Generation as Dependency Parsing

AlexanderKoller andKristina Striegnitz
{kol I er|kris}@oli.uni-sh.de
Dept. of ComputationaLinguistics,SaarlandJniversity

Abstract

Natural-LanguageGenerationfrom flat
semanticsis an NP-completeproblem.
This makes it necessaryto develop al-

gorithms that run with reasonableeffi-

cieng in practicedespitethe high worst-
casecomplity. We shaw how to con-
vert TAG generationproblemsinto de-
pendeng parsingproblemswhichis use-
ful becausethe optimizationsin recent
dependengc parsersbasedon constraint
programmingackleexactly thecombina-
toricsthatmalke generatiorhard. Indeed,
initial experimentslisplaypromisingrun-
times.

1 Introduction

Existing algorithmsfor realizationfrom aflat input
semanticsall have runtimeswhich are exponential
in the worst case. Several differentapproacheso
improving the runtime in practicehave beensug-
gestedn theliterature—e.g. heuristic§Brew, 1992)
andfactorizationsnto smallerexponentialsubprob-
lems(Kay, 1996; Carroll etal., 1999). While these
solutionsachiere somemeasuref successn mak-
ing realizationefficient, the contrasin efficiengy to
parsingis striking bothin theoryandin practice.
The problematic runtimes of generationalgo-
rithmsareexplainedby thefactthatrealizationis an
NP-completeproblemeven usingjust contet-free
grammarsasBrew (1992 shavedin thecontet of
shale-and-bak generationThefirst contribution of
our paperis a proof of a strongeMNP-completeness
result: If weallow semantidndicesin thegrammay
realizationis NP-completeeven if we fix a single
grammar Our alternatve proof shavs very clearly
thatthe combinatoricsn generatiorcomefrom ex-
actly the samesourcesasin parsingfor free word
orderlanguageslt hasbeennotedin theliterature
that this problem,too, becomedNP-completevery
easily(Bartonetal.,1987;Suhre,1999).

The main point of this paperis to shav how
to encode generationwith tree-adjoining gram-
mars (TAG) as a parsing problem with depen-
deny grammargDG). Theparticularvariantof DG
we use, TopologicalDependeng Grammar(TDG)
(Duchier 2002; Duchier and Delusmann,2001),
wasdevelopedspecificallywith efficient parsingfor
free word orderlanguagesn mind. The mereexis-
tenceof this encodingproves TDG’s parsingprob-
lem NP-completeaswell, a resultwhich hasbeen
conjecturedbut never formally shavn sofar. But it
turns out that the compleities that arisein gener
ation problemsin practiceseemto be preciselyof
thesortthatthe TDG parsercanhandlewell. Initial
experimentswith generatingrom the XTAG gram-
mar (XTAG ResearchGroup, 2001) indicate that
our generatiorsystemis competitve with state-of-
the-artchartgeneratorsandindeedseemso runin
polynomialtime in practice.

Next to the attractie runtime behaiour, our ap-
proachto realizationis interestingbecauseat may
provide us with a different angle from which to
look for tractablefragmentsof the generalrealiza-
tion problem.As wewill shav, thecomputatiorthat
takesplacein our systemis very differentfrom that
in a chartgeneratgrand may be more efficient in
somecasedy takinginto accountglobal informa-
tion to guidelocal choices.

Plan of the Paper. Wewill definetheproblemwe
wantto tacklein Section2, andthenshaw thatit is
NP-complete(Section3). In Section4, we sketch
the dependenc grammarformalismwe use. Sec-
tion 5 is the heartof the paper: We shav how to
encodeTAG generationas TDG parsing,and dis-
cusssomeexamplesandruntimes.We compareour
approacho someothersin Section6, andconclude
anddiscusdutureresearchn Section?.

2 TheRealization Problem

In this paper we deal with the subtaskof natural
languagegeneratiorknowvn as surface realization:

givenagrammaranda semantiaepresentatiorthe
problemis to find a sentencavhich is grammatical
accordingo thegrammarandexpresseshe content
of thesemantiaepresentation.

