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Abstract

Presupposition triggers, such as e.g. the, too, another, impose con-
straints on the context they are used in. A violation of these constraints
results in an infelicitous utterance. A natural language generation system
therefore has to reason on the context to check that they are satisfied. We
argue that this kind of contextual reasoning is essentially a model check-
ing task and demonstrate this for a variety of presupposition triggers. To
account for the influence of some background knowledge, we propose to
embed queries to a description logic knowledge base in a first order model
checking algorithm.

1 Introduction

The production of natural language takes place against a certain background
context containing information about the previous discourse, the current situa-
tion, and the knowledge of speaker and hearer. This requires a natural language
generation (NLG) system to reason on this context in order to produce natu-
ral sounding, pragmatically acceptable text (see e.g. Hovy 1988; Danlos 1987;
Appelt 1985; Stone 2000 for work on pragmatics effects in NLG). In particular,
there are certain lexical items that impose restrictions on the context they may
be used in felicitously. So called presupposition triggers, such as the, another or
too, for instance, exhibit this behavior (Levinson 1983). The following examples
illustrated this.

(1) a. There is a rabbit in my vegetable garden. It’s eating all of my carrots.
Another rabbit is digging holes into my flowerbed.

b. 7?7 There is a rabbit in my vegetable garden. It’s eating all of my
carrots. Another mole is digging holes into my flowerbed.

c. There is a rabbit in my vegetable garden. It’s eating all of my carrots.
Another animal is digging holes into my flowerbed.

The expression another rabbit in (1a) e.g. requires — or presupposes — the
existence of a rabbit in the context which is different from the one that’s digging



the holes. Similarly, another mole in (1b) requires the existence of a second mole
in the context. This is not given in the example, which makes the utterance
infelicitous. In (1c), the presupposition of another animal is satisfied, since
there is a rabbit in the context and we know by world knowledge that rabbits
are animals.

In this paper, we will examine the inferences necessary to check the con-
textual constraints associated with presupposing expressions. We argue that
it is essentially a model checking task and show how interactions with world
knowledge as exhibited by (1c) can be captured by embedding queries to a
description logic knowledge base in a first order model checking algorithm.

Plan of the paper. In the following section, we examine the contextual
inferences that an NLG system would have to carry out in generating presuppo-
sition triggers and show how first order model checking can be used to carry out
these inferences as long as all relevant information is specified in the discourse
model. However, it is not always natural to code all of the relevant information
as a semantic model. In Section 3, we therefore present a model checking algo-
rithm that may query a description logic knowledge base on simple properties
of discourse model elements, so that some background knowledge can be taken
into account. Section 4 briefly summarizes some features of model checking
that make it well suited for contextual reasoning in natural language process-
ing and compares the use of description logic for representing the necessary
world knowledge to other possibilities. In Section 5, we describe a generation
architecture which interleaves the generation process with queries to the model
checker and show how presupposition triggers are treated in this architecture.
Finally, in Section 6, we relate our approach to other work on presuppositions
and NLG and point out some issues that we plan to investigate into in the
future.

2 Presuppositions from an NLG Perspective

As we have seen in the introduction, presupposition triggers interact with the
context they are uttered in, as they can only be used felicitously, if the context
satisfies certain constraints.

In this paper, we will assume the context to look as follows: The speaker,
or the generation system, has a model representing the situation which is to
be described. The discourse model is a sub-model of this speaker’s model and
contains the information that has already been communicated in the previous
discourse. The system therefore assumes the discourse model to be shared
between speaker and hearer. As the discourse evolves this shared part of the
speaker’s model grows. At the moment, we simply assume that whenever an
utterance is made its the semantic content is added to the discourse model'.
Furthermore, there may be some additional general knowledge about the world,

!Note, that in this paper, we are looking at intersentential/interutterance anaphora only,
so that taking the discourse model to contain the information conveyed by previous utterances
in the discourse is sufficient. To be able to deal with sentence internal anaphora, the discourse
model would have to be extended with information conveyed by the currently produced ut-
terance as well, but we haven’t worked out the details of this update, yet.



which is also assumed to be shared knowledge. (2) gives an example for such
a context. The models are represented by a (finite) list of individuals and a
(finite) list of facts describing properties of these individuals. Individuals are
taken to be pairwise distinct. For the moment, we will not allow additional
world knowledge, so that we can assume that whatever is not explicitly listed
of an individual is false and that the list of individuals is exhaustive.

