
Natural Languageand Infer encein a Computer Game

Malte Gabsdil and Alexander Koller and Kristina Striegnitz
Dept.of ComputationalLinguistics

SaarlandUniversity, Saarbr̈ucken,Germany
{gabsdil|koller|kris}@coli.un i- sb. de

Abstract
Wepresentanenginefor text adventures– computer
gameswith which the player interactsusing natu-
ral language. The systememploys currentmeth-
odsfrom computationallinguisticsandanefficient
inferencesystemfor descriptionlogic to make the
interactionmore natural. The inferencesystemis
especiallyuseful in the linguistic modulesdealing
with referenceresolutionand generation and we
show how we use it to rank different readingsin
thecaseof referentialandsyntacticambiguities.It
turns out that the player’s utterancesare naturally
restrictedin thegamescenario,whichsimplifiesthe
languageprocessingtask.

1 Intr oduction
Text adventuresare computergameswith which
theplayerinteractsvia a naturallanguagedialogue.
Texts describethe gameworld andhow it evolves,
andtheplayercanmanipulateobjectsin this game
world by typing in commands;Fig. 1 shows a sam-
ple interaction. Text adventureswere very popu-
lar andcommerciallysuccessfulin theeighties,but
have goneout of fashionsincethen – mostly be-
causetheparserswereratherlimited andforcedthe
userinto very restrictedformsof interaction.

We describean enginefor text adventuresthat
attemptsto overcomethese limitations by using
currentmethodsfrom computationallinguisticsfor
processingthe natural languageinput and output,
andastate-of-the-artinferencesystembasedon de-
scriptionlogic (DL) to representthe dynamicstate
of thegameworld andwhattheplayerknows about
it. TheDL prover is usedin all language-processing
modulesexceptfor parsingandsurfacerealization,
andsupportstheinferenceswe needvery well.

This shows in particularin the modulesfor the
resolutionandgenerationof referringexpressions.
By keeping track of the true state of the world
andthe player’s knowledgein separateknowledge
bases,wecanevaluatedefinitedescriptionswith re-
spectto whattheplayerknows. In generation,such

inferencesallow us to producesmallerwhile still
sufficiently informative references.

Another interestingaspectwhich we discussin
this paperis thetreatmentof syntacticandreferen-
tial ambiguitiesthatcomeupin understandinginput
sentences.Here,too, theplayerknowledgerestricts
thewayin whichtheinputshouldbeinterpretedand
guidesthe resolutionprocess. We useinferences
abouttheplayerknowledgeto rule out inconsistent
analysesandpragmaticheuristicsto possiblyselect
thepreferredone.

Playersof a text adventureare effectively situ-
ated in a gameworld and have to accomplisha
specifictask,which severelyrestrictstheutterances
they will naturallyproduce.For example,they will
typically only refer to objectsthey could “see” in
the simulatedworld. This simplifies the language
processingtaskstremendously. Thescenarioof the
gamecanbefreelyspecifiedandtailoredtodifferent
applicationsandlevels of complexity. Along with
the modularity of our implementation,this makes
our system an interesting testbedfor evaluating
moresophisticatedNLP modules,which alsohave
accessto theinferenceinfrastructure.Thesamerea-
sonmakesit usefulasa teachingtool; in fact, our
implementationwascreatedasanadvancedproject
for students.

Plan of the paper. Wewill startwith anoverview
over the architectureof our systemin Section2.
Section3 will give a brief introductionto descrip-
tion logics,andthendescribestheknowledgebases
we use.We will discusshow they interactwith the
linguistic modulesin Section4, which focuseson
the resolutionand generationof referring expres-
sions. Section5 dealswith the resolutionof am-
biguitiesin theplayerinput. Finally, Section6 con-
cludesandpointsto furtherresearch.

2 Ar chitecture

Thegeneralarchitectureof thegameengine,shown
in Fig. 2, consists of a number of language-
processingmodules(drawn as ellipses),which in-

Observation Lounge
This is where the station staff and visitors come to relax. There are a lot of tables
and chairs here, a large observation window, and a plush carpet. In the corner you can
see an AstroCola dispenser. A tube leads up to the station’s main corridor.

> put my galakmid coin into the dispenser
Click.
The dispenser display now reads "Credit = 1.00".

