter approach for all the
new rules from alethe, the problem with trivial clauses is a good candidate for modifying
the SMTCoq checker. This modification requires removing the optimization from line 3 in
res checker and fixing its proof of correctness. Since res is a central rule to SMTCoq’s proof
calculus, and since it occurs quite often (even more so due to the transformations specified in
this chapter), a change to its checker must be made only after ensuring that such a change
does not reduce efficiency. We leave as future work, a comparison of both approaches to
handling trivial clauses and the consequent implementation of the more efficient one.

5.4.3 cvc5 Rules and Rewrites

One goal of the alethe proof format is to allow SMT solvers to completely justify the steps that
they take in proving the validity of a set of formulas. This includes not only the reduction
of their negation to the empty clause, but any lemmas that solver might use in the proof.
A particular kind of lemma of concern is one that rewrites terms within a proof. Rewrites
take the form of equalities (or equivalences) and are used to indirectly modify terms using
resolution and rules for equivalence introduction and elimination.

Example 5.4.8. The following proof uses a rewrite rule (andsimp) to reduce a conjunction
by removing a redundant > from its conjuncts.

eqvp2
¬(x ∧ > = x),¬(x ∧ >), x

andsimp
x ∧ > = x

res
¬(x ∧ >), x

assume
x ∧ >

res
x

Rewrites pose one of the main barriers in unifying proof certificate formats between
SMT solvers — since different solvers use similar algorithms to solve problems in particular
theories, they agree on the general steps of proof reduction, but how they choose to simplify
formulas before or during the reduction process is unique to each solver. Although alethe
specifies elaborate rules for term rewrites, these are influenced by the veriT SMT solver.
cvc5, on the other hand, almost never rewrites terms using these rules (even when it does, it
doesn’t use the same rule name for the rewrite). Instead, it produces almost all its rewrites
using the allsimp rule. Our support for alethe rewrite rules andsimp, orsimp, notsimp,
impsimp, eqvsimp, boolsimp, and eqsimp only cover rewrites of veriT. Additonally, we
need to support allsimp, which is a general rule covering multiple possible rewrites emitted
by cvc5. We use cvc5’s ability to reconstruct its rewrites in terms of a particular set of
rewrite rules that can be declared to it using a domain specific language called RARE [78].
We use the RARE language to describe the alethe rewrite rules mentioned above, and cvc5’s
DSL compiler then reconstructs its rewrites in terms of these rules. A reconstructed rule is
still derived using allsimp, but specifies as its argument the RARE rule to use to derive
it. The implementation of Alethe Checker then simply parses these arguments and uses

64

SMT Proof Certi- Checker # Bench- # Success- # Failed
Solver ficate Format marks ful Checks Checks
CVC4 LFSC Lfsc Checker 138 131 7
cvc5 alethe Alethe Checker 138 128 10

veriT v2016 verit2016 Verit Checker 138 138 0
veriT alethe Alethe Checker 138 138 0

Figure 5.4: Summary of results of checking proofs produced by CVC4, cvc5, veriT v2016, and veriT
on the set of reduced benchmarks.

SMT #Bench- # Success- # Successful # Failed # # Files
Solver marks ful Checks ful Checks Checks Holes with Holes

with Holes
CVC4 138 54 77 7 153 82
cvc5 138 84 44 10 66 44

Figure 5.5: Comparison of Lfsc Checker and Alethe Checker’s performance with CVC4 and cvc5
respectively

the respective rewrite rule for the derivation of the equality. As the following experimental
results show, this process helps reduce the number of holes significantly.

5.5 Evaluation

In this section, we detail our experiments on Alethe Checker, comparing it with Verit Checker

and Lfsc Checker, for SMT files and their proofs in propositional logic and the theory of
equality over uninterpreted functions (EUF). We use a set of 4260 benchmarks (SMT files)
[89] generated by the Sledgehammer [81] tool when it calls external SMT solvers to prove
goals in the Isabelle/HOL ITP. All benchmarks are unsatisfiable, and can be solved by either
veriT, CVC4, or z3 within 12 seconds. These benchmarks express queries over SMT-LIB 2’s
core propositional logic and theories of linear integer arithmetic (LIA), arrays (AX), un-
interpreted functions (EUF), using both quantified and quantifier-free formulas. We filter
this benchmark set so that we are considering only those SMT files that are restricted to
propositional logic and the EUF theory. Furthermore, we remove any files whose proofs (in
alethe) include the acsimp rule (that simplifies nested occurrences of ∧ and ∨), since we
have not added support for it yet. This leaves us with 138 benchmarks on which we perform
our comparison. We ran all experiments on CoqIDE version 8.13.2 in a system with 16 GB
RAM, running Ubuntu 20.04.

First, we call CVC4 and veriT v2016 on these 138 SMT files and have them produce
proof certificates in the LFSC and verit2016 proof certificate formats, respectively. We then
call Lfsc Checker (for CVC4) and Verit Checker (for veriT v2016) on the SMT files with
the corresponding proof files. These results are in the first and third rows of the table in
Figure 5.4. The last column (# Failed Checks) includes files for which the checker does not

65

return True (it either returns False or raises an error). For CVC4 all 7 failures are caused
by exceptions raised in SMTCoq’s code. The Lfsc Checker has a high success rate on these
benchmarks; however, many of the successful checks produce holes — proof steps that cannot
be checked. On the other hand, Verit Checker is complete for these benchmarks — all files
are successfully checked without any holes.

As a comparison, we call cvc5 and veriT on the same 138 SMT files to produce alethe
proof certificates. We then call Alethe Checker on the SMT files and proof files from the two
solvers. The results from these experiments are in the second and fourth rows of the table
in Figure 5.4. With veriT, we match the 100% success rate of veriT v2016, and with cvc5
we come close to the success rate of CVC4, since the checker only fails on 10 benchmarks,
and all of them are cases where the same exception is raised by SMTCoq’s code. We do
not expect the fixing of these 10 failures to be particularly challenging and leave it as future
work.

This table only shows a partial picture of the comparison. In checking the proof certificate
of an external SMT solver, SMTCoq can leave unjustified steps. Such a step — called a
proof hole — is returned to the Coq user as a sub-goal. The table in Figure 5.5 presents the
experimental results while taking proof holes into consideration. Since both versions of veriT
produce no holes in their proofs over the benchmarks, this table omits veriT results. For
CVC4, we found 153 holes from the LFSC proofs of the benchmark files, and 82 files with
at least one hole. All holes (from both solvers) appeared due to rewrite steps that SMTCoq
couldn’t justify. Considering successful checks now to be only those cases where the checker
succeeds without finding any holes in the proof, we note that there are 54 of these. Notice
from the second row, that this number has increased to 84 using cvc5 and our alethe checker;
and that the number of holes in proofs have been halved owing to the added support for
rewrite rules in Alethe Checker.

In our future work, we propose to bring down the number of holes in alethe proofs
produced by cvc5 down to 0 (from 66). All 66 holes can be encoded using rules currently
supported by alethe fairly easily. For example, over half of these rewrites take one of the
following forms:

� ¬> =Bool ⊥

� (⊥ =Bool >) =Bool ⊥

� (> =Bool ⊥) =Bool ⊥

� (x = x) =Bool > for some x.

However, hard-coding a transformation for each form of rewrite rule would require a large
amount of code with little potential for reuse. Instead, we propose to use veriT version v2016
as an elaborator for these rewrite rules. Since the proofs produced by that version of veriT
are well-supported by SMTCoq we can use it to replace the derivation of a rewrite rule by
a derivation using rules that are already supported by SMTCoq. We see such a solution as
being general enough to cover not only the 66 rewrites from this experiment set, but any
rewrite (for the relevant theories) produced by cvc5.

66

Chapter 6

Proving Invertibility Conditions

Many applications in hardware and software verification rely on bit-precise reasoning, which
can be modeled using the SMT-LIB 2 theory of fixed-width bit-vectors. While satisfiability
modulo theories (SMT) solvers are able to reason about bit-vectors of fixed width, they
currently require all widths to be expressed concretely (by a numeral) in their input formulas.
For this reason, they cannot be used to prove properties of bit-vector operators that are
parametric in the bit-width, such as the associativity of bit-vector concatenation. Interactive
theorem provers (ITPs) such as Coq, which have direct support for dependent types, are
better suited for such tasks. Bit-vector formulas that are parametric in the bit-width arise
in the verification of parametric Boolean functions and circuits [61]). In our case, we are
mainly interested in parametric lemmas that are relevant to internal techniques of SMT
solvers for the theory of fixed-width bit-vectors. These include, for example, rewrite rules,
refinement schemes, and preprocessing passes. Such techniques are developed a priori for
every possible bit-width. Meta-reasoning about the correctness of such solvers then requires
bit-width independent reasoning.

In this chapter, we focus on parametric lemmas that originate from a quantifier-instantiation
technique implemented in the SMT solver cvc5. This technique is based on invertibility con-
ditions [73] (previously introduced in Section 2.2.1). For a trivial case of an invertibility
condition, consider the equation x + s = t where x, s and t are variables of the same bit-
vector sort. In the terminology of Niemetz et al. [73], this equation is “invertible for x.”
A general inverse, or “solution,” is given by the term t − s. Since there is always such an
inverse, the invertibility condition for x+s = t is simply the universally true formula >. The
formula stating this fact, referred to here as an invertibility equivalence, is > ⇔ ∃x. x+ s = t,
which is valid in the theory of fixed-width bit-vectors, for any bit-width. In contrast, the
equation x · s = t is not always invertible for x. A necessary and sufficient condition for
invertibility in this case was found in [73] to be (−s | s) & t = t. So, the invertibility equiva-
lence (−s | s) & t = t⇔ ∃x. x · s = t is valid for any bit-width. Notice that the invertibility
condition does not contain x. Hence, invertibility conditions can be seen as a technique for
quantifier elimination. In [73], a total of 160 invertibility conditions were provided. How-
ever, they were verified only for bit-widths up to 65, due to the reasoning limitations of
SMT solvers mentioned earlier. Recent work [75, 74] addresses this challenge by translating
the invertibility equivalences to the combined theory of non-linear integer arithmetic and

67

Symbol SMT-LIB Syntax Sort

=,6= =, distinct σ[n] × σ[n] → Bool

<u, >u, ≤u, ≥u bvult, bvugt, bvule, bvuge σ[n] × σ[n] → Bool

∼ , − bvnot, bvneg σ[n] → σ[n]

&, |, <<, >>, >>a bvand, bvor, bvshl, bvlshr, bvashr σ[n] × σ[n] → σ[n]

+ bvadd σ[n] × σ[n] → σ[n]

<s, >s, ≤s, ≥s bvslt, bvsgt, bvsle, bvsge σ[n] × σ[n] → Bool

·, mod, ÷ bvmul, bvurem, bvudiv σ[n] × σ[n] → σ[n]

◦ concat σ[n] × σ[m] → σ[n+m]

[u : l] extract σ[n] → σ[u−l+1]

Figure 6.1: The signatures Σ1 and Σ0 with SMT-LIB 2 syntax. Σ1 consists of the operators in the
entire table. Σ0 consists of the operators in the upper part.

uninterpreted functions. This approach was partially successful, but failed to verify over a
quarter of the equivalences.

We verify invertibility equivalences proposed in [73] by proving them interactively in Coq.
From a representative subset of the invertibility equivalences, we prove 19 equivalences, 12
of which were not proven in [75, 74]. For the remaining 7, that were already proved there,
our Coq proofs provide more confidence. Our results offer evidence that ITPs can support
ATPs in meta-verification tasks. To facilitate the verification of invertibility equivalences,
we use a rich Coq library for bit-vectors, which is a part of SMTCoq [50]. The remainder
of this chapter is organized as follows. Section 6.1 introduces the theory of bit-vectors that
is relevant to this work followed by an introduction invertibility conditions in Section 6.2.
The Coq library that we use and our extensions to it are specified in Section 6.3; Section 6.4
discusses the Coq proofs using detailed examples and Section 6.5 summarizes the results.

6.1 Theory of Fixed-Size Bit-Vectors

We introduced signature ΣBV of the SMT-LIB 2 theory of fixed-width bit-vectors in Sec-
tion 2.2.1. For every positive integer n and a bit-vector of width n, the signature includes
a constant of sort σ[n] in ΣBV representing that bit-vector, which we denote as a binary
string of length n. The function and predicate symbols of ΣBV are fully described in the
SMT-LIB 2 standard [11]. Formulas of ΣBV are built from variables (sorted by the sorts
σ[n]), bit-vector constants, and the function and predicate symbols of ΣBV , along with the
usual logical connectives and quantifiers.

