
A Collaborative Puzzle Game to Study Situated Dialog

Andrew Danise and Kristina Striegnitz
Union College

Schenectady, NY, USA
danisea@garnet.union.edu, striegnk@union.edu

Abstract

This paper describes a prototype of a two-player collab-
orative 2D puzzle game, designed to elicit task-oriented
situated dialog. In this game players use a text-based
chat to coordinate their actions in pushing a ball through
a maze of obstacles. The game will be used to collect
corpora of human-human interactions in this environ-
ment. The data will be used to study how language with
actions are interleaved and influence each other in sit-
uated dialog. The ultimate goal is to build a computa-
tional model of these behaviors.

Introduction
The development of a natural language processing (NLP)
applications often requires human data. In particular, cor-
pora of human language in the target domain are an essen-
tial resource for designing, training, and evaluating NLP sys-
tems, and task based evaluations where human users interact
with an NLP system give the most realistic assessment of the
system. Both corpus production and task based evaluations
are expensive and time-consuming, with one major factor
being the recruiting of participants.

Recently, a number of projects have used online games
to recruit people to help with the collection and annota-
tion of natural language corpora and the task-based eval-
uation of NLP applications. For example, in the Restau-
rant Game1 (Orkin and Roy 2007) players assume the roles
of a waitress and a customer in a restaurant. The result-
ing corpus of human language and actions in this scenario
was used to automate the construction of a conversational
character that could play one of these roles. Chamberlain,
Poesio, and Kruschwitz (2008) crowd-source the annotation
of anaphoric expressions in texts. Players/annotators in the
game Phrase Detective2 collect points for creating or val-
idating annotations. They receive titles when passing cer-
tain thresholds and can compare themselves to other players
on a leaderboard. The GIVE Challenge3 (Koller et al. 2010;

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://web.media.mit.edu/ jorkin/restaurant
2http://anawiki.essex.ac.uk/phrasedetectives
3Generating Instructions in Virtual Environments; http://give-

challenge.org/research

Striegnitz et al. 2011) invited players to find a trophy in a
virtual environment by following automatically generated
instructions. Players were paired with natural language gen-
eration systems supplied by different research teams and the
collected data was used to evaluate and compare the sys-
tems.

This paper describes a puzzle game in which two players
collaborate to push one or more balls into a goal position.
The players are in two different 2D-environments, but they
can drop blocks into the other environment, which are neces-
sary to direct the ball. Furthermore, there are portals which
allow the balls to pass back and forth between the environ-
ments. The players may or may not be able to see their part-
ner’s environment, but they can communicate using a chat
interface.

With this game we want to expand on the research started
in the GIVE project. As in GIVE, we are interested in the
way humans interleave language and actions when they are
situated in an environment. This is a topic that has recently
started to receive increased attention in the natural language
generation and dialog systems communities, e.g. (Stoia et al.
2006; Garoufi and Koller 2010; Dethlefs, Cuayáhuitl, and
Viethen 2011). By manipulating whether or not the play-
ers can see each other’s environment, we want to compare
the effects of a shared environment with situations in which
the players receive only very indirect information about their
partner’s environment (through the locations at which blocks
are dropped).

In GIVE there are two distinct roles – the instruction
giver, who can send messages to the instruction follower but
not act in the environment, and the instruction follower, who
can act in the environment but not respond by sending mes-
sages. In the game described in this paper, we want to cre-
ate a more balanced scenario in which both players can act
as well as contribute to the chat conversation. Furthermore,
we want both players to sometime be in the role of the in-
struction giver and sometimes in the role of the instruction
follower.

Finally, we want the game to be fun so that people play
multiple levels, return to play again, and tell their friends
about it. The feedback we received from participants in the
GIVE evaluations indicates that while many players appre-
ciated GIVE as a research project, many others players were
disappointed. They came to it expecting a game but then



Figure 1: Sample game screens for players A and B.

discovered that all they had to do was follow instructions.
There were no puzzles to solve for the instruction follower
and no creative way to contribute to the solution of the task.
In fact, a significant number of players quit the game before
finishing, and most of the games that are canceled or lost end
quickly.

The game described in this paper currently exists as a pro-
totype and we are conducting playtests to refine the puzzles
and the environment in order to elicit the kinds of natural
language interactions we are interested in. The next section
describes the game design. We then sketch its implementa-
tion and give examples of the kind of data we are collecting.
We end by outlining our plans for the future.

Game Design
Our goal in designing this game is to elicit problem solving
dialogues between two players who are situated in a virtual
environment. We want both players to equally contribute to
the dialog as well as the problem solving process. The real-

(a) (b)

(c) (d)

Figure 2: Behavior of the ball.

ism of the domain is not important to us at the moment since
we are more interested in the lower-level characteristics of
how people interleave language and actions in situated dia-
log. But, ultimately, we would like to use the data we collect
to inform the design and implementation of a dialog system
that can take the role of one of the players. To this end, we
tried to keep the environment simple so that we will be able
to use automated planning techniques to calculate strategies
for solving the puzzles.