(2) speaker’s model ({a,e1,b,es},{sleep(ey), rabbit(a), agent(ei,a), eat(ez),
rabbit(b), agent(eq, b), carrot(c), theme(ez, c)})

discourse model ({a,e;}, {sleep(e1), rabbit(a), agent(e1,a)})
world knowledge {Vz[rabbit(z) — animal(z)]}

The generation task can be summarized as follows: given some commu-
nicative goal G and a context C' the generator must produce a text T which
achieves G in C. Following Stone and Doran (1997) we will assume commu-
nicative goals consisting of a) an instruction of the form describe X, where X
is an eventuality, and b) a collection of facts (from the speaker’s model) that
are to be communicated by the target utterance 7T'.

Thus, an input to our generation system may look like this (we will leave
the speaker’s model implicit, whenever it doesn’t contain any relevant infor-
mation that’s not part of the discourse model or the set of facts that is to be
communicated):

(3) a. Goal: describe e
To Communicate: {sleep(e), agent(e,a)}
Discourse Model: ({a}, {rabbit(a)})

b. Goal: describe e
To Communicate: {sleep(e), agent(e,a), rabbit(a)}
Discourse Model: ({b}, {rabbit(b)})

That means, the communicative goal of the system is to describe a sleeping
event involving a rabbit. In case of Input (3a), this rabbit is one that has been
mentioned before and is therefore an element of the discourse model, while in
the situation described by (3b) the sleeping rabbit is new to the discourse, but
the discourse model contains another rabbit.

In order to describe event e, the system has to describe entity a at some
point during generation. There are various ways of doing so. Among them
are producing the rabbit or another rabbit. However, both of these expressions
trigger presuppositions which place restrictions on the context the respective
expression can be used in. The rabbit presupposes that there must be an entity
u in the discourse model, such that rabbit(u) & u = a, where a is the referent
of the NP, and another rabbit presupposes that there must be an entity u in
the discourse model, such that rabbit(u) & u # a. We will call this entity u the

anchor of the presupposition?.

2This follows van der Sandt’s (1992) account of presuppositions as anaphora. However,



So, in order to satisfy the presuppositional constraints of the and another the
discourse model must satisfy one of the following formulas: 3z[rabbit(z) & = =
a] for the rabbit and Jz[rabbit(x) & z # a] for another rabbit. And this is
exactly the type of query a model checker can answer: given a model M and a
formula ¢, is ¢ true in M?

Applying this to the input given in (3a), the queries that the generator sends
to the model checker are

({a}, {rabbit(a)}) 2 Jz[rabbit(z) & z = a
which is true licensing the production of the rabbit and
({a}, {rabbit(a)}) =2 Jz[rabbit(z) & = # a

which is false preventing the production of another rabbit. For input (3b), on
the other hand, another rabbit is licensed for referring to entity a, while the
rabbit is not generated.

Some expressions pose further constraints on the context. The definite arti-
cle, e.g, requires that the description should uniquely identify the referent. That
means, in the case of the rabbit, there must not be an entity different from the
referent in the discourse model that also is a rabbit. Another, on the other hand,
require that the referent be new to the discourse model. These constraints can
also be checked by model checking. In case of situation (3a) the corresponding
queries would look like this: ({a}, {rabbit(a)}) =2 Vz[rabbit(z) — = = a] for
the rabbit and ({a}, {rabbit(a)}) =+ —3z[z = a] for another rabbit.

Other presupposition triggers can be treated in the same way. Below is a
table listing triggers and the corresponding formulas that have to be checked for
truth in the discourse model. The pronoun he, for instance, presupposes the ex-
istence of an entity that is male and in focus, where we assume that infocus(u)
only holds of a discourse model entity w, if u is in focus in the sense of Gundel
et al. (1993) and therefore salient enough to be referred to by a pronoun. too
presupposes the existence of an event z that is of the same type as the event
e described by the VP modified by too and requires z to be different from e.
Similarly, again presupposes an event x that shares the properties determined
by the VP semantics with e, but is different from e and takes place later than
e.