Figure 6.1 contains the operators from ΣBV for which invertibility conditions were defined
in [73]. We define Σ1 to be the signature that contains only these symbols. Σ0 is the sub-
signature obtained by only taking the operators from the upper part of the table. We use
the (overloaded) constant 0 to represent the bit-vectors composed of all 0-bits.

68

6.2 Invertibility Conditions

Recall that the problem with the model-based instantiation technique used in Example 2.2.2
is that the efficiency of the SMT solver depends on the models found for x. Particularly,
the solver would take longer to find a model for φ if it tried all even numbers greater than
3 for possible values for x before trying any odd ones. To address such issues, Niemetz
et al. [72] present a technique to solve quantified bit-vector formulas, which is based on
invertibility conditions. An invertibility condition for a variable x in a ΣBV -literal `[x, s, t] is
a formula IC[s, t] such that ∀s.∀t. IC[s, t]⇔ ∃x.`[x, s, t] is valid in the theory of fixed-width
bit-vectors. For example, the invertibility condition for x in the bit-vector literal x & s = t
(where x, s and t are distinct variables of the same sort, and & is the bit-wise conjunction
operation) is t & s = t.

Example 6.2.1. This example is borrowed from Jonáš et al. [67]. Consider φ from Ex-
ample 2.2.2 after the first iteration. Instead of adding instance x 6= 2 · 2 to the formula,
which prohibits only 4, invertibility conditions-based instantiation prevents all values of x
satisfying this disequality. The invertibility condition for y is a formula that specifies the
conditions under which x = 2 · y holds: ((−2 | 2) & x) = x. In other words, values for y
satisfying x = 2 · y exist only when ((−2 | 2) & x) = x holds (notice that this is true only
for even values of x). So the solver adds its negation to the formula:

3 <u x ∧ ¬((−2 | 2) & x = x) ∧ ∀y(x 6= 2 · y)

which prevents all even values of x, forcing the solver to come up with a value for x which
is not even and is greater than 3, such as 5.

As described in Section 2.2.1, cvc5 performs quantifier instantiation via invertibility con-
ditions for the theory of bit-vectors.

Niemetz et al. [72] define invertibility conditions for a representative set of literals ` having
a single occurrence of x, that involve the bit-vector operators of Σ1. The soundness of the
technique proposed in that work relies on the correctness of the invertibility conditions. Every
literal `[x, s, t] and its corresponding invertibility condition IC[s, t] induce the invertibility
equivalence

IC[s, t]⇔ ∃x.`[x, s, t] (6.1)

The correctness of invertibility equivalences should be verified for all possible sorts for
the variables x, s, t for which the condition is well sorted. More concretely, for the case where
x, s, t are all of sort σ[n], say, this means that one needs to prove, for all n > 0, the validity
of

∀s : σ[n]. ∀t : σ[n]. IC[s, t]⇔ ∃x : σ[n].`[x, s, t] .

This was done in Niemetz et al. [72] using SMT solvers but only for concrete values of n
from 1 to 65. A proof of Equation (6.1) that is parametric in the bit-width n cannot be
done with SMT solvers, since they currently only support the theory of fixed-width bit-
vectors, where Equation (6.1) cannot even be expressed. To overcome this limitation, a

69

Coq

auto-ind

auto-65

Figure 6.2: The level of confidence achieved by the different approaches.

later paper by Niemetz et al. [74] suggested a translation from bit-vector formulas with
parametric bit-widths to the theory of (non-linear) integer arithmetic with uninterpreted
functions. Thanks to this translation, the authors were able to verify, with the aid of SMT
solvers for the theory of integer arithmetic with uninterpreted functions, the correctness of
110 out of 160 invertibility equivalences. None of the solvers used in that work were able to
prove the remaining equivalences. For those, it then seems appropriate to use an ITP, as this
allows for more intervention by the user who can provide crucial intermediate steps. It goes
without saying that even for the 110 invertibility equivalences that were proved, the level of
confidence achieved by proving them in a proof-assistant such as Coq would be greater than
a verification (without a verified formal proof) by an SMT solver.

Figure 6.2 depicts the level of confidence achieved by the various approaches to verify
invertibility equivalences. The smallest circle, labelled auto-65, represents the approach taken
by [73], where invertibility equivalences were verified automatically up to 65 bits. While a
step in the right direction, this approach is insufficient, because invertibility conditions are
used for arbitrary bit-widths. The next circle, labeled auto-ind, depicts the approach of [74],
which addresses the restrictions of auto-65 by providing bit-width independent proofs of
the invertibility equivalences. However, both auto-65 and auto-ind provide proofs by SMT
solvers, which are less trusted than ITPs. The largest circle (Coq) corresponds to work
presented in this chapter which, while addressing the limitations of auto-65 via bit-width
independent proofs, also provides stronger verification guarantees by proving the equivalences
in an interactive theorem prover. Moreover, with this approach, we were able to prove
equivalences that couldn’t be fully verified (for arbitrary bit-widths) by either auto-65 or
auto-ind.

6.3 The BVList Library

In this section, we describe the Coq library we use and the extensions we developed with
the goal of formalizing and proving invertibility equivalences. Various formalizations of bit-
vectors in Coq exist. The internal Coq library of bit-vectors [46] is one, but it has only
definitions and no lemmas. The Bedrock Bit Vectors Library [28] treats bit-vectors as words

70

(machine integers). The SSRBit Library [21] represents bit-vectors as finite bit-sets in Coq
and extracts them to OCaml machine integers. Our library is more suited to the SMT-
LIB 2 bit-vectors, and includes operators that are not fully covered by any of the previously
mentioned libraries. More recently, Shi et al. [90] developed a library called CoqQFBV that
presents a bit-vector type as a sequence of Booleans, defines operators over it, and proves the
correctness of these operations with respect to a (machine integer) semantics. [90] uses this
library to define a bit-blasting algorithm in Coq, that is extracted into an OCaml program
to perform certified bit-blasting. Since CoqQFBV covers the entire SMT-LIB 2 bit-vector
signature, it would be a good alternative to ours in formalizing and proving invertibility
conditions. Our library offers a rich set of lemmas over bit-vector operations that makes
it suitable for proofs of invertibility conditions and other bit-vector properties. Bit-vectors
have also been formalized in other proof assistants. Within the Isabelle/HOL framework,
one can utilize the library developed by Beeren et al. [16] to align with SMT-LIB 2 bit-
vector operations. Furthermore, Harrison [2] presents a formalization of finite-dimensional
Euclidean space within HOL light, accompanied by an implementation of vectors.

6.3.1 BVList Without Extensions

BVList was developed for SMTCoq [50], a Coq plugin that enables Coq to dispatch proofs
to external proof-producing solvers. While the library was only briefly mentioned in [50],
here we provide more details.

The library adopts the little-endian notation for bit-vectors, following the internal repre-
sentation of bit-vectors in SMT solvers such as cvc5, and corresponding to lists in Coq. This
makes arithmetic operations easier to perform since the least significant bit of a bit-vector
is the head of the Boolean list that represents it.

For formalizing the bit-vector type, a dependently-typed definition is natural, allowing
the type of a bit-vector to be parameterized by its length. However, such a representation
leads to some difficulties in proofs. Dependent pattern-matching or case-analysis with depen-
dent types is cumbersome and unduly complex (see, e.g., [92]), because of the complications
brought by unification in Coq (which is inherently undecidable [93]). A simply-typed defi-
nition, on the other hand, does not provide such obstacles for proofs, but is less natural, as
the length becomes external to the type. The BVList library defines for convenience both
the dependently and the simply typed version of bit-vectors. It uses the Coq module system
to separate them, and a functor that connects them, avoiding redundancy. The relationship
between the two definitions is depicted in Figure 6.3.

In BVList, a dependently-typed bit-vector is a record parameterized by its size n and
consisting of two fields: a Boolean list and a condition to ensure that the list has length n.
This type, and the corresponding lemmas and properties over it, are encapsulated by the
BITVECTOR LIST module of type BITVECTOR. A simply-typed or raw bit-vector representation
is simply a Boolean list which, along with its associated operators and lemmas is specified by
module signature RAWBITVECTOR and implemented in module RAWBITVECTOR LIST. In other
words, the interface of BVList offers dependently-typed bit-vectors, while the underlying
operators are defined and proofs are performed using raw bit-vectors.

71

RAWBITVECTOR LIST : RAWBITVECTOR

BITVECTOR LIST : BITVECTOR

RAW2BITVECTOR

Figure 6.3: Modular separation of BVList

A functor called RAW2BITVECTOR derives corresponding definitions and proofs over dependently-
typed bit-vectors within the module for dependent-types, when it is applied to RAWBITVECTOR LIST.
The functor establishes a correspondence between the two theories so that one can first prove
a bit-vector property in the context of the simply-typed theory and then map it to its corre-
sponding dependently-typed one via the functor module. Otherwise put, users of the library
can encode theorem statements more naturally, and in a more expressive environment em-
ploying dependent types. For proofs, one can unlift them (by the functor) to the equivalent
encodings with simple types, and prove them there.

6.3.2 Extending BVList

Out of the 13 bit-vector functions and 10 predicates contained in Σ1, BVList had direct
support for 10 functions and 6 predicates. The predicate symbols that were not directly
supported were the weak inequalities ≤u, ≥u, ≤s, ≥s and the unsupported function symbols
were >>a, ÷, and mod. We extended BVList with the operator >>a and the predicates
≤u and ≥u in order to support the corresponding invertibility conditions. Additionally, we
redefined << and >> in order to simplify the proofs of invertibility conditions over them.1

We focused on invertibility conditions for literals of the form x � s ./ t and s � x ./ t,
where � and ./ are respectively function and predicate symbols in Σ0. Σ0 was chosen as a
representative set because it is both expressive enough (in the sense that other operators
can be easily translated to this fragment), and feasible for proofs in Coq using the library.
In particular, it was chosen as one that would require the minimal amount of changes to
BVList. As a result, such literals, as well as their invertibility conditions, contain only
operators supported by BVList (after its extension with >>a, ≤u, and ≥u). Supporting the
full set of operators in Σ1, both in the library and the proofs is left for future work.

In what follows, we describe our extensions to BVList with weak unsigned inequalities,
alternative definitions for logical shifts, and the arithmetic right shift operator.

1Both the extended library and the proofs of invertibility equivalences can be found at https://github.
com/ekiciburak/bitvector/tree/frocos23.

72

https://github.com/ekiciburak/bitvector/tree/frocos23
https://github.com/ekiciburak/bitvector/tree/frocos23

1

2 Fixpoint ule_list_big_endian (x y : list bool) :=
3 match x, y with

4 | [], [] ⇒ true

5 | [], _ ⇒ false

6 | _, [] ⇒ false

7 | xi :: x’, yi :: y’ ⇒ ((eqb xi yi)
8 && (ule_list_big_endian x’ y’))
9 || ((negb xi) && yi)

10 end.
11

12 Definition ule_list (x y: list bool) :=
13 (ule_list_big_endian (rev x) (rev y)).
14

15 Definition bv_ule (a b : bitvector) :=
16 if @size a =? @size b then

17 ule_list a b

18 else

19 false.
20

21 Definition bv_ule n (bv1 bv2:bitvector n) : bool :=
22 M.bv_ule bv1 bv2.

Figure 6.4: Definitions of ≤u in Coq.

6.3.2.1 Weak Unsigned Inequalities

We added both weak inequalities for unsigned bit-vectors, ≤u and ≥u. We illustrate this
extension via that of the ≤u operator (the extension of ≥u is similar). The relevant Coq defi-
nitions are provided in Figure 6.4. The top three definitions (including the fixpoint) cover the
simply-typed representation, and the fourth, bv ule is the dependently-typed representation
that invokes the definition with the same name from module M of type RAWBITVECTOR. Like
most other operators, ≤u (over raw bit-vectors) is defined over a few layers. The function
bv ule, at the highest layer, ensures that comparisons are between bit-vectors of the same
size and then calls ule list. Since we want to compare bit-vectors starting from their most
significant bits and the input lists start instead with the least significant bits, ule list first
reverses the two lists. Then it calls ule list big endian, which we consider to be at the
lowest layer of the definition. This function does a lexicographic comparison of the two lists,
starting from the most significant bits.

To see why the addition of ≤u to the library is useful, consider, for example, the following
parametric lemma, stating that ∼0 is the largest unsigned bit-vector of its type:

∀x : σ[n]. x ≤u ∼0 (6.2)

73

Without an operator for the weak inequality, we would write it as:

∀x : σ[n]. x <u ∼0 ∨ x = ∼0 (6.3)

In such cases, since the definitions of <u and = have a similar structure to that of ≤u, we
strip down the layers of <u and = separately, whereas using ≤u, we only do this once.