In this two-player game, each player is situated in a maze
created from obstacles and traps of various kinds. While the
players see different mazes, the background image is the
same to provide some shared landmarks. Figure 1 illustrates
what the game interface may look like for each player at
some point in the game4. The red block is player A’s avatar,
the green block player B’s avatar. The purple block is the
ball, which needs to be pushed to the goal represented by the
orange block. The dark gray blocks are teleporters, which
“teleport” the ball into the other player’s environment, and
the brown blocks allow the player to pass through, but block
the ball.

The players can move their avatars using the arrow keys
on their keyboard. When they push the ball, it starts moving
in the direction of the push and only stops when it collides
with an obstacle (see Figure 2(a)). If the ball cannot move in
the direction of the push (e.g. because there is an obstacle),
it (randomly) picks a direction that is free of obstacles to
move to, as illustrated in Figures 2(b) and (c). This behavior
makes sure that the ball only gets trapped if it is surrounded
by walls on three sides (Figure 2(d)).

Pressing the Ctrl-key allows players to place an obstacle
into their partner’s environment at the position that corre-
sponds to the player’s current location. Each player can only
place three blocks on their partner’s screen at a time. When
the fourth block is placed, the block that was placed first is
deleted, as shown in Figure 3.

The players cannot place obstacles into their own environ-
ments, and since obstacles are the only way to stop a ball that

4While the game is fully playable, the interface is still a pro-
totype in which everything is represented by differently colored
blocks.



Figure 3: Each player can place at most three obstacles at
a time. When the fourth obstacle gets placed, the first one
disappears.

is moving, they have to collaborate to control the balls move-
ments. The environments are designed to force the players to
work together and communicate with each other. The play-
ers can use a chat area next to their game environment to
coordinate their strategy and to give instructions on where
obstacles need to be placed.

We are creating three modes of the game by manipulating
whether the players can see their partner’s environment, in
order to study the effect that additional shared information
about the context has on communication. In the first mode,
the players don’t see their partner’s environment (as in Fig-
ure 1), but the locations of the obstacles that get dropped into
their environment give them some hints where their partner
is. In mode two, the players can see a shadow of their part-
ner’s avatar moving around their own environment, so that
they always know where their partner is, but they don’t have
any information about the layout of their partner’s environ-
ment. And in the third mode, the players see their own envi-
ronment and their partner’s side by side.

The game starts out with relatively simple environments,
but gets more complicated as additional kinds of obstacles
and traps and more complex variations of the task get intro-
duced. For example, there may be pits which can swallow
the ball (or player), bouncy obstacles which reflect the ball
when it hits them, moving fireballs which burn and kill the
ball or player, destructible barriers which the partner can ex-
plode by dropping an obstacle onto them, or pairs of portals
which connect different areas of a player’s environment. At
some point in the game, each player is given their own set
of one or more balls. This will allow for some interesting
variations on the task. For example, there may be multiple
goal positions and the players have to navigate their balls to
corresponding goals. Or the balls are numbered (e.g. player
A has balls number 1, 3 and 4 and player B has balls 2 and
5) and the balls have to be push into goals in order. Or the
balls have colors and both players have to move a ball of the
same color to a goal before they can work on the next ball
with a different color.

Implementation
The game is implemented using a client-server architecture
illustrated in Figure 4. The client-server interaction is as fol-
lows:

1. A player requests the game’s webpage. The http server

Figure 4: Structure of the server-client relationship.

sends all game files.
2. The game’s client-server connection is established.
3. The server assigns the client either to a channel containing

only one player or a new channel.
4. Once two clients are in a channel, the server sends the

signal to start to the clients.
5. The server listens and passes on any messages sent be-

tween players.
6. The server logs all movements in the game world and the

communication between the two players.

Since we would like to use this game to collect human-
human conversations and evaluate dialog systems over the
Internet, it should be as easy as possible to run the client.
Therefore, we decided to develop a browser based-game.
Both the client and the server are written in JavaScript.

The client uses Crafty5, a JavaScript and HTML5 game
engine, which facilitates drawing the game area into the
browser window, event management and collision detection.
In the beginning of the project, we explored a number of
JavaScript game engines and settled on Crafty because it
seemed to satisfy our needs, was under active development
and came with many tutorials and good documentation.

The server is built on Node.js6, a server-side JavaScript
framework. In particular, the express module7 is used to cre-
ate an HTTP server, and the in-game client-server commu-
nication is implemented using Socket.IO8.

Sample Data
The game creates a timestamped log containing all chat mes-
sages that the players send to each other, as well as all player
actions (such as dropping a block) and events that happen in
the environment (such as the ball being teleported). In ad-
dition, the game logs the position of the players and other
movable objects every 200 milliseconds. That means, a full
game can be re-played from the logged information.