at the moment, every presupposition must have an anchor in the discourse model which has
all of the properties specified in the presuppositional constraint, i.e., for now, we don’t allow
accommodation or partial matching, since, without restriction, this would lead to overgener-
ation.



trigger presupposition contextual constraint

the N(a) Jz[N(z) & = = q] Vz[N(z) - z = a

another N(a)®  3Jz[N(z) & = # d] —3Jz[z = a]

he(a) Jz[male(x) & infocus(x) &] Vz[(male(z) & infocus(x)) —>]
V P(e), too Jz[VP(z) & x # €] - -

regret that S(e) 3Jz[S(z) & = = €]
V P(e) again Jz[VP(z) &
time(z) < time(e)]

3 Adding Some Background Knowledge

In Section 2, we have looked at cases where the presupposed material could be
found directly in the discourse model. Now, we will consider cases where some
world knowledge has to be taken into account to establish that the presupposi-
tion is satisfied in the context.

The presupposition triggered by another animal in Example (4a) for instance
is that there is an entity in the context which is an animal and different from
the one that another animal refers to. In the example, this presupposition is
satisfied, by the rabbit introduced in the first sentence, since we know by world
knowledge that rabbits are animals. Similarly, the presupposition triggered
by too in the second sentence of (4b), because (by world knowledge) watching
Casablanca is subsumed by watching a movie.

(4) a. There is a rabbit in the garden. It is eating the vegetables. Another
animal is digging holes into the flowerbed.

b. John is going to watch ‘Casablanca’, tonight. Peter is going to watch
a movie, too.

But how does our model checking approach to contextual reasoning deal
with cases like this? It doesn’t because it cannot take into account background
information which is not part of the discourse model, i.e. which is not mentioned
explicitly in the previous discourse.

Assume the following situation:

(5) a. G: describe ey
b. ToC: {pull_out(e1), agent(e1,a1), animal(ay), theme(ei,az)...}
c. DM: ({e2,as,a4...}, {eat(e2), agent(es,as), rabbit(as)...})

That is, the goal is to describe an event which involves an animal, entity a;.
When deciding which expression to use to refer to a;, the generator sends the

3As Bonnie Webber has pointed out to me, this is a rather strict definition of the pre-
supposition associated with another and will have to be refined, when we know more about
the way certain parts of the N add or don’t add to the requirements imposed on the anchor.
‘While premodifiers, for instance, usually are included in the presupposition, postmodifiers not
necessarily have to be.



queries associated with their presuppositions to the model checker. Contrary to
what we saw above, the model checker will determine that another animal is not
licensed, since there is no entity in the discourse model which is different from a;
and known to be an animal. In particular, the information that ag is an animal
is not contained in the discourse model. Additional world knowledge which let’s
the system infer that anything known to be a rabbit is also an animal and that
Casablanca is a movie has to be taken into account. Given such a representation
of world knowledge, the generation system has to check that there is an entity
in the discourse model of which we know by the information in the discourse
model together with world knowledge that it is an animal or a movie watching
event. So, the discourse model entities have to be inspected and then the system
has to check whether a specific discourse model entity has certain properties,
given the discourse model and the world knowledge. That means that we are
weakening our closed world assumption: every property neither given explicitly
in the model nor entailed by world knowledge is taken to be false.

We propose to use description logics to represent the world knowledge. De-
scription logics are designed for knowledge representation. They are not as
expressive as first order logic but are usually restricted to a decidable subset of
first order logic. Modern description logic provers like RACER (Haarslev and
Moller 1999) or FaCT (Horrocks 1999) are fast and can efficiently handle even
large sets of data. For the toy examples presented in this paper, this is not
an issue, but it in any real application the amount of background knowledge
needed will increase dramatically.

We will now give a very brief introduction to description logics and then
present an algorithm that checks whether a formula is satisfied by a given
discourse model when taking into account world knowledge for determining
whether an entity has a certain property. To this end, the algorithm queries a
description logic prover.

3.1 A Crash Course in Description Logic

We will now briefly explain the basic concepts of DL that are important for
our application. For more information on DL see e.g. Donini et al. (1996) or
Baader et al. (2001).