6.3.2.2 Left and Right Logical Shifts

We have redefined the shift operators << and >> in BVList. Figure 6.5 shows both the
original and new definitions of <<. Those of >> are similar. Originally, << was defined using
the shl one bit and shl n bits. The function shl one bit shifts the bit-vector to the
left by one bit and is called by shl n bits as many times as necessary. The new definition
shl n bits a uses mk list false which constructs the necessary list of 0 bits and appends
(++ in Coq) to it the bits to be shifted from the original bit-vector, which are retrieved using
the firstn function, from the Coq standard library for lists. The nat type used in Figure 6.5
is the Coq representation of Peano natural numbers that has 0 and S as its two constructors
— as depicted in the cases rendered by pattern matching n (lines 10-11). The theorem at the
bottom of Figure 6.5 asserts the equivalence of the two representations, allowing us to switch
between them, when needed. In the extended library, bv shl defines the left shift operation
using shl n bits whereas bv shl a does it using shl n bits a. This new representation
was useful in proving some of the invertibility equivalences over shift operators. (see, e.g.,
Example 6.4.3 below).

6.3.2.3 Arithmetic Right Shift

Unlike logical shifts that were already defined in BVList and for which we have added
alternative definitions, arithmetic right shift was not defined at all. We provided two al-
ternative definitions for it, very similar to the definitions of logical shifts — bv ashr and
bv ashr a. Both definitions are conditional on the sign of the bit-vector (its most-significant
bit). Apart from this detail, the definitions take the same approach taken by shl n bits

and shl n bits a from Figure 6.5. bv ashr uses the definition of an independent shift and
repeats it as many number of times as necessary, and bv ashr a uses either mk list false

or mk list true to append the necessary number of sign bits to the shifted bits.

6.4 Proving Invertibility Equivalences in Coq

In this section we provide specific details about proving invertibility equivalences in Coq. We
start by outlining the general approach for proving invertibility equivalences in Section 6.4.1.
Then, Section 6.4.2 presents detailed examples of such proofs.

74

1

2 Definition shl_one_bit (a: list bool) :=
3 match a with

4 | []⇒ []
5 | _ ⇒ false :: removelast a

6 end.
7

8 Fixpoint shl_n_bits (a: list bool) (n: nat) :=
9 match n with

10 | O ⇒ a

11 | S n’ ⇒ shl_n_bits (shl_one_bit a) n’
12 end.
13

14 Definition shl_n_bits_a (a: list bool) (n: nat) :=
15 if (n <? length a)%nat then

16 mk_list_false n ++ firstn (length a -n) a
17 else

18 mk_list_false (length a).
19

20 Theorem bv_shl_eq: forall (a b : bitvector),
21 bv_shl a b = bv_shl_a a b.

Figure 6.5: Various definitions of <<.

6.4.1 General Approach

The natural representation of bit-vectors in Coq is the dependently-typed representation, and
therefore the invertibility equivalences are formulated using this representation. In keeping
with the modular approach described in Section 6.3, however, proofs in this representation
are composed of proofs over simply-typed bit-vectors, which are easier to reason about. Most
of the work is on proving an equivalence over raw bit-vectors. Then, we derive the proof of
the corresponding equivalence over dependently-typed bit-vectors using a smaller, boilerplate
set of tactics. Since this derivation process is mostly the same across many equivalences,
these tactics are a good candidate for automation in the future.

When proving an invertibility equivalence IC[s, t] ⇔ ∃x. `[x, s, t], we first split it into
two sub-goals: the left-to-right and right-to-left implications. For proving the left-to-right
implication, since Coq implements a constructive logic, the only way to prove an existentially
quantified formula is to construct the literal witnessing it. Thus, in addition to being able to
prove the equivalence, a positive side-effect of our proofs are actual inverses for x in literals
of the form `[x, s, t]. In Niemetz et al. [75], these are called conditional inverses, as the fact
that they are inverses is conditional on the correctness of the invertibility condition. There,
such inverses were synthesized automatically for a subset of the literals. In each of our Coq
proofs, such an inverse is found, even when the proof is done by case-splitting. This provides
a more general solution than the one in [75], which did not consider case-splitting.

75

Example 6.4.1. Consider the literal s>>a x ≥u t. Its invertibility condition is (s ≥u
∼s) ∨ (s ≥u t). The left-to-right implication of the invertibility equivalence is:

∀s, t : σ[n]. (s ≥u ∼s) ∨ (s ≥u t) ⇒ ∃x : σ[n]. s>>a x ≥u t

Here, case splitting is done on the disjunction in the invertibility condition. When s ≥u
∼s is true, the inverse for x is the bit-vector constant that correspond to the length of the
s, namely n; when s ≥u t is true, the inverse is 0.

In addition to BVList, several proofs of invertibility equivalences benefited from Co-
qHammer [35], a plug-in that aims at extending the level of automation in Coq by combining
machine learning and automated reasoning techniques in a similar fashion to what is done
by Sledgehammer [81] in Isabelle/HOL [76]. CoqHammer, when triggered on some Coq goal,
(i) submits the goal together with potentially useful terms to external solvers/automated-
provers, (ii) attempts to reconstruct returned proofs (if any) directly in the Coq tactic
language Ltac [41], and (iii) outputs the set of tactics closing the goal in case of success. As
we directly employ these tactics inside BVList, one does not need to install CoqHammer in
order to build the library, although it would be beneficial for further extensions.

6.4.2 Detailed Examples

In this section we provide specific examples for proofs of invertibility equivalences. The first
example illustrates the two-theories approach of the library.

Example 6.4.2. Consider the literal s>>a x <u t. Its invertibility condition is ((s <u

t ∨ ¬(s <s 0)) ∧ t 6= 0). Figure 6.6 shows the proof of the following direction of the
corresponding invertibility equivalence:

∀s, t : σ[n]. (∃x : σ[n]. s>>a x <u t) ⇒ ((s <u t ∨ ¬(s <s 0)) ∧ t 6= 0)

In the proof, lines 8–11 transform the dependent bit-vectors from the goal and the hypotheses
into simply-typed bit-vectors. Then, lines 12–14 invoke the corresponding lemma for simply-
typed bit-vectors (called InvCond.bvashr ult2 rtl) along with some simplifications.

Most of the effort in this project went into proving equivalences over raw bit-vectors, as
the following example illustrates.

Example 6.4.3. Consider the literal x<<s >u t. Its invertibility condition is (t <u

∼0<<s). The corresponding invertibility equivalence is:

∀s, t : σ[n]. (t <u ∼0<<s)⇔ (∃x : σ[n]. x<<s >u t) (6.4)

The left-to-right implication is easy to prove using ∼0 itself as the witness of the existential
proof goal and considering the symmetry between >u and <u. The proof of the right-to-left
implication relies on the following lemma:

76

1 Theorem bvashr_ult2_rtl :
2 forall (n : N), forall (s t : bitvector n),
3 (exists (x : bitvector n), (bv_ult (bv_ashr_a s x) t = true)) ->
4 (((bv_ult s t = true) ∨ (bv_slt s (zeros n)) = false) ∧
5 (bv_eq t (zeros n)) = false).
6 Proof.
7 intros n s t H.
8 destruct H as ((x, Hx), H).
9 destruct s as (s, Hs).

10 destruct t as (t, Ht).
11 unfold bv_ult, bv_slt, bv_ashr_a, bv_eq, bv in *. cbn in *.
12 specialize (InvCond.bvashr_ult2_rtl n s t Hs Ht); intro STIC.
13 rewrite Hs, Ht in STIC. apply STIC.
14 now exists x.
15 Qed.

Figure 6.6: A proof of one direction of the invertibility equivalence for >>a and <u using dependent
types.

∀x, s : σ[n]. (x<<s) ≤u (∼0<<s) (6.5)

From the right side of the equivalence in Equation (6.4), we get some skolem x for
which x<<s >u t holds. Flipping the inequality, we have that t <u x<<s; using this, and
transitivity over <u and ≤u, the lemma given by Equation (6.5) gives us the left side of the
equivalence in Equation (6.4).

As mentioned in Section 6.3, we have redefined the shift operators << and >> in the li-
brary. This was instrumental, for example, in the proof of Equation (6.5). The new definition
uses firstn and ++, over which many useful properties are already proven in the standard
library. This benefits us in manual proofs, and in calls to CoqHammer, since the latter is
able to use lemmas from the imported libraries to prove the goals that are given to it. Using
this representation, proving Equation (6.5) reduces to proving Lemmas bv ule 1 firstn

and bv ule pre append, shown in Figure 6.7. The proof of bv ule pre append bene-
fited from the property app comm cons from the standard list library of Coq, whereas
firstn length le was useful in reducing the goal of bv ule 1 firstn to the Coq equivalent
of Equation (6.2). The statements of the properties mentioned from the standard library are
also shown in Figure 6.7.

Finally, we examine what was considered a challenge problem in the previous version of
this work [51]. The next example details how we completed the proof.

Example 6.4.4. Consider the literal (x>>s) >u t. Its invertibility condition is t <u

(∼s>>s). Now consider the following direction of the corresponding invertibility equiva-
lence:

∀s, t : σ[n]. t <u (∼s>>s) ⇒ ∃x : σ[n]. (x>>s) >u t (6.6)

77

1 Lemma bv_ule_1_firstn : forall (n : nat) (x : bitvector),
2 (n < length x)%nat ->
3 bv_ule (firstn n x) firstn n (mk_list_true (length x))) = true.
4

5 Lemma bv_ule_pre_append : forall (x y z : bitvector),
6 bv_ule x y = true -> bv_ule (z ++ x) (z ++ y) = true.
7

8 Theorem app_comm_cons : forall (x y:list A) (a:A),
9 a :: (x ++ y) = (a :: x) ++ y

10

11 Lemma firstn_length_le: forall l:list A, forall n:nat,
12 n <= length l -> length (firstn n l) = n.

Figure 6.7: Examples of lemmas used in proofs of invertibility equivalences.

Figure 6.8 contains the theorem stating the equivalence, and some lemmas used within
its proof. A crucial step in the proof of the implication is to rewrite the definition of the right
shift operator bv shr to its alternate definition bv shr a (see Section 6.3.2.2). Unfolding the
alternative definition leads to a case-analysis on the following condition:

toNat(s) < len(x)

where toNat casts a bit-vector to its natural number representation, and len returns the
length of a bit-vector as a natural number.

The challenge in the proof arises in the positive case of the condition, which reduces to
a proof of first bits zero (see Figure 6.8). first bits zero says that given toNat(s) <
len(s), the most-significant len(s) − toNat(s) bits of s are 0. As seen in Figure 6.5, the
second argument to the top-most layer of the shift (called from bv shl eq) is a bit-vector
that specifies the number of times to shift the bit-vector in the first argument. This second
argument is converted to a natural number by the abstract toNat function invoked above,
the concrete definitions of which are specified in Figure 6.8 as list2nat be a and list2N. At
the same level of abstraction, we use rev for the list reversal function corresponding to the
Coq function of the same name, and firstn also for its Coq namesake (firstn n l returns
the n most significant bits of l), so that first bits zero can be specified as follows:

toNat(s) < len(s) ⇒ firstn (len(s)− toNat(s)) (rev(s)) = 0

The intuition behind its validity is that if the most-significant len(s) − toNat(s) bits were
not 0 then they would contribute to the value of toNat(s), making it greater than or equal to
len(s) and thus falsifying the condition. However, it is challenging to convert this intuition
into a proof using induction over lists, as explained in what follows.

To prove first bits zero, we redefined list2N as a tail-recursive function list2NTR.
This step was proven to be sound by a lemma of equivalence between the two definitions
(list2N eq). Since list2N is not tail recursive, it only begins computation at the end of

78

1 Theorem bvshr_ugt_ltr : forall (n : N), forall (s t : bitvector n),
2 (bv_ult t (bv_shr (bv_not s) s) = true) ->
3 (exists (x : bitvector n), bv_ugt (bv_shr x s) t = true).
4

5 Lemma first_bits_zero : forall (s : bitvector),
6 (N.to_nat (list2N s) < length s)%nat ->
7 firstn (length s -N.to_nat (list2N s)) (rev s) =
8 mk_list_false (length s -N.to_nat (list2N s)).
9

10 Lemma first_bits_zeroA : forall (s : bitvector),
11 (length s >= (list2NTR s))%nat ->
12 firstn (length s -(list2NTR s)) s =
13 mk_list_false (length s -(list2NTR s)).
14

15 Fixpoint list2N (a: list bool) :=
16 match a with

17 | [] ⇒ 0
18 | x :: xs ⇒ if x then N.succ_double (list2N xs) else
19 N.double (list2N xs)
20 end.
21

22 Definition list2nat_be_a (a: list bool) := N.to_nat (list2N a).
23

24 Fixpoint list2NR (a: list bool) (n: nat) :=
25 match a with

26 | [] ⇒ n

27 | x :: xs ⇒ if x then list2NR xs (2 * n + 1) else
28 list2NR xs (2 * n)
29 end.
30

31 Definition list2NTR (a: list bool) := list2NR a 0.
32

33 Lemma list2N_eq: forall (s: bitvector),
34 list2NTR (rev s) = N.to_nat (list2N s).

Figure 6.8: Invertibility equivalence for >> and >u and some lemmas used by its proof.