Often a flat semanticrepresentatioris usedfor
specifyingthe semantianput to circumwent having
to worry aboutthe structureof logical formulas. In
this tradition, we assumehe semanticinput to be
a multiset (i.e. multiplicity of elementscounts)of
groundatomsof first orderlogic, suchasbuy(e,a,b).

As our grammar formalism, we use tree-
adjoininggrammargJoshiandSchabes]997).Fol-
lowing Kay (1996 andStoneandDoran(1997), we
associatemonterminahodesn theelementantrees
with index variablesthat can be boundto ground
termsin theinput. We assumehattherootnode all
substitutionnodes andall nodesthatadmitadjunc-
tion carry suchindex variables. Furthermore we
assigna semanticgo every elementantree,sothat
lexical entriesare pairsof theform (¢, T), whered
is a multisetof semanticatoms,andT is aninitial

or auxiliarytree,e.g. S:x
RN
NPyl VP:x
({buy(xy2}, /N
V:x NPz}
I
buys

Whenthelexicon is accessedx, y, z getboundto
termsoccurringin the semantidnput, e.g.e,a, b in
our example.Sincewe furthermoreassumehatev-
ery index variablethat appearsn T also appears
in ¢, this meanghatall indicesoccurringin T get
boundatthis stage.

The semanticsof a compl« treeis the multiset
union of the semanticof the elementarytreesin-
volved. Now we saythattherealization problem of
aTAG grammairG is to decidefor agiveninput se-
manticsS andanindex i whetherthereis a deriva-
tion tree which is grammaticalaccordingto G, is
assignedhe semanticsS, andwhoseroot nodehas
theindex i.

3 NP-Completeness of Realization

This definition is the simplestconcevable formal-
ization of problemsoccurringin surfacerealization
as a decisionproblem: It doesnot even require
us to computea single actual realization, just to
checkwhetherone exists. Every practicalgenera-

B:i
RN

Nil Ek Bkl

a2| ¢
/7 \

| eating CJ
e sem: {edge(i,k)}
sem:{edge(i k) }
N:i B:1 c
| /\ l
n eat CJ ate

sem:{node(i)} sem:{start-eating} sem:{end-eating}
Figurel: ThegrammarGpam.

tion systemgeneratingrom flat semanticsvill have
to solve this problemin oneform or another

Now we shaw thatthis problemis NP-complete.
A similar resultwasprovedin the contet of shale-
and-bak generatiorby Brew (1992, but heneeded
to usethe grammarin his encoding,which leaves
the possibility openthat for every single grammar
G, theremight be a realizationalgorithm tailored
specificallyto G whichstill runsin polynomialtime.
Our result is strongerin that we define a single
grammarGpam whoserealizationproblemis NP-
completein the above sense.Furthermorewe find
thatour proofbringsoutthe source®f thecomple-
ity moreclearly Gpam doesnot permitadjunction,
hencethe resultalso holds for contet-free gram-
marswith indices.

The proof is by reducing le«~ 42

the well-knovn HAMILTONIAN- \\//
PATH problemto the realization .
problem.HAMILTONIAN-PATH is 3

the problemof decidingwhethera directedgraph
hasa cycle thatvisits eachnodeexactly once. The
examplegraphshawn to theright, for instancehas
theHamiltoniancycle (1,3,2,1).

We will now constructan LTAG grammarGnam
suchthat every graphG = (V,E) canbe encoded
asasemantidnput Sfor the realizationproblemof
Gham, Which canbe verbalizedif andonly if G has
aHamiltoniancycle. Sis definedasfollows:

S = {node(i)|ieV}
U {edge(i,k) | (i,k) € E}
U {start-eating, end-eating}.

The grammarGpam is given in Fig. 1; the start
symbolis B, andwe wanttherootto have index 1.
Thetreea; modelsan edgetransitionfrom nodei
to thenodek by consuminghe semantieencodings

B:1
P IS
N:1l E3 B3]
- | .
e

NI:l °
n N:3 | EI:2 B:2|
€ B:2
NI.3 PN
n N:2) Ex1 Bl
.' | "
N:2 € Bl
r'1 eat Cl
2N
eating C|
c
|
ate

Figure2: A derivationwith Gngy, correspondindo
aHamiltoniancycle.

of this edgeand(by way of a substitutionof a3) of
thenodei. The secondsubstitutionnodeof a; can
befilled eitherby anotheras, in which way a path
throughthegraphis modelled or by anag, in which
casewe switch to an “edge eatingmode”. In this
mode,we canarbitrarily consumeesdgesusing oo,
andclosethe treewith as whenwe're done. This
is illustratedin Fig. 2, thetreecorrespondingo the
cycle in theexamplegraphabove.