> push diet astrocola button
You hear a rumbling noise in the dispenser, but nothing appears in the tray.

> kick dispenser
A can drops into the tray. Amazing! The oldest trick in the book, and it
actually worked.

Figure1: An exampleinteractionwith a text adventure,takenfrom (Ledgard,1999).

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

Figure2: Thearchitecture.

terfacewith knowledgebasesandadiscoursemodel
(drawn as rectangles). There are two separate
knowledgebases,whichshareasetof commondef-
initions: Onerepresentsthe true stateof the world
in a world model,theotherkeepstrackof what the
playerknows aboutthe world. Solid arrows indi-
catethegeneralflow of information,dashedarrows
indicateaccessto theknowledgebases.

The user’s input is first parsedusingan efficient
parserfor dependency grammar(DuchierandDe-
busmann,2001).Next, referringexpressionsarere-
solvedto individualsin thegameworld. Theresult
is agroundtermor a sequenceof groundtermsthat
indicatesthe action(s)the userwantsto take. The
Actionsmodulelooksuptheseactionsin adatabase
(wherethey arespecifiedin a STRIPS-like format),
checkswhethertheaction’spreconditionsaremetin
theworld, and,if yes,updatestheworld statewith
theeffectsof theaction.

The actioncanalsospecifyeffectson the user’s
knowledge. This information is further enriched
by theContentDeterminationmodule;for example,
this modulecomputesdetaileddescriptionsof ob-
jects the player wants to look at. The Reference
Generationmodule translatesthe internal names
of individuals into descriptionsthat canbe verbal-
ized. In the last step,an efficient realizationmod-
ule (Koller andStriegnitz, 2002)builds the output
sentencesaccordingto aTAG grammar. Theplayer
knowledge is updatedafter ReferenceGeneration
whenthecontentof thegame’s response,including
thenew informationcarriede.g.by indefiniteNPs,
is fully established.

If anerroroccursatany stage,e.g.becauseapre-
conditionof theactionfails,anerrormessagespec-
ifying the reasonsfor the failure is generatedby
using the normalgenerationtrack (ContentDeter-
mination,ReferenceGeneration,Realization)of the
game.

The systemis implementedin the programming
languageMozart (Mozart Consortium,1999) and
provides an interface to the DL reasoningsystem
RACER(Haarslev andMöller, 2001),which is used
for maintingandaccessingtheknowledgebases.

3 The World Model

Now we will look at the way that the stateof the
world is representedin the game,which will be
importantin the languageprocessingmodulesde-
scribedin Sections4 and5. Wewill first giveashort
overview of descriptionlogic (DL) andthetheorem
prover we useandthendiscusssomeaspectsof the
world modelin moredetail.

3.1 Description Logic

Descriptionlogic (DL) is a family of logics in the
tradition of knowledge representationformalisms
suchasKL-ONE (WoodsandSchmolze,1992).DL
is a fragmentof first-orderlogic which only allows
unary and binary predicates(concepts and roles)
and only very restrictedquantification. A knowl-
edgebaseconsistsof a T-Box, which containsax-
ioms relating the conceptsand roles, and one or
moreA-Boxes, which statethat individualsbelong
to certainconcepts,or arerelatedby certainroles.

Theoremprovers for descriptionlogics support
a rangeof different reasoningtasks. Among the
mostcommonareconsistency checking,subsump-
tion checking, and instance and relation check-
ing. Consistency checksdecidewhetheracombina-
tion of T-Box andA-Box canbe satisfiedby some
model, subsumptionis to decideof two concepts
whetherall individuals that belongto oneconcept
mustnecessarilybelongtoanother, andinstanceand
relationcheckingtestwhetheranindividualbelongs
to a certainconceptandwhethera certainrelation
holdsbetweena pairof individuals,respectively. In
additionto thesebasicreasoningtasks,description
logic systemsusually also provide someretrieval
functionality which e.g.allows to computeall con-
ceptsthat a given individual belongsto or all indi-
vidualsthatbelongto agivenconcept.