79

the input list representing a bit-vector. Such a definition further complicates the proof of
first bits zero when based on the typical induction principle over the structure of the
Boolean list underlying the bit-vector s. This is because it does not easily reduce (via
ι-reduction for inductive definitions [79]), into a useful expression in the step case of the
intended induction.

The advantage of tail recursion in this context is best illustrated by Figure 6.9 where x

is a Boolean variable and xs represents an arbitrary Boolean list. The derivation of the goal
from the inductive hypothesis (IH) in derivation (6.7) from Figure 6.9 is complicated in Coq
because the functions firstn and rev are not well-matched with list2N, if not incompatible.
For instance, observe that the in the inductive step (Goal), as the first argument to firstn

increases, the number of bits fetched from the list increases towards the right. However,
due to the little-endian notation of bit-vectors and the fact that the list cons function (::)
can be seen as incrementing its argument list to its left, the rev function must be used to
corrects the direction of increase of the second argument to firstn. Despite this correction,
an induction over s must deal with two structurally different lists.

In contrast, the tail-recursive definition of list2NTR hides the rev function. This is
illustrated in derivation (6.8) in Figure 6.9, where toNatTR corresponds to list2NTR. Fur-
thermore, such an induction over lists using append (++) to the right, rather than cons to
the left is possible thanks to the reverse induction principle2. Closing such a goal allowed
us to prove the list2NTR-variant of first bits zero, specified as first bits zeroA in
Figure 6.8, and the proof of equivalence between the two definitions (list2N eq) allowed us
to use this in closing the original goal (6.6).

x: bool xs: list bool IH: firstn (len(xs)− toNat(xs)) (rev(xs)) = 0

Goal: firstn (len(xs) + 1− toNat(x :: xs)) (rev(x :: xs)) = 0
(6.7)

x: bool xs: list bool IH: firstn (len(xs)− toNatTR(xs)) (xs) = 0

Goal: firstn (len(xs) + 1− toNatTR(xs ++ [x])) (xs ++ [x]) = 0
(6.8)

Figure 6.9: Sub-goals generated in the proof of first bits zero. Note that 0 is a bit-vector
constant of the appropriate length (list of falses).

6.5 Results

Figure 6.10 summarizes the results of proving invertibility equivalences for invertibility con-
ditions in the signature Σ0. In the table, Xmeans that the invertibility equivalence was
successfully verified in Coq but not by Niemetz et al. [74], while X means the opposite; XX

2see rev ind in https://coq.inria.fr/library/Coq.Lists.List.html

80

https://coq.inria.fr/library/Coq.Lists.List.html

`[x] = 6= <u >u ≤u ≥u

−x ./ t XX X X X X X

∼x ./ t XX X X X X X

x & s ./ t X X X X X X

x | s ./ t X X X X X X

x<<s ./ t X X X X X X
s<<x ./ t XX X X X X X

x>>s ./ t XX X X X X X

s>>x ./ t XX X X X X X

x>>a s ./ t X X X X X X

s>>a x ./ t XX X X X X X
x+ s ./ t XX X X X X X

Figure 6.10: Proofs of invertibility equivalences in Σ0. ./ is a placeholder for the predicate symbol
indicated by the column headers.

means that the invertibility equivalence was verified using both approaches. Notice that all
invertibility equivalences in this table are verified by at least one of the two approaches. We
successfully proved all invertibility equivalences over = that are expressible in Σ0, including
4 that were not proved by Niemetz et al. [74]. For the rest of the predicates, we focused only
on the 8 invertibility equivalences that were not proved by Niemetz et al. [74], and succeeded
in proving all of them.

Our work thus complements [74] in verifying all invertibility conditions in Σ0 for arbitrary
bit-widths, by proving all 12 equivalences that were previously unverified, and corroborating
7 others that were verified by SMT solvers. It also complements [73], which verified all
invertibility conditions in Σ1, but only up to bit-width of 65

81

Chapter 7

Conclusion and Future Work

The increasing pervasiveness of software in our world underscores the need for formal meth-
ods. We need ways to ensure that all the software in our life, whether generated by humans
or AI, behave as we expect them to. Theorem provers have been advancing in efficiency
and expressive power for decades, and since the turn of the century, automatic theorem
provers (ATPs) have been rapidly developing to meet the demand for software verification.
This development has caused them to grow substantially in size and call into question their
own correctness. Parallelly, interactive theorem provers (ITPs) — tools that have stronger
correctness guarantees — have also been growing while prioritizing the preservation of their
guarantees over growth. Due to this preservation, ITPs still have limited support for au-
tomation. The work done in this thesis makes progress towards the goals of (1) addressing
correctness concerns for ATPs and (2) enhancing automation within ITPs without losing
their correctness guarantees. To these dual ends, we have demonstrated three ATP-ITP
integrations.

The abduce Tactic Our first integration is implemented in SMTCoq — a tool that uses
external SMT solvers (ATPs) in a deductive capacity to prove goals inside the Coq ITP via
the smt tactic. We complement smt with a means to use an external solver abductively.
The result is a Coq tactic called abduce that can call an external SMT solver on a failing
goal so that the solver can ask the Coq user for more information in order to solve the
goal. We evaluate the abduce tactic on three sets of benchmarks to show that when used
in conjunction with the smt tactic, it can increase the number goals discharged by external
automated tools without compromising the correctness of the ITP results. A previously
failing goal is converted to a provable one by (i) calling the abduce tactic to get an abduct
from the SMT solver, (ii) searching for (a generalization of) the abduct inside the Coq
environment using Coq’s Search command, (iii) locally asserting a matching lemma (if
found), and finally (iv) calling the smt tactic on this renewed local context. This manual
series of events can be automated using Coq’s automation and tactic programming tools to
save the user time and effort. We leave the implementation of such an automated tactic for
future work.

In current integrations, it is common for ITPs to treat external solvers as push-button
provers that either succeed or fail in proving the goal. Since ATPs often operate on a

82

restricted set of the ITP’s language, the ATP is bound to fail often. With the abduce

tactic, we propose a more interactive approach to split this success-failure binary. Failing
full automation, an ATP can still be useful to the ITP user. In this case, we leverage the
SMT solver’s ability to perform abductive reasoning to convert a typically failing instance
into one where the external solver can be of assistance.

The alethe Checker Second, we add to SMTCoq a proof checker called Alethe Checker,
for the alethe proof certificate format. This allows SMTCoq to check a large class of proofs
from the cvc5 and veriT SMT solvers. Previously, SMTCoq supported CVC4 with LFSC
proofs and an older version of veriT. We support alethe proofs by preprocessing them into
proofs in SMTCoq’s internal proof certificate format. Since alethe (when considered as a set
of its proof rules) is a superset of the internal format, our reduction supports more low-level
proof steps and also offers a higher coverage of rewrite rules produced by SMT solvers, many
of which were previously left unjustified. To deal with the sizable number of distinct rewrite
rules, our implementation employs various methods of elaboration — checking a rule that
isn’t supported by reconstructing it in terms of other rules that are supported. We evalu-
ate these claims on a benchmark set generated from calls to external SMT solvers from an
ITP. Our implementation is restricted to propositional logic and the (quantifier-free) the-
ory of equality over uninterpreted functions (EUF). However, the implementation provides
all the general infrastructure necessary to extend the integration to other theories used in
SMT. Ultimately, we hope to have support for alethe in at least all theories that SMTCoq
currently supports cumulatively over its multiple solvers: propositional logic, equality over
uninterpreted functions (EUF), linear integer arithmetic (LIA), arrays with extensionality
(AX), bit-vector arithmetic (BV), and universal quantifier instantiation. Such an integra-
tion would allow SMTCoq to automatically prove a wide range of verification goals in Coq
using the latest versions of the state-of-the-art SMT solvers cvc5 and veriT. The work done
in this thesis will serve as a foundation for this large-scale project. The efforts put into
Alethe Checker serve as a useful use-case in proof engineering in a programming language.
Thanks to the soundness guarantees of SMTCoq’s checker, we are able to perform the heavy-
lifting of proof checking in the OCaml programming language, rather than within Coq. The
formalization of the transformations also offer an insight into the intricacies of fully checking
the proofs produced by SMT solvers. To understand the complexities of the operation of
the modern SMT solver, one must look at the fringes of its proof rules. The corner cases
supported in our transformations, and the differences in rewrites produced and exceptions
made by just two of the supported SMT solvers suggest that even a uniform proof format
leaves room for plenty of idiosyncrasies that a particular solver can impose on its proofs.
All of these must be accounted for while building a tool to check proofs in a proof format
such as alethe. Owing to the variety of rewrite rules produced by an SMT solver, we will
explore a change in strategy for supporting rewrite rules in Alethe Checker moving forward.
Instead of encoding each possible rewrite in SMTCoq’s OCaml codebase, we propose using
an external tool — an elaborator — that can convert a derivation of an unsupported lemma
into a derivation using rules supported by Alethe Checker. In Section 5.4.1, we discuss

83

two approaches to implement a checker for alethe and our justification for choosing the ap-
proach that requires preprocessing proof certificates. Thus, the work done in implementing
Alethe Checker leaves SMTCoq’s internal checker unchanged. Moving forward, we want
to give equal consideration to the second possible method for supporting alethe rules — by
extending the checker. The proposed modification to the resolution checker in Section 5.4.2.6
is a good start. Proof assistants are foundational to the project of guaranteeing software
correctness. However, proving non-trivial software correct (in an ITP) is notoriously diffi-
cult. Tools like SMTCoq aim to assist in this undertaking by providing external help to the
user. In order to leverage the capabilities of all the advancements in the world of ATPs,
ITPs need to be integrated with multiple solvers, for multiple theories. Alethe Checker is
a step in this direction.

Coq Proofs of Invertibility Conditions Third, we explore recursively applying tradi-
tional formal methods to formal methods tools. Proving the correctness of an ATP within
an ITP promises to be a massive project for a modern ATP. Instead, we verify a modular
element of an ATP. Specifically, we verify the correctness of invertibility conditions, formulas
used by the quantifier module of the cvc5 SMT solver over the theory of bit-vectors. The
verification of these 166 equivalences was previously done using ATPs for a number of spe-
cial cases. We complement that verification effort by providing proofs in Coq in the most
general case for 19 equivalences. A total of 40 equivalences remain unverified in at least
one direction. These could be verified by relying on the bit-vector library that we use to
represent these proofs (after its extension with bit-vector multiplication and division), and
on the lemmas that we have generated through our proof effort. Verification of ATPs within
ITPs are uncommon owing to the size of modern ATPs. Once again, our work suggests that
the success-failure binary can be extended. Being able to divide an SMT solver into modular
parts and verifying some of these parts within an ITP are positive steps towards increasing
its reliability.

The implementations discussed in this document are specific to the Coq ITP and the
cvc5 and veriT SMT solvers, but all three contributions are general enough to be applied to
integrations between other similar ATPs and ITPs. All three of the contributions presented
in this thesis, though distinct from one other, play a small part in automating interactive
theorem provers and certifying automated theorem provers, with the goal of offering faster,
expressive, and trustworthy verification tools for software.

84

Appendix A

alethe Rewrite Encodings

Here, we present the proof of the left-to-right and right-to-left implications of 36 rewrite
rules in alethe (5 from andsimp, 5 from orsimp, 2 from notsimp, 8 from impsimp, 8 from
eqvsimp, 7 from boolsimp, and 1 from eqsimp) used by Tr. The rewrites are specified in
Section 5.3.1 and Tr in Section 5.4.2.4. We omit 17 rewrites — 1 from notsimp (handled
instead by Tn), 2 from eqsimp (handled by the Micromega solver), all 12 from itesimp, and
4 from connective def (both because they contain rewrites over the xor and the if-then-else
operators that we don’t consider in our signature).