TheHamiltoniancycle of thegraph,if oneexists,
is representeth theindicesof the B nodes.Thelist
of thesandicesis apathin thegraph,asthea trees
modeledgetransitionsijt is acycle becausdt starts
in 1 andendsin 1; andit visits eachnodeexactly
once,for we useexactly onea; treefor eachnode
literal. The edgeswhich werent usedin the cycle
canbe consumedn theedgeeatingmode.

The main sourcefor the combinatoricof there-
alization problemis thusthe interactionof lexical
ambiguityandthe completelyfree orderin the flat
semanticsOncewe have choserbetweero; andas
in therealizationof eachedge literal, we have deter
minedwhichedgeshouldbepartof theprospecire
Hamiltoniancycle, and checkingwhetherit really
is onecanbe donein lineartime. If, onthe other
hand,the order of the input placedrestrictionson
the structureof the derivation tree,we would again
have informationthattold uswhento switchinto the
edgeeatingmode,i.e. which edgesshouldbe part
of thecycle. A third sourceof combinatoricsvhich
doesnotbecomesoclearin thisencodings thecon-
figuration of the elementantrees. Even whenwe

5\)‘0\/:'\

Op;.
: s
peter likes mary
Figure3: TDG parsetreefor “PeterlikesMary.”

have committedto the lexical entries,it is concev-
ablethatonly oneparticularway of pluggingthem
into eachotheris grammatical.

4 Topological Dependency Grammar

Thesefactorsareexactly thesamehatmake depen-
dengy parsingfor free word order languagedliffi-
cult, and it seemsworthwhile to seewhetherop-
timized parserdor dependenc grammarscanalso
contritute to making generatiorefficient. We now
sketch a dependengc formalismwhich hasan effi-
cientparserandthendiscusssomeof theimportant
propertiesof this parser In thenext section we will
seehow to emplgy the parserfor generation.

4.1 TheGrammar Formalism

The exact flavour of dependenc grammarformal-
ism we use is topological dependency grammar
(TDG) (Duchier and Detusmann,2001; Duchier
2002). As is commonfor dependengcformalisms,
theparsetreesof TDG aretreeswhosenodescorre-
spondone-to-ondo the wordsof the sentenceand
whoseedgesare labelled,e.g. with syntacticrela-
tions. Fig. 3 givesan exampleof suchatree. The
treesare unorderedj.e. thereis no intrinsic order
amongthe childrenof a node. Word orderin TDG
is initially completelyfree, but thereis a separate
mechanisnto specify constraintson linear prece-
dence.Sincecompletelyfree orderis whatwe want
for the realizationproblem,we do not needthese
mechanismanddo notgointo themhere.

Thelexicon assigngo eachword a setof lexical
entries;in a parsetree,one of theselexical entries
hasto be picked for eachnode. The lexical entry
specifieswhat labelsare allowed on the incoming
edge(the nodes labels) and what kinds of edges
cango out (the nodes valency). Herearesomeex-
amples:

word | labels | valeny
likes 0 {subj,obj,advx}
Peter | {subj,obj} 0

Mary | {subj,obj})

Thelexical entryfor “lik es” specifieghatthe corre-
spondingnodedoesnot acceptary incomingedges
(andhencemustbe the root), musthave precisely
onesubjectandoneobjectedgegoing out, andcan
have arbitrarily mary outgoingedgeswith labeladv
(indicatedby *). Thenodedfor “Peter” and“Mary”
bothrequiretheirincomingedgeto belabelledwith
eithersubj or obj andneitherrequirenor allow ary
outgoingedges. In the full versionof the formal-
ism, it is also possibleto specify more advanced
constrainton edgeshut we do not usethesehere.
A well-formeddependenctreefor aninput sen-
tenceis simply a tree with the appropriatenodes,
whoseedgesobey the labels and valency restric-
tionsspecifiedoy thelexical entries.So, thetreein
Fig. 3 is well-formedaccordingo thelexicon given
above. Givenjust this lexicon, the treewhere“Pe-
ter” is the objectand“Mary” the subjectwould be
well-formedaswell; this canbe excludedby word-
orderrestrictionswhichwe won't discusshere.