Thereis awiderangeof differentdescriptionlog-
ics todaywhich adddifferentextensionsto a com-
moncore.Of course,themoreexpressive theseex-
tensionsbecome,the more complex the reasoning
problemsare. “Traditional” DL systemshave con-
centratedonveryweaklogicswith simplereasoning
tasks. In the last few years,however, new systems
suchasFaCT (Horrockset al., 1999)andRACER
(Haarslev andMöller, 2001)have shown that it is
possibleto achieve surprisinglygoodaverage-case
performancefor veryexpressive(but still decidable)
logics. In this paper, we employ the RACER sys-
tem,mainlybecauseit allowsfor A-Box inferences.

3.2 The World Model

The T-Box we usein the gamespecifiesthe con-
ceptsandrolesin theworld anddefinessomeuseful
complex concepts,e.g.theconceptof all objectsthe
playercansee.This T-Box is sharedby two differ-
entA-Boxesrepresentingthestateof theworld and
whattheplayerknows aboutit respectively.

TheplayerA-Box will typically bea sub-partof
the gameA-Box becausethe player will not have

explored the world completelyand will therefore
not have encounteredall individualsor know about
all of their properties.Sometimes,however, it may
alsobe usefulto deliberatelyhide effectsof an ac-
tion from the user, e.g. if pushinga button hasan
effect in a room that theplayercannotsee. In this
case,theplayerA-Box cancontaininformationthat
is inconsistentwith theworld A-Box.

A fragmentof theA-Box describingthestateof
theworld is shown in Fig.3; Fig.4 givesagraphical
representation.The T-Box specifiesthat the world
is partitionedinto threeparts: rooms,objects,and
players.Theindividual ‘myself’ is theonly instance
that we ever defineof the concept‘player’. Indi-
vidualsareconnectedto their locations(i.e. rooms,
containerobjects,or players)via the ‘has-location’
role; the A-Box alsospecifieswhat kind of object
anindividual is (e.g.‘apple’) andwhatpropertiesit
has(‘red’). The T-Box thencontainsaxiomssuch
as‘apple

�
object’, ‘red

�
colour’, etc.,which es-

tablisha taxonomyamongconcepts.
Thesedefinitionsallow us to addaxiomsto the

T-Box which definemorecomplex concepts.One
is the concept‘here’, which containsthe room in
which the playercurrently is – that is, every indi-
vidual which canbe reachedover a ‘has-location’
role from aplayerobject.

here ���� has-location��� � player

In thisdefinition,‘has-location��� ’ is theinverse role
of the role ‘has-location’, i.e. it links � and 	 if f
‘has-location’ links 	 and � . Inverserolesareoneof
the constructionsavailable in more expressive de-
scription logics. The quantificationbuilds a more
complex conceptfrom a conceptanda role: ��
 �

�
is the conceptcontainingall individualswhich are
linkedvia an
 role to someindividual in

�
. In the

examplein Fig. 3, ‘here’ denotesthe singletonset
kitchen� .
Another useful concept is ‘accessible’, which

containsall individuals which the player can ma-
nipulate.

accessible �� � has-location� here �� has-location�
�
accessible� open�

All objectsin the sameroom as the player are
accessible;if suchan object is an opencontainer,
its contentsare also accessible. The T-Box con-
tainsaxiomsthat expressthat someconcepts(e.g.
‘table’, ‘bowl’, and ‘player’) contain only ‘open’

room(kitchen) player(myself)
table(t1) apple(a1)
apple(a2) worm(w1)
red(a1) green(a2)
bowl(b1) bowl(b2)
has-location(t1,kitchen) has-location(b1,t1)
has-location(b2,kitchen) has-location(a1,b2)
has-location(a2,kitchen) has-detail(a2,w1)
has-location(myself,kitchen) . . .

Figure3: A fragmentof aworld A-Box.

objects. This permitsaccessto the player’s inven-
tory. In thesimplescenarioabove, ‘accessible’ de-
notesthe set

myself,t1, a1,a2,b1,b2� . Finally,

we candefinetheconcept‘visible’ in a similarway
as ‘accessible’. The definition is a bit morecom-
plex, includingmoreindividuals,andis intendedto
denoteall individualsthattheplayercan“see” from
his positionin thegameworld.1

4 Referring Expressions

Theinteractionbetweenthegameandtheplayerre-
volvesaroundperformingactionson objectsin the
gameworld andthe effectsthat theseactionshave
on the objects. This meansthat the resolutionand
generationof referringexpressions,which identify
thoseobjectsto theuser, arecentraltasksin ourap-
plication.