As shown in Section 5.3.1, each rewrite rule has a general equivalence form, and is
specified by multiple possible transformations. Thus, for each rewrite rule application, Tr
distinguishes the transformation by pattern-matching on the equivalence. The order in
which the proofs of each transformation are presented in this section matches the order
from the pattern-matching code rather than that of the alethe specification (which is what
Section 5.3.1 follows, repeated here for convenience). Some notations and representations are
simplified by SMTCoq’s representation of SMT formulas. First, it implicitly removes double
negations so ¬¬x is indistinguishable from x for SMTCoq. We use them interchangeably as
a consequence. The clause representation of SMTCoq automatically removes duplicates and
the proofs below often treat this duplicate-removal step as implicit. Note that duplicates
are only automatically removed from clauses and not from disjunctions. For these, we use a
function called to unique, that given a collection of terms, eliminates duplicates in them:

to unique(x1, . . . xn) = x1, . . . , xn′

SMTCoq’s resolution rule, as specified by case 3 in Section 5.2.1, is able to handle arbitrarily
long resolution chains efficiently. Many of the proofs presented in the following take advan-
tage of this feature; however, the chains shown here are sometimes split up due to space
constraints.

A.1 Rewrites Over Conjunctions: andsimp

The andsimp rule specifies possible rewrites over conjunction terms.

85

andsimp
(ϕ1 ∧ · · · ∧ ϕn) = ψ

where the possible transformations are:

� > ∧ · · · ∧ > = >

� x1 ∧ · · · ∧ xn = x1 ∧ · · · ∧ xn′ where the RHS has all > literals removed.

� x1 ∧ · · · ∧ xn = x1 ∧ · · · ∧ xn′ where the RHS has all repeated literals removed.

� x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn = ⊥

� x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xn = ⊥ where xi = ¬xj

and the proofs for each transformation are:

1. x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn = ⊥

LTR Proof:

assume
x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn

andp
x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn,⊥

res
⊥

RTL Proof:

assume
⊥

weaken
⊥, x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn

false
¬⊥

res
x1 ∧ · · · ∧ ⊥ ∧ · · · ∧ xn

2. x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xn = ⊥ where xi = ¬xj

LTR Proof:

(1) derives xj:

assume
x1 ∧ · · · ∧ xj ∧ · · · ∧ xj ∧ · · · ∧ xn

andp
x1 ∧ · · · ∧ ¬xj ∧ · · · ∧ xj ∧ · · · ∧ xn, xj

res
xj (1)

(2) derives ¬xj:

assume
x1 ∧ · · · ∧ ¬xj ∧ · · · ∧ xj ∧ · · · ∧ xn

andp
x1 ∧ · · · ∧ ¬xj ∧ · · · ∧ xj ∧ · · · ∧ xn,¬xj

res
¬xj (2)

(3) derives ¬x,⊥:

86

(2)¬xj
impn1

xj → ⊥, xj
res

xj → ⊥
impp

¬(xj → ⊥),¬xj,⊥
res

¬xj,⊥ (3)

and the final proof is:

(1)
xj

(3)
¬xj,⊥

res
⊥

RTL Proof:

assume
⊥

weaken
⊥, x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xn

false
¬⊥

res
x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xn

3. > ∧ · · · ∧ > = >

LTR Proof:

true
>

RTL Proof:

andn
> ∧ · · · ∧ >,¬>

assume
>

res
> ∧ · · · ∧ >

Note that andn would project all conjuncts from the conjunction (>∧· · ·∧>,¬>, . . . ,¬>)
but since SMTCoq automatically removes any repeated literals from a clause, they
don’t appear in the proof.

4. x1 ∧ · · · ∧ > ∧ · · · ∧ xn = x1 ∧ · · · ∧ xn where the RHS has all > literals removed.

LTR Proof:

(1) derives x1 from the conjunct:

assume
x1 ∧ · · · ∧ > ∧ · · · ∧ xn

andp
x1 ∧ · · · ∧ > ∧ · · · ∧ xn, x1

res
x1 (1)

Similarly, (2) to (n) derive x2 to xn respectively. The final proof is:

(1)
x1 · · · (n)

xn
andn

x1 ∧ · · · ∧ xn,¬x1, . . . ,¬xn
res

x1 ∧ · · · ∧ xn
RTL Proof:

87

In the following derivation, to unique(x1, . . . xn) = x1, . . . , xn′ .

(1) derives x1:

assume
x1 ∧ · · · ∧ xn

andp
¬(x1 ∧ · · · ∧ xn), x1

res
x1 (1)

Similarly, (2) to (n′) derive x2 to xn′ respectively. The final proof is:

(1)
x1 · · · (n′)

xn′
true

>
andn

x1 ∧ · · · ∧ > ∧ · · · ∧ xn,¬x1, . . . ,>, . . . , xm
res

x1 ∧ · · · ∧ > ∧ · · · ∧ xn
Notice that the andn in the final proof produces x1, . . . ,>, . . . , xm because SMTCoq’s
clause representation automatically removes duplicates, which we need to account for
using the to unique function.

5. x1 ∧ · · · ∧ xn = x1 ∧ · · · ∧ xn′ where the RHS has all repeated literals removed.

In the following derivations, to unique(x1, . . . xn) = x1, . . . , xn′ .

LTR Proof:

(1) derives x1:

assume
x1 ∧ · · · ∧ xn

andp
¬(x1 ∧ · · · ∧ xn), x1

res
x1 (1)

Similarly, (2) to (n′) derive x2 to xn′ , respectively. The final proof is:

(1)
x1 · · · (n′)

xn′
andn

x1 ∧ · · · ∧ xn′ ,¬x1, . . . ,¬xn′
res

x1 ∧ · · · ∧ xn′

RTL Proof:

(1) derives x1:

assume
x1 ∧ · · · ∧ xn′

andp
¬(x1 ∧ · · · ∧ xn′), x1

res
x1 (1)

Similarly, (2) to (n′) derive x2 to xn′ , respectively. The final proof is:

(1)
x1 · · · (n′)

xn′
andn

x1 ∧ · · · ∧ xn,¬x1, . . . ,¬xn′
res

x1 ∧ · · · ∧ xn

88

A.2 Rewrites Over Disjunctions: orsimp

orsimp
(ϕ1 ∨ · · · ∨ ϕn) = ψ

where the possible transformations are:

� ⊥ ∨ · · · ∨ ⊥ = ⊥

� x1 ∨ · · · ∨ xn = x1 ∨ · · · ∨ xn′ where the RHS has all ⊥ literals removed.

� x1 ∨ · · · ∨ xn = x1 ∨ · · · ∨ xn′ where the RHS has all repeated literals removed.

� x1 ∨ · · · ∨ > ∨ · · · ∨ xn = >

� x1 ∨ · · · ∨ xi ∨ · · · ∨ xj ∨ · · · ∨ xn = > where xi = ¬xj

and the proofs for each transformation are:

1. x1 ∨ · · · ∨ > ∨ · · · ∨ xn = >

LTR Proof:

true
>

RTL Proof:

assume
>

orn
x1 ∨ · · · ∨ > ∨ · · · ∨ xn,¬>

res
x1 ∨ · · · ∨ > ∨ · · · ∨ xn

2. x1 ∨ · · · ∨ xi ∨ · · · ∨ xj ∨ · · · ∨ xn = > where xi = ¬xj

LTR Proof:

true
>

RTL Proof:

orn
x1 ∨ · · · ∨ ¬xj ∨ · · · ∨ xj ∨ · · · ∨ xn,¬xj

orn
x1 ∨ · · · ∨ ¬xj ∨ · · · ∨ xj ∨ · · · ∨ xn,¬¬xj

res
x1 ∨ · · · ∨ ¬xj ∨ · · · ∨ xj ∨ · · · ∨ xn

3. ⊥ ∨ · · · ∨ ⊥ = ⊥

LTR Proof:

assume
⊥ ∨ · · · ∨ ⊥

orn
¬(⊥ ∨ · · · ∨ ⊥),⊥

res
⊥

89

RTL Proof:

assume
⊥

orn
⊥ ∨ · · · ∨ ⊥,¬⊥

res
⊥ ∨ · · · ∨ ⊥

4. x1 ∨ · · · ∨ ⊥ ∨ · · · ∨ xn = x1 ∨ · · · ∨ xn where the RHS has all ⊥ literals removed.

In the following derivations, to unique(x1, . . . xn) = x1, . . . , xn′ .

LTR Proof:

(1) derives x1, . . . , xn:

assume
x1 ∨ · · · ∨ ⊥ ∨ · · · ∨ xn

orp
¬(x1 ∨ · · · ∨ ⊥ ∨ · · · ∨ xn), x1, . . . , xn,⊥

false
¬⊥

res
x1, . . . , xn (1)

The final proof is:

(1)
x1, . . . , xn

orn
x1 ∨ · · · ∨ xn,¬x1 · · · orn

x1 ∨ · · · ∨ xn,¬xn′
res

x1 ∨ · · · ∨ xn
RTL Proof:

(1) derives x1, . . . , xn′ :

assume
x1 ∨ · · · ∨ xn

orp
¬(x1 ∨ · · · ∨ xn), x1, . . . , xn′

res
x1, . . . , xn′ (1)

The final proof is:

(1)
x1, . . . , xn′

orn
x1 ∨ · · · ∨ ⊥ ∨ · · · ∨ xn,¬x1 · · ·

orn
x1 ∨ · · · ∨ ⊥ ∨ · · · ∨ xn,¬xn′

res
x1 ∨ · · · ∨ ⊥ ∨ · · · ∨ xn

5. x1 ∨ · · · ∨ xn = x1 ∨ · · · ∨ xn′ where the RHS has all repeated literals removed.

In the following derivations, to unique(x1, . . . xn) = x1, . . . , xn′ .

LTR Proof:

(1) derives x1, . . . , xn′ , where the SMTCoq clause notation guarantees no duplicate
literals are projected from the disjunction by the orn rule.

90

assume
x1 ∨ · · · ∨ xn

orp
x1 ∨ · · · ∨ xn, x1, . . . , xn′

res
x1, . . . , xn′ (1)

The final proof is:

(1)
x1, . . . , xn′

orn
x1 ∨ · · · ∨ xn′ ,¬x1 · · · orn

x1 ∨ · · · ∨ xn′ ,¬xn′
res

x1 ∨ · · · ∨ xn′

RTL Proof:

(1) derives x1, . . . , xn′ :

assume
x1, . . . , xn′

orp
¬(x1, . . . , xn′), x1, . . . , xn′

res
x1, . . . , xn′ (1)

The final proof is:

(1)
x1, . . . , xn′

orn
x1 ∨ · · · ∨ xn,¬x1 · · · orn

x1 ∨ · · · ∨ xn,¬xn′
res

x1 ∨ · · · ∨ xn

A.3 Rewrites Over Negations: notsimp

notsimp
ϕ = ψ

where the possible transformations are:

� ¬(¬x) = x

� ¬⊥ = >

� ¬> = ⊥

and the proofs for each transformation are:

1. ¬⊥ = >

LTR Proof:

true
>

RTL Proof:

false
¬⊥

2. ¬> = ⊥

91

LTR Proof:

assume
¬>

impn1
> → ⊥,>

res
> → ⊥

imp
¬>,⊥

true
>

res
⊥

RTL Proof:

assume
⊥

weaken
⊥,¬>

false
¬⊥

res
¬>

3. ¬(¬x) = x

This proof is simple enough, that we don’t need to separate the LTR and RTL proofs.
The following is the proof of the entire equivalence that we use as our encoding for this
variant of the notsimp rule.

eqvn1¬¬x = x,¬¬¬x,¬x eqvn2¬¬x = x,¬¬x, x
res¬¬x = x

Although negations are mentioned, recall from Section 5.4.2.2 that they will be implic-
itly simplified by SMTCoq.