4.2 TDG Parsing

Theparsingproblemof TDG canbeseerasasearch
problem: For eachnode, we mustchoosea lexi-
cal entry andthe correctmotherdaughterelations
it participatesn. Onestrengthof the TDG approach
is thatit is amenabldo strongsyntacticinferences
thattacklespecificallythethreesource®f comple-
ity mentionedabore.
Theparsingalgorithm(Duchier 2002)is statedn
the framework of constraint programming (Koller
and Niehren,2000), a generalapproachto coping
with combinatorialproblems. Before it explores
all choicesthat are possiblein a certain state of
the searchtree (distribution), it first tries to elim-
inate someof the choiceswhich definitely cannot
lead to a solution by simple inferences(propaga-
tions). Propagationshouldrunin polynomialtime;
the combinatoricss in the distribution stepsalone.
Thatis, it canstill happerthata searchspaceof ex-
ponentialsizehasto be explored,but strongpropa-
gationcanreduceits size,and may even make the
wholealgorithmrunin polynomialtimein practice.
The TDG parser translatesthe parsing prob-
lem into constraintsover (variablesdenoting)finite
setsof integers,asimplementedvery efficiently in
the Mozart programmingsystem(Oz Development
Team, 1999). This translationis complete: Solu-

tions of the setconstraintcanbe translatecbackto
correctdependeng trees. But for efficiency, the
parserusesadditional propagatordailored to the
specificinferencef the dependencproblem.For
instancejn the “PeterlikesMary” exampleabore,
one suchpropagatorcould contritute the informa-
tion that neitherthe “Peter” nor the “Mary” node
canbeanadv child of “lik es”, becauseneithercan
acceptanadv edge.Oncethechoicehasbeenmade
that“Peter”is thesubj child of “lik es”,apropagator
cancontritute that“Mary” mustbeits obj child, as
it is theonly candidatdor the (obligatory)ob;j child
left anywherein thetree.

Finally, syntacticambiguityis handledby selec-
tion constraints. Theseconstraintsrestrict which
lexical entry should be picked for a node. When
all possiblelexical entrieshave someinformation
in common(e.g., that there must be an outgoing
subj edge),this informationis automaticallylifted
to the nodeand can be usedby the otherpropaga-
tors. Thusit is sometimeseven possibleto finish
parsingwithout committingto singlelexical entries
for somenodes.

5 Generation as Dependency Parsing

Now thatwe know the target grammarformalism,
we can definethe encodingof TAG generationas
TDG parsingproblems. Thenwe give an exam-
ple and discusssomeruntime results. Finally, we
considem particularrestrictionof our encodingand
waysof overcomingit.

5.1 TheEncoding

Let G be a (lexicalized or non-leicalized) TAG
whoselexical entriesare of the form (¢, T) asde-
scribedin Section2. We male the following sim-
plifying assumptionsFirst, we assumehatthe el-
ementarytreesof G are simply contet-free trees
which arenot decoratedvith featurestructuregbut
with index variablesas abore). Next, we assume
that wheneer we canadjoin an auxiliary tree at a
node,we canadjoinan arbitrarynumberof treesat
this node. The idea of multiple adjunctionis not
new (Schabesand Shieber 1994), but it is simpli-
fied herebecauseve disregardcomple adjunction
constraintsWewill discusghesewo restrictionsn
the conclusion.Finally, we assumehat every lexi-

m—
: 5 Subst
\os‘t*?'«‘s NReL oA
: P : substued
: : adJN;C\D
start mary buy car indef red

Figure 4. Dependeng tree for “Mary buys a red
car’

cal semanticsh haspreciselyonemember;this re-
strictionwill belifted in Section5.4.