A description logic knowledge base consists of two parts: the T-Box and the
A-Box. The A-Box contains information about individuals and how they are
related, such as rabbit(a) or part_of(a,b) for instance. The discourse model can
therefore be represented as part of an A-Box. The T-Box contains concepts, as
e.g. rabbit and animal, which are related through a subsumption hierarchy,
so e.g. rabbit T animal. These concepts may be atomic or they may be
complex, i.e. defined through other complex and relations between concepts.
Parent can for example be defined as someone who is female and has a child
(mother C female M 3(has_child).top).

DL theorem provers usually offer a variety of different reasoning services.
The one we are interested in is instance checking, i.e. checking whether an entity
is an instance of a given concept. Given the T-Box {rabbit C animal} and the
A-Box {rabbit(a)}, for instance, we can pose the query KB 7 animal(a),



which will be evaluated as true.

3.2 Combining first order model checking with DL classification

We have seen above that, in the case of Example (5), normal model checking
cannot handle correctly the presuppositions associated with the description an-
other animal for entity a1, because it involves checking properties that are not
specified in the discourse model itself, but may be given through some addi-
tional world knowledge. We will represent the world knowledge as a description
logic knowledge base KB where the discourse model is part of the A-Box. The
algorithm then proceeds as for normal model checking until an atomic formula
F, i.e. an expressions of the form P(u) or P(u,v) for some predicate P and dis-
course model entities u and v, is reached, where, instead of checking, whether F
is among the facts specified by the discourse model, we send the query KB }=» F
to a DL theorem prover. The following pseudo code sketches this algorithm.
Formula is the formula that is to be checked, DMU is the universe of the dis-
course model, and Contezt the knowledge base.

Satisfy (Formula, DMU, Context)
if Formula matches P(x) then true if Context = P(x),
false otherwise
elseif Formula matches P(z,y) then true if Context = P(z,y),
false otherwise
elseif Formula matches x = ythen true if z and y are the same entity,
false otherwise
elseif Formula matches —F then false if Satisfies(F,DMU, Context),
true otherwise
elseif Formula matches Fy & F» then true if Satisfy(F;, DMU, Context)
and
Satisfy(Fy, DMU, Context),
false otherwise
elseif Formula matches Fy V F then true if Satisfy(Fy, DMU, Context)
or
Satisfy(F», DMU, Context),
false otherwise
elseif Formula matches F; — F, then true if Satisfy(—Fy,DMU, Context)
or
Satisfy(F>, DM U, Context),
false otherwise
elseif Formula matches Jz. F then true if there is an u € DMU, such that
Satisfy(F1 [u/z], DMU, Context)
false otherwise
elseif Formula matches Vz. F then true if for all u € DMU,
Satisfy(F1 [u/z], DMU, Context)
false otherwise



4 Reasoning on the Discourse Model

In work on NLG, presuppositions have mostly been considered only as part
of the generation of referring expressions. One of the most influential works
is Dale and Reiter (1995), which presents special purpose algorithms for this
task. We can mimic their algorithms in our system by appropriately tailoring
the way additional information is adjoined to noun phrases in case the unique-
ness constraint of the definite article is not satisfied. Our main goal, however,
was to generalize from the generation of definite descriptions to any kind of
presupposition triggers. Furthermore, we extended their approach by taking
into account some background knowledge.

We decided to represent the background knowledge by a description logic
knowledge base.

The examples that we saw so far needed only a subsumption hierarchy of
atomic concepts. But that won’t be enough in general. Description logic lets us
also define complex concepts, as is necessary to be able to deal with examples as
(6a), and we can talk about relations between entities, as will be necessary for
extending the approach to indirect anaphora as in (6b), where it is possible (at
least in conversations between Harry Potter fans) to use a definite description
to refer to the snitch, since a snitch is part of any quidditch match.

(6) a. The mother of my father lives in Frankfurt. My other grandmother
lives in the black forest.

b. Gryffindor won the last quidditch match, because Harry caught the
snitch.

Furthermore, we are able to use state of the art description logic theorem
provers which are highly optimized and can deal with large sets of data. De-
scription logic is decidable (in contrast to full first order logic) and, in general,
description logic provers outperform first order logic theorem provers on many
problems. However, if this will also be the case in our application when the
world knowledge gets bigger remains to be tested.