A.4 Rewrites Over Implications: impsimp

impsimp
ϕ1 → ϕ2 = ψ

where the possible transformations are:

� ¬x1 → ¬x2 = x2 → x1

� ⊥ → x = >

� x→ > = >

� > → x = x

� x→ ⊥ = ¬x

� x→ x = >

� ¬x→ x = x

� x→ ¬x = ¬x

92

and the proofs for each transformation are:

1. ¬x1 → ¬x2 = x2 → x1

LTR Proof:

(1) derives ¬¬x1, x2:

assume¬x1 → ¬x2
impp

¬(¬x1 → ¬x2),¬¬x1,¬x2
res

¬¬x1, x2 (1)

The final proof is:

(1)¬¬x1, x2
impn1

x2 → x1, x2
impn2

x2 → x1,¬x1
res

x2 → x1

RTL Proof:

(1) derives ¬x2, x1:

assume
x2 → x1

impp
¬(x2 → x1),¬x2, x1

res
¬x2, x1 (1)

The final proof is:

(1)¬x2, x1
impn1¬x1 → ¬x2,¬x1

impn2¬x1 → ¬x2,¬¬x2
res¬x1 → ¬x2

2. ⊥ → x = >

LTR Proof:

true
>

RTL Proof:

impn1
⊥ → x,⊥

false
¬⊥

res
⊥ → x

3. x→ > = >

LTR Proof:

true
>

93

RTL Proof:

assume
>

impn2
x→ >,¬>

res
x→ >

4. > → x = x

LTR Proof:

assume
> → x

impp
¬(> → x),¬>, x

res
¬>, x

true
>

res
x

RTL Proof:

assume
x

impn2
> → x,¬x

res
> → x

5. x→ ⊥ = ¬x

LTR Proof:

assume
x→ ⊥

impp
¬(x→ ⊥),¬x,⊥

res
¬x,⊥

false
¬⊥

res¬x
RTL Proof:

assume¬x
impn1

x→ ⊥, x
res

x→ ⊥
6. x→ x = >

LTR Proof:

true
>

RTL Proof:

impn1
x→ x, x

impn2
x→ x,¬x

res
x→ x

7. ¬x→ x = x

94

LTR Proof:

assume¬x→ x
impp

¬(¬x→ x),¬¬x, x
res

x

Note that SMTCoq implicitly simplifies the double negation and removes the resultant
duplicate x in the impp derivation.

RTL Proof:

assume
x

impn1¬x→ x,¬x
res¬x→ x

8. x→ ¬x = ¬x

LTR Proof:

assume
x→ ¬x

impp
¬(x→ ¬x),¬x,¬x

res¬x
where the duplicate in the impp is removed by SMTCoq.

RTL Proof:

assume¬x impn1
x→ ¬x, x

res
x→ ¬x

A.5 Rewrites Over Equivalences: eqvsimp

eqvsimp
(ϕ1 = ϕ2) = ψ

where the possible transformations are:

� (¬x1 = ¬x2) = (x1 = x2)

� (x = x) = >

� (x = ¬x) = ⊥

� (¬x = x) = ⊥

� (> = x) = x

� (x = >) = x

� (⊥ = x) = ¬x

95

� (x = ⊥) = ¬x

and the proofs for each transformation are:

1. (¬x1 = ¬x2) = (x1 = x2)

LTR Proof:

Derivation (1):

eqvn1
x1 = x2,¬x1,¬x2

eqvp1
¬(¬x1 = ¬x2),¬x1,¬¬x2

res
x1 = x2,¬x1,¬(¬x1 = ¬x2) (1)

Derivation (2):

eqvn2
x1 = x2, x1, x2

eqvp2
¬(¬x1 = ¬x2),¬¬x1,¬x2

res
x1 = x2, x1,¬(¬x1 = ¬x2) (2)

The final proof:

(1)
x1 = x2,¬x1,¬(¬x1 = ¬x2)

(2)
x1 = x2, x1,¬(¬x1 = ¬x2)

assume¬x1 = ¬x2
res

x1 = x2
RTL Proof:

Derivation (1):

eqvn1¬x1 = ¬x2,¬¬x1,¬¬x2
eqvp1

¬(x1 = x2), x1,¬x2
res

¬x1 = ¬x2, x1,¬(x1 = x2) (1)

Derivation (2):

eqvn2¬x1 = ¬x2,¬x1,¬x2
eqvp2

¬(x1 = x2),¬x1, x2
res

¬x1 = ¬x1,¬x1,¬(x1 = x2) (2)

The final proof:

(1)
¬x1 = ¬x2, x1,¬(x1 = x2)

(2)
¬x1 = ¬x1,¬x1,¬(x1 = x2)

assume
x1 = x2

res¬x1 = ¬x2
2. (x = x) = >

LTR Proof:

true
>

96

RTL Proof:

eqvn1
x = x,¬x,¬x eqvn2

x = x, x, x
res

x = x

3. (x = ¬x) = ⊥

LTR Proof:

Derivation (1):

eqvp2
¬(x = ¬x),¬x,¬x

impn1
x→ ⊥, x

impp
¬(x→ ⊥),¬x,⊥

res
¬(x = ¬x),¬x,⊥ (1)

The final proof:

(1)
¬(x = ¬x),¬x,⊥

eqvp1
¬(x = ¬x), x,¬¬x assume

x = ¬x
res

⊥
This proof can be simplified by deriving ⊥ by directly resolving the 5 premises, but is
split into 2 resolutions due to space constraints.

RTL Proof:

assume
⊥

weaken
⊥, x = ¬x

false
¬⊥

res
x = ¬x

4. (¬x = x) = ⊥

LTR Proof:

Derivation (1):

eqvp1
¬(¬x = x),¬x,¬x

impn1
x→ ⊥, x

impp
¬(x→ ⊥),¬x,⊥

res
¬(¬x = x),¬x,⊥ (1)

The final proof:

(1)
¬(¬x = x),¬x,⊥

eqvp2
¬(¬x = x),¬¬x, x assume

x = ¬x
res

⊥
RTL Proof:

97

assume
⊥

weaken
⊥,¬x = x

false
¬⊥

res¬x = x

5. (> = x) = x

LTR Proof:

assume
> = x

eqvp2
¬(> = x),¬>, x

true
>

res
x

RTL Proof:

assume
x

eqvn1
> = x,¬>,¬x

true
>

res
> = x

6. (x = >) = x

LTR Proof:

assume
x = >

eqvp1
¬(x = >), x,¬>

true
>

res
x

RTL Proof:

assume
x

eqvn1
x = >,¬x,¬>

true
>

res
x = >

7. (⊥ = x) = ¬x

LTR Proof:

assume
⊥ = x

eqvp1
¬(⊥ = x),⊥,¬x

false
¬⊥

res¬x
RTL Proof:

assume¬x
eqvn2

⊥ = x,⊥, x
false

¬⊥
res

⊥ = x

8. (x = ⊥) = ¬x

LTR Proof:

assume¬x
eqvn2

x = ⊥, x,⊥
false

¬⊥
res

x = ⊥

98

RTL Proof:

assume¬x
eqvn2

x = ⊥, x,⊥
false

¬⊥
res

x = ⊥

A.6 Other Boolean Rewrites: boolsimp

boolsimp
ϕ = ψ

where the possible transformations are:

� ¬(x1 → x2) = (x1 ∧ ¬x2)

� ¬(x1 ∨ x2) = (¬x1 ∧ ¬x2)

� ¬(x1 ∧ x2) = (¬x1 ∨ ¬x2)

� (x1 → (x2 → x3)) = (x1 ∧ x2)→ x3

� ((x1 → x2)→ x2) = (x1 ∨ x2)

� (x1 ∧ (x1 → x2)) = (x1 ∧ x2)

� ((x1 → x2) ∧ x1) = (x1 ∧ x2)

and the proofs for each transformation are:

1. ¬(x1 → x2) = (x1 ∧ ¬x2)

LTR Proof:

(1) derives x1:

assume
¬(x1 → x2)

impn1
x1 → x2, x1

res
x1 (1)

(2) derives ¬x2:

assume
¬(x1 → x2)

impn2
x1 → x2,¬x2

res
¬x2 (2)

The final proof:

andn
x1 ∧ ¬x2,¬x1,¬¬x2

(1)
x1

(2)¬x2
res

x1 ∧ ¬x2

99

RTL Proof:

(1) derives x1:

x1 ∧ ¬x2
andp

¬(x1 ∧ ¬x2), x1
res

x1 (1)

(2) derives ¬x2:

x1 ∧ ¬x2
andp

¬(x1 ∧ ¬x2),¬x2
res

¬x2 (2)

The final proof:

impp
¬(x1 → x2),¬x1, x2

(1)
x1

(2)¬x2
res

¬(x1 → x2)

2. ¬(x1 ∨ x2) = (¬x1 ∧ ¬x2)

LTR Proof:

(1) derives ¬x1:

assume¬x1 ∧ ¬x2
orn

x1 ∨ x2,¬x1
res

¬x1 (1)

(2) derives ¬x2:

assume¬x1 ∧ ¬x2
orn

x1 ∨ x2,¬x2
res

¬x2 (2)

The final proof:

andn¬x1 ∧ ¬x2,¬¬x1,¬¬x2
(1)¬x1

(2)¬x2
res¬x1 ∧ ¬x2

RTL Proof:

(1) derives ¬x1:

assume¬x1 ∧ ¬x2
andp

¬(¬x1 ∧ ¬x2),¬x1
res

¬x1 (1)

100

(2) derives ¬x2:

assume¬x1 ∧ ¬x2
andp

¬(¬x1 ∧ ¬x2),¬x2
res

¬x2 (2)

The final proof:

orn
¬(x1 ∨ x2), x1, x2

(1)¬x1
(2)¬x2
res

¬(x1 ∨ x2)

3. ¬(x1 ∧ x2) = (¬x1 ∨ ¬x2)

LTR Proof:

A single resolution chain is split up as follows. Derivation (1):

andn
x1 ∧ x2,¬x1,¬x2

assume
¬(x1 ∧ x2)

res
¬x1,¬x2 (1)

The final proof:

(1)¬x1,¬x2
orn¬x1 ∨ ¬x2,¬¬x1

orn¬x1 ∨ ¬x2,¬¬x2
res¬x1 ∨ ¬x2

RTL Proof:

A single resolution chain is split up as follows. Derivation (1):

orp
¬(¬x1 ∨ ¬x2),¬x1,¬x2

assume¬x1 ∨ ¬x2
res

¬x1,¬x2 (1)

The final proof:

(1)¬x1,¬x2
andp

¬(x1 ∧ x2), x1
andp

¬(x1 ∧ x2), x2
res

¬(x1 ∧ x2)

4. (x1 → (x2 → x3)) = (x1 ∧ x2)→ x3

LTR Proof:

A single resolution chain is split up as follows. Derivation (1):

101

impp
¬(x1 → (x2 → x3)),¬x1, x2 → x3

assume
x1 → (x2 → x3)

res
¬x1, x2 → x3 (1)

Derivation (2):

(1)¬x1, x2 → x3
impp

¬(x2 → x3),¬x2, x3
andp

¬(x1 ∧ x2), x1
res

¬x2, x3,¬(x1 ∧ x2) (2)

Derivation (3):

(2)
¬x2, x3,¬(x1 ∧ x2)

andp
¬(x1 ∧ x2), x2

impn2
(x1 ∧ x2)→ x3,¬x3

res
¬(x1 ∧ x2), (x1 ∧ x2)→ x3 (3)

The final proof:

(3)
¬(x1 ∧ x2), (x1 ∧ x2)→ x3

impn1
(x1 ∧ x2)→ x3, x1 ∧ x2

res
(x1 ∧ x2)→ x3

RTL Proof:

A single resolution chain is split up as follows. Derivation (1):

impp
¬((x1 ∧ x2)→ x3),¬(x1 ∧ x2), x3

assume
(x1 ∧ x2)→ x3

res
¬(x1 ∧ x2), x3 (1)

Derivation (2):

(1)
¬(x1 ∧ x2), x3

andn
x1 ∧ x2,¬x1,¬x2

impn2
x2 → x3,¬x3

res
¬x1,¬x2, x2 → x3 (2)

Derivation (3):

(2)¬x1,¬x2, x2 → x3
impn1

x1 → (x2 → x3), x1
impn1

x2 → x3, x2
res

x2 → x3, x1 → (x2 → x3) (3)

The final proof:

(3)
x2 → x3, x1 → (x2 → x3)

impn2
x1 → (x2 → x3),¬(x2 → x3)

res
x1 → (x2 → x3)

5. ((x1 → x2)→ x2) = (x1 ∨ x2)

LTR Proof:

102

A single resolution chain is split up as follows. Derivation (1):

assume
(x1 → x2)→ x2

impp
¬((x1 → x2)→ x2),¬(x1 → x2), x2

res
¬(x1 → x2), x2 (1)

The final proof:

(1)
¬(x1 → x2), x2

impn1
x1 → x2, x1

orn
x1 ∨ x2,¬x1

orn
x1 ∨ x2,¬x2

res
x1 ∨ x2

RTL Proof:

A single resolution chain is split up as follows. Derivation (1):

assume
x1 ∨ x2

orp
¬(x1 ∨ x2), x1, x2

impp
¬(x1 → x2),¬x1, x2

res
x2,¬(x1 → x2) (1)

The final proof:

(1)
x2,¬(x1 → x2)

impn2
(x1 → x2)→ x2,¬x2

impn1
(x1 → x2)→ x2, x1 → x2

res
(x1 → x2)→ x2

6. (x1 ∧ (x1 → x2)) = (x1 ∧ x2)

LTR Proof:

A single resolution chain is split up as follows. Derivation (1):

andp
¬(x1 ∧ (x1 → x2)), x1 → x2

impp
¬(x1 → x2),¬x1, x2

andn
x1 ∧ x2,¬x1,¬x2

res
¬(x1 ∧ (x1 → x2)),¬x1, x1 ∧ x2 (1)

Derivation (2):

(1)
¬(x1 ∧ (x1 → x2)),¬x1, x1 ∧ x2

andp
¬(x1 ∧ (x1 → x2)), x1

res
¬(x1 ∧ (x1 → x2)), x1 ∧ x2 (2)

The final proof:

(2)
¬(x1 ∧ (x1 → x2)), x1 ∧ x2

assume
x1 ∧ (x1 → x2)

res
x1 ∧ x2

RTL Proof:

103

A single resolution chain is split up as follows. Derivation (1):

andn
x1 ∧ (x1 → x2),¬x1,¬(x1 → x2)

impn2
x1 → x2,¬x2

res
x1 ∧ (x1 → x2),¬x1,¬x2 (1)

Derivation (2):

(1)
x1 ∧ (x1 → x2),¬x1,¬x2

andp
¬(x1 ∧ x2), x1

res
x1 ∧ (x1 → x2),¬x2,¬(x1 ∧ x2) (2)

The final proof:

(2)
x1 ∧ (x1 → x2),¬x2,¬(x1 ∧ x2)

andp
¬(x1 ∧ x2), x2

assume
x1 ∧ x2

res
x1 ∧ (x1 → x2)

7. ((x1 → x2) ∧ x1) = (x1 ∧ x2)

LTR Proof:

A single resolution chain is split up as follows. Derivation (1):

andp
¬((x1 → x2) ∧ x1), x1 → x2

impp
¬(x1 → x2),¬x1, x2

res
¬((x1 → x2) ∧ x1),¬x1, x2 (1)

Derivation (2):

(1)
¬((x1 → x2) ∧ x1),¬x1, x2

andn
x1 ∧ x2,¬x1,¬x2

andp
¬((x1 → x2) ∧ x1), x1

res
¬((x1 → x2) ∧ x1), x1 ∧ x2 (2)

The final proof:

(2)
¬((x1 → x2) ∧ x1), x1 ∧ x2

assume
(x1 → x2) ∧ x1

res
x1 ∧ x2

RTL Proof:

A single resolution chain is split up as follows. Derivation (1):

andn
(x1 → x2) ∧ x1,¬(x1 → x2),¬x1

impn2
x1 → x2,¬x2

res
(x1 → x2) ∧ x1,¬x1,¬x2 (1)

Derivation (2):

104

(1)
(x1 → x2) ∧ x1,¬x1,¬x2

andp
¬(x1 ∧ x2), x1

res
(x1 → x2) ∧ x1,¬x2,¬(x1 ∧ x2) (2)

The final proof:

(2)
(x1 → x2) ∧ x1,¬x2,¬(x1 ∧ x2)

andp
¬(x1 ∧ x2), x2

assume
x1 ∧ x2

res
(x1 → x2) ∧ x1

A.7 Rewrites Over Equality: eqsimp

eqsimp
(ϕ1 = ϕ2) = ψ

where the possible transformations are:

� x = x = >

� (x1 = x2) = ⊥ if x1 and x2 are different numeric constants.

� ¬(x = x) = ⊥ if x is a numeric constant.

and the proofs for each transformation are:

1. x = x = >

LTR Proof:

true
>

RTL Proof:

eqrefl
x = x

2. (x1 = x2) = ⊥ if x1 and x2 are different numeric constants.

LTR Proof:

assume
x1 = x2

lia micromega
¬(x1 = x2)

res
〈 〉

weaken
⊥

RTL Proof:

assume
⊥

false
¬⊥

res
〈 〉

weaken
x1 = x2

105

3. ¬(x = x) = ⊥ if x is a numeric constant.

LTR Proof:

assume
¬(x = x)

lia micromega
x = x

res
〈 〉

weaken
⊥

RTL Proof:

assume
⊥

false
¬⊥

res
〈 〉

weaken
x = x

106

Bibliography

[1] The Coq List Library. https://github.com/coq/coq/blob/master/theories/Lists/List.v.

[2] A HOL theory of Euclidean space. In J. Hurd and T. Melham, editors, Theorem Proving
in Higher Order Logics, 18th International Conference, TPHOLs 2005, volume 3603 of
Lecture Notes in Computer Science, Oxford, UK, 2005. Springer-Verlag.

[3] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-Guided Synthesis. In
2013 Formal Methods in Computer-Aided Design, pages 1–8, 2013.

[4] B. Andreotti, H. Lachnitt, and H. Barbosa. Carcara: An Efficient Proof Checker and
Elaborator for SMT Proofs in the Alethe Format. In S. Sankaranarayanan and N. Shary-
gina, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
367–386, Cham, 2023. Springer Nature Switzerland.

[5] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In J. Jouannaud
and Z. Shao, editors, Certified Programs and Proofs - First International Conference,
CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lecture
Notes in Computer Science, pages 135–150. Springer, 2011.

[6] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages 19–99.
Elsevier and MIT Press, 2001.

[7] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[8] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi. A Survey of
Symbolic Execution Techniques. ACM Comput. Surv., 51(3):50:1–50:39, 2018.

[9] H. Barbosa, C. Keller, A. Reynolds, A. Viswanathan, C. Tinelli, and C. W. Bar-
rett. An Interactive SMT Tactic in Coq using Abductive Reasoning. In R. Piskac
and A. Voronkov, editors, LPAR 2023: Proceedings of 24th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Manizales, Colombia,
4-9th June 2023, volume 94 of EPiC Series in Computing, pages 11–22. EasyChair,
2023.

107

[10] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Viswanathan, S. Viteri, Y. Zohar, C. Tinelli, and C. Barrett. Flexible
Proof Production in an Industrial-Strength SMT Solver. In J. Blanchette, L. Kovács,
and D. Pattinson, editors, Automated Reasoning, pages 15–35, Cham, 2022. Springer
International Publishing.

[11] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[12] C. Barrett and C. Tinelli. Satisfiability Modulo Theories. In Handbook of Model Check-
ing., pages 305–343. 2018.

[13] C. Barrett and C. Tinelli. Satisfiability Modulo Theories, pages 305–343. Springer
International Publishing, Cham, 2018.

[14] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, 2011.

[15] C. W. Barrett, I. Shikanian, and C. Tinelli. An Abstract Decision Procedure for a
Theory of Inductive Data Types. J. Satisf. Boolean Model. Comput., 3(1-2):21–46,
2007.

[16] J. Beeren, M. Fernandez, X. Gao, G. Klein, R. Kolanski, J. Lim, C. Lewis, D. Matichuk,
and T. Sewell. Finite Machine Word Library. Archive of Formal Proofs, June 2016.
https://isa-afp.org/entries/Word_Lib.html, Formal proof development.

[17] F. Besson. Fast Reflexive Arithmetic Tactics the Linear Case and Beyond. In T. Al-
tenkirch and C. McBride, editors, Types for Proofs and Programs, pages 48–62, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[18] F. Besson, P. Fontaine, and L. Théry. A Flexible Proof Format for SMT: a Proposal. In
P. Fontaine and A. Stump, editors, PxTP 2011: First International Workshop on Proof
eXchange for Theorem Proving, Wroc law, Poland, August 1, 2011, pages 15–26, 2011.

[19] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT
Solvers. J. Autom. Reason., 51(1):109–128, 2013.

[20] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED.
J. Formaliz. Reason., 9(1):101–148, 2016.

[21] A. Blot, P.-E. Dagand, , and J. Lawall. Bit Sequences and Bit Sets Library.

108

https://isa-afp.org/entries/Word_Lib.html

[22] V. Blot, A. Bousalem, Q. Garchery, and C. Keller. SMTCoq: automatisation expres-
sive et extensible dans Coq. In JFLA 2019 - Journées Francophones des Langages
Applicatifs, Les Rousses, France, Jan. 2019.

[23] V. Blot, D. Cousineau, E. Crance, L. D. de Prisque, C. Keller, A. Mahboubi, and
P. Vial. Compositional Pre-processing for Automated Reasoning in Dependent Type
Theory. In R. Krebbers, D. Traytel, B. Pientka, and S. Zdancewic, editors, Proceedings
of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2023, Boston, MA, USA, January 16-17, 2023, pages 63–77. ACM, 2023.

[24] S. Böhme, A. C. J. Fox, T. Sewell, and T. Weber. Reconstruction of Z3’s Bit-Vector
Proofs in HOL4 and Isabelle/HOL. In J.-P. Jouannaud and Z. Shao, editors, Cer-
tified Programs and Proofs, pages 183–198, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[25] S. Böhme and T. Weber. Fast LCF-Style Proof Reconstruction for Z3. In M. Kauf-
mann and L. C. Paulson, editors, Interactive Theorem Proving, pages 179–194, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[26] J. Bornholt. Program Synthesis Explained. https://homes.cs.washington.edu/

~bornholt/post/synthesis-explained.html, 2015. [Online; accessed 28-August-
2018].

[27] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open,
Trustable and Efficient SMT-Solver. In R. A. Schmidt, editor, Automated Deduction –
CADE-22, pages 151–156, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[28] T. Chajed, H. Chen, A. Chlipala, J. Choi, A. Erbsen, J. Gross, S. Gruetter, F. Kaashoek,
A. Konradi, G. Malecha, D. Oe, M. Vijayaraghavan, N. Zeldovich, and D. Ziegler.
Bedrock Bit Vectors Library.

[29] A. Chlipala and G. C. Necula. Cooperative Integration of an Interactive Proof Assis-
tant and an Automated Prover. In Proceedings of the 6th International Workshop on
Strategies in Automated Deduction, 2006.

[30] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout. Alt-Ergo 2.2. In SMT
Workshop: International Workshop on Satisfiability Modulo Theories, Oxford, United
Kingdom, July 2018.

[31] M. contributors. Programmable proof search - The auto Tactic. https://coq.inria.

fr/doc/V8.18.0/refman/proofs/automatic-tactics/auto.html.

[32] M. contributors. The Coq Standard Library. https://coq.inria.fr/doc/V8.13.0/

stdlib/.

109

https://homes.cs.washington.edu/~bornholt/post/synthesis-explained.html
https://homes.cs.washington.edu/~bornholt/post/synthesis-explained.html
https://coq.inria.fr/doc/V8.18.0/refman/proofs/automatic-tactics/auto.html
https://coq.inria.fr/doc/V8.18.0/refman/proofs/automatic-tactics/auto.html
https://coq.inria.fr/doc/V8.13.0/stdlib/
https://coq.inria.fr/doc/V8.13.0/stdlib/

[33] T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf and
G. Mints, editors, Proceedings of Colog’88, volume 417 of Lecture Notes in Computer
Science. Springer-Verlag, 1990.

[34] S. Cruanes and J. C. Blanchette. Extending Nunchaku to Dependent Type Theory.
Electronic Proceedings in Theoretical Computer Science, 210:3–12, jun 2016.

[35] L. Czajka and C. Kaliszyk. Hammer for Coq: Automation for Dependent Type Theory.
Journal of Automated Reasoning, 61, 06 2018.

[36] N. G. de Bruijn. AUTOMATH, a Language for Mathematics, pages 159–200. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1983.

[37] L. de Moura and N. Bjørner. Efficient E-Matching for SMT Solvers. In F. Pfenning,
editor, Automated Deduction – CADE-21, pages 183–198, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[38] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan and
J. Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[39] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean Theorem
Prover (System Description). In A. P. Felty and A. Middeldorp, editors, Automated
Deduction - CADE-25, pages 378–388, Cham, 2015. Springer International Publishing.

[40] D. Deharbe, P. Fontaine, and B. W. Paleo. Quantifier Inference Rules for SMT proofs.
2011.

[41] D. Delahaye. A Tactic Language for the System Coq. In M. Parigot and A. Voronkov,
editors, Logic for Programming and Automated Reasoning, pages 85–95, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg.

[42] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover for Program
Checking. J. ACM, 52(3):365–473, may 2005.

[43] I. Dillig and T. Dillig. Explain: A Tool for Performing Abductive Inference. In N. Shary-
gina and H. Veith, editors, Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044
of Lecture Notes in Computer Science, pages 684–689. Springer, 2013.

[44] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum Satisfying Assignments for
SMT. In P. Madhusudan and S. A. Seshia, editors, Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
volume 7358 of Lecture Notes in Computer Science, pages 394–409. Springer, 2012.

[45] C. Documentation. Conversion Rules in Coq - Coq Documentation. https://coq.

github.io/doc/master/refman/language/core/conversion.html.

110

https://coq.github.io/doc/master/refman/language/core/conversion.html
https://coq.github.io/doc/master/refman/language/core/conversion.html

[46] J. Duprat. Library coq.bool.bvector.