Now let's say we want to find the realizations
of the input semanticsS= {¢1,...,n}, usingthe
grammarG. The input “sentence”of the pars-
ing problemwe constructfrom this is the sequence
{gart} US, where start is a special start sym-
bol. The parsetree will correspondvery closely
to the TAG derivation tree, its nodesstandingfor
theinstantiatecelementaryreesthatareusedin the
derivation.

To this end, we usetwo typesof edgelabels—
substitutionand adjunctionlabels. An edgewith a
substitutionlabel substa ; , from the nodea to the
nodef3 (both of which standfor elementarytrees)
indicateghatf3 shouldbepluggedinto the p-th sub-
stitutionnodein a thathaslabel A andindex i. We
write subst(A) for the maximumnumberof occur
rencesf A asthelabelof substitutionnodesin ary
elementaryreeof G; thisis themaximumvaluethat
p cantake.

An edgewith anadjunctionlabeladj, ; froma to
[specifieghatf is adjoinedat somenodewithin a
carryinglabel A andindex i andadmittingadjunc-
tion. It doesnot matterfor our purposedo which
nodein a 3 is adjoinedexactly; the choice can-
notaffectgrammaticalitypecausehereis nofeature
unificationinvolved.

The dependenc grammarencodeshow an ele-
mentarytree can be usedin a TAG derivation by
restrictingthe labelsof the incomingand outgoing
edgewialabels andvalency requirementé thelex-
icon. Let's saythat T is an elementarytree of G
which hasbeenmatchedwith theinputatomé,, in-
stantiatingts index variables Let A bethelabeland
i theindex of therootof T. If T is anauxiliarytree,
it acceptsncomingadjunctionedgedor Aandi, i.e.
it getsthelabels value{adj,;}. If T isaninitial tree,

it will acceptarbitraryincomingsubstitutionedges
for Aandi, i.e. its labels valueis

{substajp|1< p<subst(A)}

In eithercase,T will requirepreciselyone out-
going substitutionedgefor eachof its substitution
nodesandit will allow arbitrarynumbersof outgo-
ing adjunctionedgesfor eachnodewherewe can
adjoin. Thatis, thevalency valueis asfollows:

{substa p | ex. substitutionnodeN in T
s.t. Ais label,i isindex of N, and
N is p-th substitutiomodefor Ain T}
U {adja; * | ex. nodewith label A, index i
in T which admitsadjunctior}

We obtain the set of all lexicon entriesfor the
atomd, by encodingall TAG lexicon entrieswhich
matchd, asjust specified.The startsymbol,sart,
getsa speciallexicon entry: Its labels entryis the
emptyset(i.e. it mustbecometheroot of thetree),
andits valency entryis theset{substsy 1}, wherek
is the semantiandex with which generatiorshould
start.

5.2 An Example

Now let us go throughan exampleto make these
definitionsa bit clearer Let’s saywe wantto ver
balizethe semantics

{name(m, mary), buy(e,m, c),
car(c),indef(c),red(c)}

TheLTAG grammarwe usecontaingheelemen-
tary treeswhich areusedin thetreein Fig. 5, along
with the obvious semanticswe wantto generatea
sentencestartingwith themainevente. Theencod-
ing producesthe following dependenc grammar;
the entriesin the “atom” columnareto bereadas
abbreviations of the actualatomsin the input se-
mantics.

atom | labels valeny

start | 0 {SUbStSal}

buy {SUbStSe’l} {substNRC’l,substhml,

adjypex; adjy et}

mary | {substnpmz, | {adjnp1*,adjpnm*}
SubStNRmz}

indef {SUbStNP,C,l; {adjNRc*}
su bSth’C’z}

car | {substnci} | {adjnc*}

red | {ading} |0

Sie
<N
NP:m] VP:e

. / N .
PN:m buys NP:c
1 /N
Mary Detadi Nic|
Lo
N:c " --.N:c
’ N . - |
Adjnadl N:cx car
réd

Figureb: Derivedtreefor “Mary buysaredcar”

If we parsethe“sentence”
start mary buy car indef red

with this grammay leaving the word order com-
pletely open, we obtain precisely one parsetree,
shavn in Fig. 4. Readingthis parseas a TAG
deriation tree,we canreconstructhe derived tree
in Fig. 5, which indeedproducesghe string “Mary
buysaredcar”.