In Stone and Doran’s (1997) SPUD system, from which our approach is
inspired, context is represented by means of modal logic formulas and uses logic
programming techniques to perform inferences. His approach is more general
and allows an elegant and fine grained representation of the context (via modal
operators) and a fuller account of inferences in NLG. It allows, e.g., flexibility
in formulating inferences over the knowledge of the hearer, as, for instance, a
system for generating instructions would have to do in order to decide what
information to include in the instruction and what information to leave implicit
(cf. Stone 2000). We take a more restricted approach, concentrating on an
appropriate treatment of the inferences that arise in an NLG system due to
the contextual requirements of presuppositions. QOur interest is to develop a
map of the types of inference tasks in NLP associated with different linguistic
phenomena and to examine which reasoning tools are best suited to carry them
out.



In representing the discourse as a model we follow such work as Baumgart-
ner and Kiithn (1999), Ramsay and Seville (2000), and Gardent and Konrad
(2000), who use model builders in natural language interpretation to construct
models satisfying a given discourse, thereby resolving pronouns, definite de-
scriptions and more generally, the underspecified items of natural language.
Presuppositions and the like constrain what models are possible. From a natu-
ral language generation perspective the task is to make sure that, in the given
model, the target utterance makes the hearer resolve such items in the intended
way. Here, presuppositions constrain what utterances are possible in the given
model, i.e. whether a certain utterance can be used in the given model depends
on whether the presuppositional constraints are satisfied in that model. Using
model checking is a natural choice for this task.

Furthermore, model checking allows a natural formulation of our closed
world assumption (any property of an entity that doesn’t follow from the knowl-
edge base is taken to be false).

Finally, model checking enables a treatment of higher-order queries which
are usually not amenable to the theorem-proving approach (Vardi 1986). In
natural language processing higher order queries will arise for the treatment of
expressions like five rabbits are hopping through my garden.

5 Generating Presupposition Triggers

In this section, we will show how the approach to accounting for the influence
of presuppositions on NLG presented in the previous sections can be integrated
into a generation system. The system that we will describe is based on Stone
et al.’s (2001) SPUD system. It integrates microplanning and surface realization
and interleaves the generation process with queries to a reasoning tool in order
to check pragmatic constraints.

5.1 Syntactic, Semantic, and Pragmatic Constraints in the Gram-
mar

Linguistic knowledge is encoded using the LTAG (Lexicalized Tree Adjoining
Grammar) formalism. For a precise definition of LTAGs we refer the reader
to Joshi and Schabes (1997). Here we briefly describe the basic properties of
LTAG.

An LTAG consists of a set of tree fragments called elementary trees (the
lexicon) and of two operations on trees called adjunction and substitution, that
allow to build larger tree structures by combining two smaller ones.

There are two types of elementary trees in LTAG: initial trees (such as
e.g. trees o and a9 in Figure 1) which are used to encode the basic syntactic
frame of syntactic functors and auziliary trees (such as e.g. tree 1 in Figure 1)
which encode modifiers e.g. adjectives, prepositional phrases (PP) or adverbs.
Initial trees may contain so-called substitution nodes (marked with |), whereas
auxiliary trees must have a unique foot node (marked with %), i.e. a leaf node
labeled with the same category as the root of the tree.



The two operations, substitution and adjunction, are then used to combine
trees into bigger trees. Intuitively, substitution inserts an initial tree with root
category X at some substitution node n with category X in some other tree.
Adjunction, on the other hand, caters for recursion and permits inserting an
auxiliary tree with root and foot node category X at a node labeled with cate-
gory X in some other tree. Substitution and adjunction are illustrated in Figure
1.

Lexicon Substitution Adjunction
NP N NP NP
/N I /N / N\
Det NJ N Det Nl Det N
| I | I I
the book the 1 the N
N
51 %) |
AN N N
Adj N : 7N
| book Adj N*
. . |
Interesting interesting
N
o1 |
book

Figure 1: LTAG

In the lexicon, we follow Stone and Doran (1997) and associate semantic and
pragmatic information with the elementary trees. This information is interfaced
with the syntactic structure via the semantic entities that nodes in the syntax
tree are associated with. The idea behind this is that syntactic constituents are
associated with those semantic entities that are described by this constituent.
The semantic information is coded in a flat semantic representation along the
lines of Hobbs (1985).