[47] M. Echenim and N. Peltier. A Superposition Calculus for Abductive Reasoning. J.
Autom. Reason., 57(2):97–134, 2016.

[48] M. Echenim, N. Peltier, and Y. Sellami. A Generic Framework for Implicate Generation
Modulo Theories. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, Automated Rea-
soning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 279–294. Springer, 2018.

[49] M. Echenim, N. Peltier, and S. Tourret. Prime Implicate Generation in Equational
Logic. J. Artif. Intell. Res., 60:827–880, 2017.

[50] B. Ekici, A. Mebsout, C. Tinelli, C. Keller, G. Katz, A. Reynolds, and C. Barrett.
SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In Proceedings of 29th
International Conference on Computer Aided Verification (CAV 2017), volume 10427
of Lecture Notes in Computer Science, pages 126–133. Springer, 2017.

[51] B. Ekici, A. Viswanathan, Y. Zohar, C. Barrett, and C. Tinelli. Verifying Bit-vector In-
vertibility Conditions in Coq (Extended Abstract). Electronic Proceedings in Theoretical
Computer Science, 301:18–26, aug 2019.

[52] B. Ekici, A. Viswanathan, Y. Zohar, C. Tinelli, and C. Barrett. Formal Verification
of Bit-Vector Invertibility Conditions in Coq. In U. Sattler and M. Suda, editors, Fron-
tiers of Combining Systems, pages 41–59, Cham, 2023. Springer Nature Switzerland.

[53] M. Fleury and C. Weidenbach. A Verified SAT Solver Framework including Optimiza-
tion and Partial Valuations. In E. Albert and L. Kovacs, editors, LPAR23. LPAR-23:
23rd International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, volume 73 of EPiC Series in Computing, pages 212–229. EasyChair, 2020.

[54] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground interpolation for the
theory of equality. Logical Methods in Computer Science, 8(1), 2012.

[55] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast
Decision Procedures. In R. Alur and D. A. Peled, editors, Computer Aided Verification,
pages 175–188, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[56] Y. Ge, C. Barrett, and C. Tinelli. Solving Quantified Verification Conditions Using
Satisfiability Modulo Theories. In F. Pfenning, editor, Automated Deduction – CADE-
21, pages 167–182, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[57] Y. Ge and L. M. de Moura. Complete Instantiation for Quantified Formulas in Sat-
isfiabiliby Modulo Theories. In A. Bouajjani and O. Maler, editors, Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 -

111

July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages
306–320. Springer, 2009.

[58] G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq. J.
Formaliz. Reason., 3(2):95–152, 2010.

[59] M. Gordon. From LCF to HOL: A Short History, page 169–185. MIT Press, Cambridge,
MA, USA, 2000.

[60] M. Gordon, R. Milner, C. P. Wadsworth, and P. T. Christopher. Edinburgh LCF: a
mechanized logic of computation. 1978.

[61] A. Gupta and A. L. Fisher. Representation and Symbolic Manipulation of Linearly
Inductive Boolean Functions. In Proceedings of the 1993 IEEE/ACM International
Conference on Computer-aided Design, ICCAD ’93, pages 192–199, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[62] F. Haifani, P. Koopmann, S. Tourret, and C. Weidenbach. Connection-minimal abduc-
tion in EL via translation to FOL. In J. Blanchette, L. Kovács, and D. Pattinson, edi-
tors, Automated Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa,
Israel, August 8-10, 2022, Proceedings, volume 13385 of Lecture Notes in Computer
Science, pages 188–207. Springer, 2022.

[63] J. Harrison. HOL Light: An Overview. In S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, editors, Theorem Proving in Higher Order Logics, pages 60–66, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[64] G. Huet. The Gallina specification language: A case study. In R. Shyamasundar, editor,
Foundations of Software Technology and Theoretical Computer Science, pages 229–240,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[65] J. Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. pages
56–68.

[66] C. Inria and contributors. Library Coq.Zarith.Zorder. https://coq.github.io/doc/

v8.13/stdlib/Coq.ZArith.Zorder.html.

[67] M. Jonáš. Satisfiability of Quantified Bit-Vector Formulas Theory and Practice. PhD
thesis, 2019.

[68] S. Lescuyer. Formalizing and Implementing a Reflexive Tactic for Automated Deduction
in Coq. (Formalisation et developpement d’une tactique reflexive pour la demonstration
automatique en coq). PhD thesis, University of Paris-Sud, Orsay, France, 2011.

[69] D. Loveland, A. Sabharwal, and B. Selman. DPLL: The Core of Modern Satisfiability
Solvers, pages 315–335. Springer International Publishing, Cham, 2016.

112

https://coq.github.io/doc/v8.13/stdlib/Coq.ZArith.Zorder.html
https://coq.github.io/doc/v8.13/stdlib/Coq.ZArith.Zorder.html

[70] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. 1990.

[71] G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Congruence Closure.
J. ACM, 27(2):356–364, apr 1980.

[72] A. Niemetz, M. Preiner, A. Reynolds, C. Barrett, and C. Tinelli. On Solving Quantified
Bit-Vectors using Invertibility Conditions, 2018.

[73] A. Niemetz, M. Preiner, A. Reynolds, C. Barrett, and C. Tinelli. Solving Quantified Bit-
Vectors Using Invertibility Conditions. In Proceedings of 30th International Conference
on Computer Aided Verification (CAV 2018), pages 236–255, 2018.

[74] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. Barrett, and C. Tinelli. Towards Bit-
Width-Independent Proofs in SMT Solvers. In P. Fontaine, editor, Automated Deduction
– CADE 27, pages 366–384, Cham, 2019. Springer International Publishing.

[75] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. W. Barrett, and C. Tinelli. Towards
Satisfiability Modulo Parametric Bit-vectors. J. Autom. Reason., 65(7):1001–1025, 2021.

[76] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[77] U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden, September 2007.

[78] A. Nötzli, H. Barbosa, A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and
C. Tinelli. Reconstructing Fine-Grained Proofs of Rewrites Using a Domain-Specific
Language. In A. Griggio and N. Rungta, editors, 22nd Formal Methods in Computer-
Aided Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, pages 65–74. IEEE,
2022.

[79] C. Paulin-Mohring. Inductive definitions in the system Coq rules and properties. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and Applications, pages
328–345, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[80] C. Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. In B. W.
Paleo and D. Delahaye, editors, All about Proofs, Proofs for All, volume 55 of Studies
in Logic (Mathematical logic and foundations). College Publications, Jan. 2015.

[81] L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer, a
Practical Link Between Automatic and Interactive Theorem Provers. In G. Sutcliffe,
S. Schulz, and E. Ternovska, editors, The 8th International Workshop on the Imple-
mentation of Logics, IWIL 2010, Yogyakarta, Indonesia, October 9, 2011, volume 2 of
EPiC Series in Computing, pages 1–11. EasyChair, 2010.

113

[82] M. Preiner, A. Niemetz, and A. Biere. Counterexample-Guided Model Synthesis. In
A. Legay and T. Margaria, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, volume 10205 of Lecture Notes
in Computer Science, pages 264–280, 2017.

[83] A. Reynolds, H. Barbosa, and P. Fontaine. Revisiting Enumerative Instantiation. In
D. Beyer and M. Huisman, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture
Notes in Computer Science, pages 112–131. Springer, 2018.

[84] A. Reynolds, H. Barbosa, D. Larraz, and C. Tinelli. Scalable Algorithms for Abduction
via Enumerative Syntax-Guided Synthesis. In N. Peltier and V. Sofronie-Stokkermans,
editors, Automated Reasoning - 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in
Computer Science, pages 141–160. Springer, 2020.

[85] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett. Counterexample-
Guided Quantifier Instantiation for Synthesis in SMT. In D. Kroening and C. S. Pasare-
anu, editors, Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture
Notes in Computer Science, pages 198–216. Springer, 2015.

[86] A. Reynolds, C. Tinelli, and L. M. de Moura. Finding conflicting instances of quanti-
fied formulas in SMT. In Formal Methods in Computer-Aided Design, FMCAD 2014,
Lausanne, Switzerland, October 21-24, 2014, pages 195–202. IEEE, 2014.

[87] A. Reynolds, C. Tinelli, A. Goel, S. Krstic, M. Deters, and C. W. Barrett. Quantifier
Instantiation Techniques for Finite Model Finding in SMT. In M. P. Bonacina, editor,
Automated Deduction - CADE-24 - 24th International Conference on Automated De-
duction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture
Notes in Computer Science, pages 377–391. Springer, 2013.

[88] H. Schurr, M. Fleury, H. Barbosa, and P. Fontaine. Alethe: Towards a Generic SMT
Proof Format (extended abstract). In C. Keller and M. Fleury, editors, Proceedings
Seventh Workshop on Proof eXchange for Theorem Proving, PxTP 2021, Pittsburg,
PA, USA, July 11, 2021, volume 336 of EPTCS, pages 49–54, 2021.

[89] H. Schurr, M. Fleury, and M. Desharnais. Reliable Reconstruction of Fine-grained
Proofs in a Proof Assistant. In A. Platzer and G. Sutcliffe, editors, Automated Deduction
- CADE 28 - 28th International Conference on Automated Deduction, Virtual Event,

114

July 12-15, 2021, Proceedings, volume 12699 of Lecture Notes in Computer Science,
pages 450–467. Springer, 2021.

[90] X. Shi, Y. Fu, J. Liu, M. Tsai, B. Wang, and B. Yang. CoqQFBV: A Scalable Certified
SMT Quantifier-Free Bit-Vector Solver. In A. Silva and K. R. M. Leino, editors, Com-
puter Aided Verification - 33rd International Conference, CAV 2021, Virtual Event,
July 20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Computer
Science, pages 149–171. Springer, 2021.

[91] A. Solar-Lezama. The Sketching Approach to Program Synthesis. In Z. Hu, editor,
Programming Languages and Systems, pages 4–13, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[92] M. Sozeau. Equations: A Dependent Pattern-Matching Compiler. In Proceedings of
the 1st International Conference on Interactive Theorem Proving (ITP 2010), pages
419–434, 2010.

[93] S. Spies and Y. Forster. Undecidability of higher-order unification formalised in Coq.
In J. Blanchette and C. Hritcu, editors, Proceedings of the 9th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA,
USA, January 20-21, 2020, pages 143–157. ACM, 2020.

[94] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof checking using
a logical framework. Formal Methods in System Design, 42(1):91–118, 2013.

[95] T. Weber. SAT-based finite model generation for higher-order logic. PhD thesis, Tech-
nical University Munich, Germany, 2008.

[96] K. Yang and J. Deng. Learning to Prove Theorems via Interacting with Proof Assistants.
CoRR, abs/1905.09381, 2019.

115

	Acknowledgements
	Public Abstract
	List of Figures
	Introduction
	Background
	Preliminaries
	SMT Solvers
	Quantifiers
	Proof Certificates

	Resolution Provers
	Interactive Theorem Provers
	SMTCoq
	SMTCoq's Tactics

	Thesis Outline
	The abduce Tactic
	Premise Selection
	Abduction for Premise Suggestion
	The abduce Tactic
	Abduction in cvc5
	Evaluation
	Experimental Setup
	Zorder
	List
	Multiplication over Z
	Conclusion and Future Work

	The alethe Checker
	Proof Certificate Formats
	smtcoq-certif
	smtcoq-certif Proof Rules

	alethe
	alethe Proof Rules

	Coq Checker for alethe
	Correctness of Checking by Transformations
	Transformations
	Ts: Subproof Flattening
	Tn: notnot Elimination
	Tc and Tt: Encoding Conversion Versions of Congruence, Transitivity, and Reflexivity
	Tr: Encoding Rewrites
	Tf: Handling Forall Instantiation
	Ttr: Eliminating Trivial Clauses

	cvc5 Rules and Rewrites

	Evaluation

	Proving Invertibility Conditions
	Theory of Fixed-Size Bit-Vectors
	Invertibility Conditions
	The BVList Library
	BVList Without Extensions
	Extending BVList
	Weak Unsigned Inequalities
	Left and Right Logical Shifts
	Arithmetic Right Shift

	Proving Invertibility Equivalences in Coq
	General Approach
	Detailed Examples

	Results

	Conclusion and Future Work
	alethe Rewrite Encodings
	Rewrites Over Conjunctions: andsimp
	Rewrites Over Disjunctions: orsimp
	Rewrites Over Negations: notsimp
	Rewrites Over Implications: impsimp
	Rewrites Over Equivalences: eqvsimp
	Other Boolean Rewrites: boolsimp
	Rewrites Over Equality: eqsimp

	Bibliography