5.3 Implementation and Evaluation

The overall realizationalgorithm we proposeen-
codesthe input problemasa DG parsingproblem
andthenrunsthe parserdescribedn Section4.2,
which is freely available over the Web, as a black
box. Becauseaheinformationlifted to the nodesby
the selectionconstraintsmay be strongenoughto
computethe parsetree without ever committingto
uniguelexical entries,the completeparsemay still

containsomelexical ambiguity Thisis noproblem,
however, becauset is guaranteedhat every com-
binationof choiceswill be grammatical.Similarly,

a nodecan have multiple children over adjunction
edgeswith the samelabel, andtheremay be more
thanonenodein theupperelementartreeto which
thelower treecouldbeadjoined.Again, all remain-

ing combinationsareguaranteetb be grammatical.

In orderto measurethe performanceof our re-
alization algorithm, and compareit to the stateof
theart, we have tried generatinghe following sen-
tences,which are examplesfrom (Carroll et al.,
1999):

(1) Themanagein thatoffice intervieveda nen
consultanfrom Germauy.

(2) Ourmanageorganizedanunusualkldditional
weeklydepartmentatonference.

We have corvertedthe XTAG grammar(XTAG
ResearchGroup, 2001) into our grammarformat,
automaticallyaddingindicesto the nodesof the el-
ementarytrees,removing features simplifying ad-
junctionconstraintsandaddingartificial lexical se-
manticsthatconsistsof thewordsat the lexical an-
chorsandthe indicesusedin the respecitie trees.
It turnsout that the dependengc parserscalesvery
nicely to the higher degree of lexical ambiguity:
Thesentencél) is generatedn 1.4 secondgasop-
posedto Carroll et al’s 1.8 seconds)whereaswe
generatg?2) in about800 milliseconds(asopposed
to 4.3 seconds.

The mostencouragingaspectof theseresultsis
that despitethe increasedlexical ambiguity the
parser gets by without ever making ary wrong
choices,which meansthat it runsin polynomial
time, on the exampleswe have tried. This is pos-
sible becauseon the one hand, the selectioncon-
straintautomaticallyjcompressethemary different
elementarytreesthat XTAG assignse.g. to verbs
into very few classesOn the otherhand,the prop-
agationthat rulesoutimpossibleedgess so strong
thatthefreeinput orderdoesnot make the configu-
rationproblemmuchharderin practice.Finally, our
treatmentbof modificationallows usto multiply out
the possiblepermutationsn a postprocessingtep,
after the parserhas donethe hard work. A par
ticularly striking exampleis (2), wherethe parser
gives us a single solution, which multiplies out to
312 = 13- 4! differentrealizations. (The 13 basic
realizationcorrespondo differentsyntacticframes
for the main verbin the XTAG grammay e.g. for
topicalizedor passie constructions.)

54 More Complex Semantics

Sofar, we have only considered’AG grammarsn
which eachelementarytreeis assignedh semantics
that containspreciselyone atom. However, there
are caseswhere an elementarytree either hasan
emptysemanticspr a semanticghat containsmul-
tiple atoms. The first casecan be avoided by ex-
ploiting TAG’s extendeddomainof locality, seee.g.
(GardentandThater 2001).In this sectionwe offer
somethoughtson how to dealwith casesvherethe
semanticdiaslengthmorethanone.

1ourtimesweremeasuredn a 700 MHz Pentium-1I1PC.

The simplestpossibleway for dealingwith the
problemis to preprocesshe input into several dif-
ferentparsingproblems. In a first step,we collect
all possibleinstantiationsof LTAG lexical entries
matchingsubsetf the semantics. Thenwe con-
structall partitionsof the input semanticsn which
eachblockin thepartitionis coveredby alexical en-
try, andbuild aparsingproblemin which eachblock
is onesymbolin the sentenceo beparsed.