Figure 2 shows some lexical entries for presupposition triggering expressions,
introducing the presuppositions and constraints that we have seen in Section 2.
NP ey, stands here for a formula representing the semantic content of the NP,
and similarly, VP, stands for the semantic content of the VP. Figure 2 further
shows the lexical entry for the indefinite article, which is no presupposition
trigger and therefore doesn’t have a presuppositional requirement, but carries
a contextual constraint saying that the referent must be new to the discourse
and the there is no other entity in the discourse model which fits the same
description. This constraint prevents the generation of a where the or another
should be used instead. In principle, it is too strict, though. For instance, since
not in all contexts where another is possible, a is inappropriate.

5.2 Interleaving Generation with Contextual Reasoning

The generation process consists of two main phases. In the first phase, the gen-
eration process is driven by the initial communicative goal and the requirements
that open substitution nodes may pose on the structure. The generator tries



NP: (X, NP,m) NP: (X, NPem)
/ N\ 7N\

Det Ni: (X) Det Ni: (X)

| |
the another
P(resuppositions): y[NPsem (y) & y = X] P: Jy[NPsem(y) & y # X]

C(ontextual)C(onstraints): Vy[NPsem (y) = X =y] CC: -3yly = X]

NP: (X)

| NP: (X, NPem)
Pron: (X) /7 N\

| Det Nl: (X)

he |
Semantics: {male(X)} *
P: Jy[male(y) & infocus(y) & y = X}) CC: —Jyly = X V NP (y)]

CC: Vy[(male(y) & infocus(y)) = y = X|

Figure 2: Some lexicon entries for presupposition triggers.

to build a minimal, syntactically complete (i.e. all substitution nodes are filled)
linguistic structure by recursively substituting into the leftmost open substitu-
tion node. No adjunction takes place in this first phase. The resulting structure
is then checked as to whether it is semantically complete (i.e. the content that
was to be communicate is conveyed by the text) and pragmatically appropriate
(i.e. the presuppositions and additional contextual constraints are satisfied). If
that is not the case, additional information can be integrated by adjunction.

Figure 3 shows an example of how the generation algorithm assembles trees.
The input to the generator for this example might have been as follows.

(7) DM: ({a1, e1}, {rabbit(a1), sleep(e1,a1)})
Goal: describe es

To Communicate: {eat(e2,as,as), rabbit(az), carrot(as)}

Roughly, the generation process works in the following way. First, a predic-
tion step selects elementary trees (such as e.g. aq) with the following properties
from the lexicon that: (i) the root node is labeled with S and (ii) the semantic
representation unifies with one or more of e;’s properties. The result is not
syntactically complete, hence, generation proceeds with the next goals deter-
mined by the open substitution nodes: a noun phrase describing entity as and
a noun phrase describing entity a3 have to be found. In both cases, there are
several semantically possible realizations, such as e.g. the rabbit, another rab-
bit, the carrot, a carrot etc. However, some of them trigger presuppositions and
are only predicted if the contextual requirements of these presuppositions are
fulfilled. Whenever a syntactically complete tree has been built, it is checked
whether this tree is semantically complete and pragmatically appropriate. An-
other rabbit is eating a carrot, for instance, is semantically complete and in



a; S: (e2)
AN
NP (ay) }/P: {e2)
\lf Ving: (62> NP <a3>
I
is eating

(o2} NP: <a27NPsem>
\7
Det NJ: (a2)
|
another
as 1\|IS <a2>

rabbit

ay NP <a3,NPsem)
/N

Det Nl: (a3)

a

N: (a3)

a5

carrot

Figure 3: Generating Example (7).

order to check the pragmatic requirements the generator sends the following
queries to the model checker.

DM =7 3z[rabbit(z) & = # as]
DM =+ —3x[z = ag]
DM =7 -3z[z = a2 V carrot(z)]

Presupposition of another :
Contextual Constraint of another:
Contextual Constraint of a:

All of these queries return true, so that this is in fact a possible paraphrase
and no adjunction of further information is necessary.

The production of the rabbit is ruled out, since the query DM - 3z[rabbit(x)
& = = ay], representing the presuppositional requirement of the definite article,
will evaluate to false in the given context. Similarly, all other possibilities of
expressing reference to ao and a3 are ruled out.