Our implementationillustrates how useful the
availability of an inferencesystemas provided by
RACERto accesstheworld modelis, oncesuchan
infrastructureis available. The inferenceengineis
complementedby a simplediscoursemodel,which
keepstrackof availablereferents.

4.1 The DiscourseModel

Our discoursemodel (DM) is basedon Strube’s
(1998) saliencelist approach,due to its simplic-
ity. The DM is a datastructurethat storesan or-
deredlist of the mostsalientdiscourseentitiesac-
cording to their “information status”and text po-
sition and provides methodsfor retrieving and in-
sertingelements.Following Strube,hearer-old dis-
courseentities(which includedefinites)areranked

1Rememberthat “seeing” in our applicationdoesnot in-
volve any graphical representations. The player acquires
knowledgesabout the world only through the textual output
generatedby the gameengine.This allows us to simplify the
DL modelingof the world becausewe don’t have to specify
all (e.g. spatial)relationsthatwould implicitly bepresentin a
picture.

Figure4: ExampleScenario

higherin theDM (i.e. aremoreavailablefor refer-
ence)thanhearer-new discourseentities(including
indefinites). Within thesecategories,elementsare
sortedaccordingto their position in the currently
processedsentence. For example, the ranking of
discourseentitiesfor the sentencetake a banana,
the red apple, and the green apple would look as
follows:

� ����� ������� � �"!������$# �%���&� �$')(+*-,.�/� 	0� # � # � ')13254

The DM is built incrementallyand updatedaf-
ter eachinput sentence.Updatingremovesall dis-
courseentitiesfrom theDM which arenot realized
in thecurrentutterance.Thatis, thereis anassump-
tion that referentsmentionedin the previous utter-
ancearemuchmoresalientthanolderones.

4.2 ResolvingReferring Expressions
The task of the resolutionmodule is to map def-
inite and indefinite noun phrasesand pronounsto
individuals in the world. This taskis simplified in
the adventuresettingby the fact that the commu-
nication is situatedin a sense: Playerswill typi-
cally only refer to objectswhich they can“see” in
thevirtual environment,asmodeledby theconcept
‘visible’ above. Furthermore,they shouldnot re-
fer to objects they haven’t seenyet. Hence,we
perform all RACER queriesin this sectionon the
playerknowledgeA-Box, avoiding unintendedam-
biguities when the player’s expressionwould e.g.
not refer uniquelywith respectto the true stateof
theworld.

Theresolutionof a definite descriptionmeansto
find auniqueentitywhich,accordingto theplayer’s
knowledge,is visible andmatchesthe description.
To computesuchanentity, we constructa DL con-
cept expressioncorrespondingto the description
andthensenda queryto RACERaskingfor all in-
stancesof this concept. In the caseof the apple,
for instance,we would retrieve all instancesof the

concept
apple� visible

from theplayerA-Box. The queryconceptfor the
apple with the worm wouldbe

apple� � � has-detail� worm�6� visible�
If thisyieldsonly oneentity(

a2� for the apple with

the worm for the A-Box in Fig. 3), the reference
hasbeenunambiguousand we are done. It may,
however, alsobethecasethatmorethanoneentity
is returned;e.g.thequeryfor the apple wouldreturn
the set

a1,a2� . We will show in the next section

how we dealwith this kind of ambiguity. We reject
input sentenceswith an error messageindicatinga
failed referenceif we cannotresolve an expression
at all, i.e. whenno objectin theplayerknowledge
matchesthedescription.

We resolve indefinite NPs,suchasan apple, by
queryingtheplayerknowledgein thesameway as
describedabove for definites.Unlike in thedefinite
case,however, we do not requireuniquereference.
Instead,we assumethat the player did not have a
particularobjectin mind andarbitrarily chooseone
of thepossiblereferents.Thereplyof thegamewill
automaticallyinform theplayerwhichonewascho-
sen,asauniquedefinitereferencewill begenerated
(seebelow).