Thisseemdo work quitewell in practice asthere
are usually not mary possiblepartitions. In the
worstcase however, this approachproducesanex-
ponentialnumberof parsingproblems.Indeed,us-
ing a variantof the grammarfrom Section3, it is
easyto shav thatthe problemof decidingwhether
thereis a partition whoseparsingproblemcan be
solvedis NP-completeaswell. For this reasonwe
have put somepreliminary work into pushingthe
partitioningprocessnto the parseraswell. Oneal-
ternatve thatwe wantto exploreis thatwhenaeran
elementantreeT hasa semanticof lengthk > 1,
we could add k — 1 temporaryone-nodeelemen-
tary treesto the grammarwhich canonly be used
in conjunctionwith T, anddistribute the semantics
overthetemporarytrees restoringthe original con-
dition. We expectthis will not hurt the runtimeall
thatmuch,but theexacteffectremainsto be seen.

6 Comparison to Other Approaches

Theperspectie onrealizationthatour systentakes
is quite differentfrom previous approachesin this
section,we relateit to chartgeneratior(Kay, 1996;
Carrolletal., 1999)andto anotherconstraint-based
approacGardenandThater 2001).

In chartapproacheso realization,the main idea
isto minimizethenecessargomputatiorby reusing
partial resultsthat have beencomputedbefore. In
the settingof fixed word order parsing,this brings
an immenseincreasein efficiengy. In generation,
however, the NP-completenesmanifestsitself in
chartsof worst-casexponentialsize.In addition,it
canhapperthatsubstructurearebuilt whicharenot
usedin the final realization,especiallywhen pro-
cessingnodifications.

By contrast,our systemconfiguresnodesinto
a dependeng tree. It solves a searchproblem,
madeup by choicesfor motherdaughterrelations

in thetree. Propagationyhich runsin polynomial
time, hasaccesdgo global information (illustrated
in Section4.2) and can thus rule out impossible
motherdaughtermrelationsefficiently; every propa-
gation stepthat takes placeactually contritutesto
zoomingin onthepossiblerealizations Our system
canshav exponentialruntimeswhen the distribu-
tionsspana searchreeof exponentialsize.

GardentandThater(2001) also proposea con-
straintbasedapproacto generatiorworking with a
variantof TAG. However, the performanceof their
systemdecreasesapidly as the input gets larger
evenwhenwhenworking with atoy grammar The
main differencebetweentheir approachand ours
seemsto be that their algorithm tries to construct
a derived tree, while oursbuilds a derivation tree.
Our parseronly hasto deal with information that
is essentiato solve the combinatorialproblem,and
note.g.with theinternalstructureof theelementary
trees.Thereconstructiorof the derived tree,which
is cheaponcethederivationtreehasbeencomputed,
is delegatedto apost-processingtep.Workingwith
derivation trees,Gardentand Thater(2001) cannot
ignore ary information and have to computerela-
tionshipsbetweennodesat a point wherethey are
notrelevant.

7 Conclusion

Generationfrom flat semanticds an NP-complete
problem. In this paper we have first given an al-
ternatve proof for this fact, which works even for
a fixed grammarand makes the connectionto the
compleity of free word orderparsingclearly visi-
ble. Thenwe have shavn how to translatethe re-
alizationproblemof TAG into parsingproblemsof
topologicaldependenc grammay and argued how
the optimizationsin the dependengcparser which
wereoriginally developedfor freeword orderpars-
ing —helpreducetheruntimefor thegeneratiorsys-
tem. This reductionshawvs in passinghatthe pars-
ing problemfor TDG is NP-completeaswell, which
hasbeenconjecturedbut never proved.

The NP-completenessgesult for the realization
problem explains immediately why all existing
complete generationalgorithms have exponential
runtimesin theworstcase.As our proof shaws, the
main sourcesof the combinatoricsare the interac-

tion of lexical ambiguityandtreeconfiguratiorwith
thecompletelyunorderechatureof theinput. Mod-
ificationis importantanddeserescarefultreatment
(andindeed,our systemdealsvery gracefullywith
it), but it is not asintrinsically importantas some
of theliteraturesuggestsour proof getsby without
modification.