We now present some excerpts of interactions captured
during playtesting which illustrate the kind of data that our

5http://craftyjs.com
6http://nodejs.org/
7http://expressjs.com/
8http://socket.io



game elicits. Task oriented dialog contributions make up the
majority of the conversations. In particular, players give in-
structions to each other, discuss strategy, and compare their
maps. The following excerpts illustrate these three types of
subdialog.

In Example (1) player B explains to player A where to
drop some blocks. This example also shows some of the
main strategies that players use to identify locations. First,
player B drops a block and describes a location with respect
to that block. At the end, player A describes the ball’s po-
sition using the playing area (“on top of the page”) and an
item in the background image (“above right nostril”) as ref-
erence points. In a fourth strategy that we have observed the
players use the grid pattern implied by the blocks used to
build the walls to describe a location (e.g., “three over and
two up”).
(1) B: and THEN I need the wall of two blocks to the left...

[B drops block at (376,228)]
B: drop blocks BELOW the block I just dropped
B: But only 2
A: how far down?
B: directly below, and then just below that
[A drops block at (372,248)] [A drops block at (372,264)]
B: perfect
[B pushes ball upwards into teleporter at (380, 80)]
B: Tadaaa
A: i see a ball. on top of page all the way to the top but above

right nostril
In Example (2), player B is describing his current plan to

player A.
(2) B: So I need to get the ball into MY teleporter

B: On the nose of the snake god.
B: So you can see it, and then push it into the goal.
B: Does that make sense?
A: yes

Example (3) shows the players noticing a difference in
their maps. This is triggered by player A instructing player
B to drop a block in a location that is not accessible to player
B. In response, player B describes the layout of boundaries
in his map. While task oriented dialog contributions account
for the majority of the chat dialog, players also exchange
chitchat and spend some time coordinating their communi-
cation, as shown at the end of Example (3).
(3) A: so, i’ll place a block and you place a block to the right of

it.
[A drops a block at (104,20)]
B: Ok. *I* have a boundary of blocks extending down from

the top to the bottom right corner of the tomb of the island
king

B: and then across to the dead mans cove
B: That whole area, containing the ruins, is inaccesible to

me.
B: Don;t YOU hate Kris now too?
A: :-)
[A drops a block at (104,20)]
A: slow down, i need to read what you wrote.
B: I type smaller words.

Conclusions and Outlook
This paper has described a collaborative two-player puz-
zle game which we have designed as a tool for collecting

human-human problem-solving dialogs in a situated sce-
nario. We have implemented a prototype and are currently
designing and playtesting more levels. Once we have created
a set of levels of varying difficulty, we will start collecting
human-human interactions, first in the lab at Union College
and then by making it available online.

The motivation for this research is to learn more about
communication in situated environments where language
and actions get interleaved. We plan to use the collected data
to inform the adaptation of existing natural language genera-
tion algorithms to situated dialog. To validate our results, we
plan to implement them in a conversational system that can
take the role of one of the players in this game. The frame-
work described in this paper can then be used to evaluate the
system over the Internet.

References
Chamberlain, J.; Poesio, M.; and Kruschwitz, U. 2008.
Phrase Detectives: A web-based collaborative annotation
game. In Proceedings of the International Conference on
Semantic Systems (I-Semantics08).
Dethlefs, N.; Cuayáhuitl, H.; and Viethen, J. 2011. Optimis-
ing natural language generation decision making for situated
dialogue. In Proceedings of the SIGDIAL 2011 Conference,
78–87.
Garoufi, K., and Koller, A. 2010. Automated planning for
situated natural language generation. In Proceedings of the
48th Annual Meeting of the Association for Computational
Linguistics, 1573–1582.
Koller, A.; Striegnitz, K.; Byron, D.; Cassell, J.; Dale, R.;
Moore, J.; and Oberlander, J. 2010. The First Challenge on
Generating Instructions in Virtual Environments. In Krah-
mer, E., and Theune, M., eds., Empirical Methods in Natu-
ral Language Generation, volume 5790 of LNCS. Springer.
337–361.
Orkin, J., and Roy, D. 2007. The Restaurant Game: Learn-
ing social behavior and language from thousands of players
online. Journal of Game Development 3(1):39–60.
Stoia, L.; Byron, D. K.; Shockley, D.; and Fosler-Lussier, E.
2006. Sentence planning for realtime navigational instruc-
tion. In Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short Pa-
pers, 157–160.
Striegnitz, K.; Denis, A.; Gargett, A.; Garoufi, K.; Koller,
A.; and Theune, M. 2011. Report on the Second Second
Challenge on Generating Instructions in Virtual Environ-
ments (GIVE-2.5). In Proceedings of the Generation Chal-
lenges Session at the 13th European Workshop on Natural
Language Generation, 270–279.