Our system doesn’t use a mechanism for ranking predicted items according
to how likely they are, yet. Stone et al. (2001) propose a strategy of testing for
violations of constraints which is similar to what’s done in optimality theory. We
plan to integrate a similar strategy into our system to better direct the search
and to rank paraphrases in case there are several possibilities. In particular,
this will also allow us to weaken the contextual constraints on the indefinite
article.

6 Linguistic Coverage

There is extensive literature on presuppositions (Stalnaker 1974; Karttunen
1974; Heim 1983; van der Sandt 1992; Beaver 1997; Geurts 1999). Mostly, they
are looked at from a language interpretation point of view, though. The task
is therefore, to detect presuppositions and to find a way of anchoring them in
the discourse context. The base case is that some entity in the discourse model
satisfies or binds the presupposition. This is the case that we have restricted
ourselves to in this paper. It is, however, a well known fact that presupposing



expressions can sometimes be used without an explicit anchor (Clark 1975;
Lewis 1979). See, for instance, Examples (8a) and (8b).

(8) a. You are standing in front of a red brick house. The door is locked.

b. We regret that children cannot accompany their parents to com-
mencement exercises.

In Example (8a), there is no element in the discourse model that satisfies
the presupposition of the door. However, there is an implicit anchor in the
discourse model, i.e. an element, namely the house, from which it follows that
there must also be a door. In Gardent and Striegnitz (2001), we have identified
reasoning tasks that arise in an NLG system in connection with such indirect
anaphora. It remains to be seen, how the reasoning tasks we have specified
there, fit into the more general treatment of presuppositions presented in this
paper.

In Example (8b), on the other hand, there is neither an explicit nor an im-
plicit anchor for the presupposition triggered by regret in the discourse model.
Presupposition theories handle such cases by allowing to accommodate the pre-
supposed material in the discourse model in case the presupposition cannot be
bound. Usually, accommodation is not further restricted. However, in order to
avoid serious overgeneration, an NLG system has to strictly control the use of
accommodation. More research is needed here to determine, under which cir-
cumstances accommodation is allowed and natural. But see e.g. Zeevat (2000)
for some insights on how different presupposition triggers behave wrt. accom-
modation.

Similar remarks also hold for examples as (9a) where the presupposition
trigger in the second sentence conveys new information about its anchor and
examples as (9b) where only part of the semantic content of the NP seems
to be presupposed. The constraints we used in this paper are too strict to
allow for that. They will have to be weakened, e.g. by excluding parts of the
NP semantics from the presupposition in certain cases, or the way they are
checked has to be weakened, e.g. by checking whether the fact that an entity
has a certain property is consistent with the knowledge base instead of checking
whether the entity actually has this property. But this has to be done carefully
to avoid overgeneration.

(9) a. Isaw a rabbit in my vegetable garden, this morning. The fat animal
was eating the carrots.

b. Yesterday, I saw a rabbit with long white ears in my vegetable gar-
den. Today, I saw another rabbit with short black ears in my
flowerbed.

7 Conclusion

Presupposition triggers impose constraints on the discourse context they are
used in. A natural language generation system has to verify that these con-
straints are satisfied before licensing the use of such an expression. We have



argued that model checking supports the necessary inferences and allows a nat-
ural formulation of the corresponding reasoning tasks.

Since the presupposed material is often more general than what has been
said (explicitly) about the anchor, some background knowledge about subsump-
tion relations between concepts has to be taken into account. To capture this
interaction with world knowledge, we proposed to embed queries to a descrip-
tion logic theorem prover into a model checking algorithm.

The model checking algorithm presented in Section 3 is implemented with
an interface to the description logic prover RACER, (Haarslev and Moller 1999)
and will be integrated into the InDiGen NLG system (Striegnitz 2001). This
system, which interleaves the generation process with contextual reasoning, as
described in Section 5, provides a framework for experimenting with different
inference tools.

As a next step in this line of research, we will investigate how indirect an-
choring and accommodation can be encompassed with the approach presented
in this paper. To do so, we will also have to enhance the discourse model by
a modeling of salience of entities (cf. Kohlhase and Koller 2000, Krahmer and
Theune 1998).

Furthermore, we are interested in further investigating the use of model
checking for natural language processing and examining which other linguistic
constructions involve contextual requirements that can be captured as model
checking tasks.
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