Pronounsaresimply resolvedto themostsalient
entity in theDM thatmatchestheir agreementcon-
straints. The restrictionsour grammar imposes
on the player input (no embeddings,no reflexive
pronouns)allow us to analyzesentencesincluding
intra-sententialanaphoralike take the apple and eat
it. Theincrementalconstructionof theDM ensures
that by the time we encounterthe pronounit, the
apple hasalreadybeenprocessedandcanserveasa
possibleantecedent.

4.3 GeneratingReferring Expressions
The converse task occurs when we generatethe
feedbackto show to the player: It is necessaryto
constructdescriptionsof individuals in the game
world thatenabletheplayerto identify these.

This task is quite simple for objectswhich are
new to theplayer. In thiscase,wegenerateanindef-
inite NPcontainingthetypeand(if it hasone)color
of the object,as in the bowl contains a red apple.
We useRACER’s retrieval functionality to extract
this informationfrom theknowledgebase.

To refer to an object that the playeralreadyhas
encountered,we try to constructa definitedescrip-

tion that, given the player knowledge, uniquely
identifiesthisobject.For thispurposeweuseavari-
ant of Dale and Reiter’s (1995) incrementalalgo-
rithm, extendedto dealwith relationsbetweenob-
jects(Dale andHaddock,1991). Thepropertiesof
the target referentarelooked at in somepredefined
order(e.g.first its type, thenits color, its location,
partsit may have, �7�7�). A propertyis addedto the
descriptionif at leastone other object (a distrac-
tor) is excludedfrom it becauseit doesn’t sharethis
property. This is doneuntil thedescriptionuniquely
identifiesthetargetreferent.

The algorithmusesRACER’s reasoningandre-
trieval functionality to accessthe relevant informa-
tion aboutthecontext, which includede.g.comput-
ing the propertiesof the target referentand find-
ing thedistractinginstances.Assumingwe wantto
refer to entity a1 in the A-Box in Fig. 3 e.g., we
first have to retrieve all conceptsand roles of a1
from the playerA-Box. This givesus

apple(a1)8

red(a1)8 has-location(a1,b1)� . As wehaveto haveat
leastonepropertyspecifyingthetypeof a1, we use
RACER’s subsumptionchecksto extract all those
propertiesthatmatchthis requirement;in this case,
‘apple’. Thenwe retrieve all instancesof the con-
cept‘apple’ todeterminethesetof distractorswhich
is

a18 a2� . Hence,‘apple’ aloneis not enoughto

uniquely identify a1. So, we considerthe apple’s
color. Again using subsumptionchecks,we filter
thecolorsfrom thepropertiesof a1 (i.e. ‘red’) and
thenretrieve all instancesbelongingto theconcept
apple� redto checkwhetherandhow thesetof dis-
tractorsgetsreducedby addingthis property. This
concepthasonly onememberin theexample,sowe
generatetheexpressionthe red apple.

5 Ambiguity Resolution

Theotheraspectof thegameenginewhichwewant
to highlight here is how we deal with referential
andsyntacticambiguity. We handlethe former by
a combinationof inferenceanddiscourseinforma-
tion, and the latter by taking psycholinguistically
motivatedpreferencesinto account.

5.1 ResolvingReferential Ambiguities

When the techniquesfor referenceresolutionde-
scribedin the previous sectionarenot ableto map
a definitedescriptionto a singleentity in theplayer
knowledge, the resolutionmodulereturnsa set of
possiblereferents. We then try to narrow this set
down in two steps.

First, we filter out individuals which are com-
pletelyunsalientaccordingto thediscoursemodel.
In our (simplified) model, theseareall individuals
that haven’t beenmentionedin the previous sen-
tence.This heuristicpermitsthegameto dealwith
thefollowing dialogue,astheredbut not thegreen
appleis still accessiblein thefinal turn,andis there-
forechosenasthepatientof the‘eat’ action.

Game: . . . redapple. . . greenapple.
Player: Take theredapple.
Game: Youhave theredapple.
Player: Eatthe apple.
Game: Youeattheredapple.

If thisnarrows down thepossiblereferentsto just
one,wearedone.Otherwise– i.e. if severalor none
of thereferentswerementionedin theprevioussen-
tence–, we checkwhetherthe player’s knowledge
rulesout someof them. Therationaleis thatanin-
telligent playerwould not try to performan action
on an objecton which sheknows it cannotbe per-
formed.