By using techniquesfrom constraintprogram-
ming, the dependeng parserseemsto coperather
well with the combinatoricsof generation. Prop-
agatorscanrule out impossiblelocal structureson
the groundsof global information, and selection
constraintgreatlyalleviate the proliferationof lex-
ical ambiguity in large TAG grammarsby mak-
ing sharedinformation available without having to
commit to specificlexical entries. Initial experi-
mentswith the XTAG grammaiindicatethatwe can
generatracticalexamplesn polynomialtime,and
aremorethancompetitve with state-of-the-anteal-
izationsystemsn termsof raw runtime.

In thefuture,it will first of all benecessaryo lift
the restrictionswe have placedon the TAG gram-
mar: So far, the nodesof the elementantreesare
only equippedwith nonterminallabelsandindices,
not with generalfeaturestructures,and we allow
only arestrictedform of adjunctionconstraints.lIt
shouldbe possibleto eitherencodetheseconstruc-
tionsdirectlyin thedependencgrammarwhichal-
lows userdefinedfeaturestoo), or filter out wrong
realizationdn a post-processingtep. The effect of
suchextensionson theruntimeremaingo beseen.

Finally, we expectthat despitethe generalNP-
completenesgherearerestrictedgeneratiorprob-
lemswhich canbe solved in polynomialtime, but
still containall problemsthatactuallyarisefor nat-
ural language.The resultsof this paperopenup a
new perspectie from which suchrestrictionscanbe
sought,especiallyconsideringthat all the natural-
languagexampleswetried areindeedprocesseth
polynomialtime. The next naturalstepis thento
consideralgorithmsfor identifying the best possi-
ble realization. This problemprobablyintroduces
awhole new level of compleity, but a polynomial
algorithmfor the realizationproblemwould be the
perfectstartingpointfor its exploration.

References

G. Edward Barton, RobertC. Berwick, and Eric Sven
Ristad. 1987. Computational Complexity and Natu-
ral Language. MIT PressCambridgeMass.

ChrisBrew. 1992. Letting the catout of the bag: Gen-
erationfor Shale-and-Bak MT. In Proceedings of
COLING-92, pages10-616Nantes.

JohnCarroll, Ann Copestak, Dan Flickinger, and Vic-
tor Poznanski.1999. An efficient chartgeneratoffor
(semi-)leicalistgrammars.n Proceedings of the 7th
European Workshop on NLG, pages36—95,Toulouse.

Derys DuchierandRalphDebusmann.2001. Topolog-
ical dependengtrees:A constraint-basedccountof
linear precedence.In Proceedings of the 39th ACL,
Toulouse France.

Derys Duchier 2002. Configurationof labeledtrees
underlexicalized constraintsand principles. Journal
of Language and Computation. To appear

Claire Gardentand Stefan Thater 2001. Generat-
ing with a grammarbasedon tree descriptions: A
constraint-basedpproachln Proceedings of the 39th
ACL, Toulouse.

Aravind JoshiandYvesSchabes1997. Tree-Adjoining
Grammarsin G. Rozenbeg andA. Salomaagditors,
Handbook of Formal Languages, chapter2, page9—
123.SpringerVerlag,Berlin.

Martin Kay. 1996. Chartgeneration.In Proceedings of
the 34th Annual Meeting of the ACL, pages200-204,
SantaCruz.

AlexanderKoller and JoachimNiehren. 2000. Con-
straintprogrammingn computationalinguistics. To
appeain Proceedingsf LLC8, CSLI Press.

Oz DevelopmentTeam. 1999. The Mozart Program-
ming Systemweb pages.htt p: // www. nozart - 0z.
orgl.

Yves Schabesand Stuart Shieber 1994. An alterna-
tive conceptionof tree-adjoiningderivation. Compu-
tational Linguistics, 20(1):91-124.

Matthewv StoneandChristyDoran.1997. Sentencglan-
ning asdescriptionusingtree-adjoininggrammar In
Proceedings of the 35th ACL, pagesl98-205.

Oliver Suhre. 1999. Computationabspectof a gram-
mar formalism for languageswith freer word ordet
Mastersthesis Departmenof Informatics,Eberhard-
Karls-Uniersitat Tubingen.

XTAG Researclsroup. 2001. A lexicalizedtreeadjoin-
ing grammarfor english. TechnicalReportIRCS-01-
03,IRCS, Universityof Pennsylania.