Assume, by way of example, that the player
knows about the worm in the greenapple. This
violatesa preconditionof the ‘eat’ action for ap-
ples. Thusif both appleswereequallysalient,we
would readeat the apple aseat the red apple. We
cantestif acombinationof referentsfor thevarious
referringexpressionsof a sentenceviolatesprecon-
ditions by first instantiatingthe appropriateaction
with thesereferents. Then we independentlyadd
eachinstantiatedpreconditionto freshcopiesof the
playerknowledgeA-Box andtestthemfor consis-
tency. If oneof theA-Boxesbecomesinconsistent,
weconcludethattheplayerknowsthisprecondition
wouldfail, andconcludethatthis is not theintended
combinationof referents.

If neitherof theseheuristicsmanagesto pick out
auniqueentity, we considerthedefinitedescription
to be truly ambiguousandreturnan error message
to theuser, indicatingtheambiguity.

5.2 ResolvingSyntacticAmbiguities
Anotherclassof ambiguitieswhichweconsiderare
syntacticambiguities,especiallyof PPattachment.
We try to resolve them, too, by taking referential
informationinto account.

In thesimplestcase,the referringexpressionsin
someof thesyntacticreadingshave nopossibleref-
erentin theplayerA-Box at all. If this happens,we
filter thesereadingsout andonly continuewith the
others(Schuler, 2001). For example,the sentence

unlock the toolbox with the key is ambiguous.In a
scenariowherethereis a toolboxanda key, but the
key isnotattachedto thetoolbox,resolutionfailsfor
oneof theanalysesandtherebyresolvesthesyntac-
tic ambiguity.

If more thanonesyntacticreadingsurvives this
first test, we perform the samecomputationsas
aboveto filter outpossiblereferentswhichareeither
unsalientor violate theplayer’s knowledge.Some-
times,only onesyntacticreadingwill have a refer-
entin thisnarrowersense;in thiscase,wearedone.

Otherwise,i.e. if morethanonesyntacticreading
hasreferents,we remove thosereadingswhich are
referentiallyambiguous. Consideroncemore the
examplescenariodepictedin Fig. 4. The sentence
put the apple in the bowl on the table hastwo differ-
ent syntacticanalyses:In the first, the bowl on the
table is the target of the put actionwhereasin the
second,in the bowl modifiesthe apple. Now, note
thatin thefirst reading,wewill gettwo possibleref-
erentsfor the apple, whereasin thesecondreading
the apple in the bowl is unique.In caseslike thiswe
pick outthereadingwhichonly includesuniqueref-
erences(reading2 in thepresentexample).Thisap-
proachassumesthattheplayersarecooperative and
try to referunambiguously. It is furthermoresimilar
to what peopleseemto do. Psycholinguisticeye-
tracking studies(Chamberset al., 2000) indicate
thatpeoplepreferinterpretationswith unambiguous
references:subjectswho are facedwith scenarios
similar to Fig. 4 andhearthe sentenceput the ap-
ple in the bowl on the table do not look at thebowl
on the tableat all but only at theapplein thebowl
(which is unique)andthetable.

At thispoint,therecanstill bemorethanonesyn-
tacticreadingleft; if so,all of thesewill haveunam-
biguous,uniquereferents.In suchacasewe cannot
decidewhich syntacticreadingthe player meant,
andasktheplayertogivethegamealessambiguous
command.

6 Conclusionand Outlook

We have describedan enginefor text adventures
which usestechniquesfrom computationallinguis-
tics to make theinteractionwith thegamemorenat-
ural. The input is analyzedusing a dependency
parserand a simple referenceresolutionmodule,
and the output is producedby a small generation
system. Information about the world and about
the player’s knowledge is representedin descrip-
tion logic knowledgebases,and accessedthrough

a state-of-the-artinferencesystem. Most modules
usetheinferencecomponent;to illustrateits useful-
ness,we have lookedmorecloselyat theresolution
andgenerationof referringexpressions,andat the
resolutionof referentialandsyntacticambiguities.

Preliminaryexperimentsindicatethat theperfor-
manceof our gameengineis goodenoughfor flu-
ent gameplay. The constraintbaseddependency
parserwe usefor parsingandgenerationachieves
very goodaveragecaseruntimeson the grammars
and inputs we use. More interestingly, the infer-
encesystemalsoperformsvery well. With thecur-
rentknowledgebases,reasoningontheworldmodel
anduserknowledgetakes546msper turn on aver-
age(with a meanof 39 queriesperturn). How well
this performancescalesto biggergameworlds re-
mainsto be seen.Onelessonwe take from this is
that therecentprogressin optimizinginferenceen-
ginesfor expressive descriptionlogics is beginning
to make themusefulfor applications.

All the language-processingmodulesin our sys-
temarerathersimplistic.Wecangetawaywith this
becausetheutterancesthatplayersseemto want to
producein this settingarerestricted,e.g. to objects
in thesamesimulated“location” astheplayer. (The
preciseextentof this,of course,remainsto beeval-
uated.)Theresultis a systemwhich exceedstradi-
tionaltext adventuresby far in theflexibility offered
to theuser.

Unlike the input, the output that our gamegen-
eratesis far away from the quality of the com-
mercial text adventuresof the eighties,which pro-
ducedcannedtexts, sometimeswritten by profes-
sionalbookauthors.A possiblesolutioncouldbeto
combinethe full generationwith a templatebased
approach,to which the TAG-basedgenerationap-
proachwetake lendsitself well. Anotherproblemis
thegenerationof errormessagesaskingtheuserto
resolve anambiguousinput. Thegameshouldide-
ally generateandpresentthe playerwith a choice
of possible(unambiguous)readings. So, the gen-
erationstrategy would have to be augmentedwith
somekind of monitoring,suchastheoneproposed
by Neumannand van Noord (1994). Finally, we
want to comeup with a way of synchronizingthe
grammarsfor parsingandgeneration,in orderto en-
surethatexpressionsusedby thegamecanalways
beusedby theplayeraswell.

Thesystemis designedin awaythatshouldmake
it reasonablyeasyto replaceour simple modules
by moresophisticatedones. We will shortly make

our adventureengineavailable over the web, and
want to invite colleaguesandstudentsto test their
own languageprocessingmoduleswithin our sys-
tem. Generally, we believe that the prototypecan
serve as a starting point for an almost unlimited
rangeof extensions.

References
C.G.Chambers,M.K. Tanenhaus,andJ.S.Magnu-

son.2000.Doesreal-world knowledgemodulate
referentialeffects on PP-attachment?Evidence
from eyemovementsin spokenlanguagecompre-
hension. In 14th CUNY Conference on Human
Sentence Processing.

R. Dale and N. Haddock. 1991. Generatingre-
ferring expressionsinvolving relations.In EACL
’91.

R. Dale andE. Reiter. 1995. Computationalinter-
pretationsof the griceanmaximsin the genera-
tion of referringexpressions.Cognitive Science,
18.

D. DuchierandR. Debusmann.2001. Topological
dependency trees:A constraint-basedaccountof
linearprecedence.In ACL ’01.

V. Haarslev andR. Möller. 2001. RACERSystem
Description.In IJCAR ’01.

I. Horrocks,U. Sattler, andS.Tobies.1999.Practi-
calreasoningfor expressivedescriptionlogics. In
H. Ganzinger, D. McAllester, andA. Voronkov,
editors,LPAR’99.

A. Koller and K. Striegnitz. 2002. Generationas
dependency parsing.In ACL ’02.

D. Ledgard.1999. SpaceStation. Text adventure,
modelledafter a sampletranscriptof Infocom’s
Planetfall game. http://members.tripod.
com/˜infoscripts/planetfa.htm .

Mozart Consortium. 1999. The Mozart Pro-
gramming System web pages.http://www.
mozart- oz.org/ .

G. Neumann and G.-J. van Noord. 1994.
Self-monitoring with reversible grammars. In
T. Strzalkowski, editor, Reversible Grammar in
Natural Language Processing.

W. Schuler. 2001. Computationalpropertiesof
environment-baseddisambiguation.In ACL ’01.

M. Strube.1998.NeverLook Back:An Alternative
to Centering.In COLING-ACL ’98.

W. Woodsand J. Schmolze.1992. The KL-ONE
Family. Computer and Mathematics with Appli-
cations, 23(2–5).

