
Generation as Dependency Parsing

AlexanderKoller andKristina Striegnitz
{koller|kris}@coli.uni-sb.de

Dept.of ComputationalLinguistics,SaarlandUniversity

Abstract

Natural-LanguageGenerationfrom flat
semanticsis an NP-completeproblem.
This makes it necessaryto develop al-
gorithms that run with reasonableeffi-
ciency in practicedespitethehigh worst-
casecomplexity. We show how to con-
vert TAG generationproblemsinto de-
pendency parsingproblems,whichis use-
ful becausethe optimizationsin recent
dependency parsersbasedon constraint
programmingtackleexactly thecombina-
toricsthatmake generationhard. Indeed,
initial experimentsdisplaypromisingrun-
times.

1 Introduction

Existingalgorithmsfor realizationfrom a flat input
semanticsall have runtimeswhich areexponential
in the worst case. Several different approachesto
improving the runtime in practicehave beensug-
gestedin theliterature– e.g.heuristics(Brew, 1992)
andfactorizationsinto smallerexponentialsubprob-
lems(Kay, 1996;Carroll et al., 1999). While these
solutionsachieve somemeasureof successin mak-
ing realizationefficient, thecontrastin efficiency to
parsingis strikingbothin theoryandin practice.

The problematic runtimes of generationalgo-
rithmsareexplainedby thefactthatrealizationis an
NP-completeproblemeven using just context-free
grammars,asBrew (1992) showedin thecontext of
shake-and-bake generation.Thefirst contributionof
our paperis a proof of a strongerNP-completeness
result:If weallow semanticindicesin thegrammar,
realizationis NP-completeeven if we fix a single
grammar. Our alternative proof shows very clearly
that thecombinatoricsin generationcomefrom ex-
actly the samesourcesas in parsingfor free word
orderlanguages.It hasbeennotedin the literature
that this problem,too, becomesNP-completevery
easily(Bartonet al., 1987;Suhre,1999).

The main point of this paper is to show how
to encode generationwith tree-adjoining gram-
mars (TAG) as a parsing problem with depen-
dency grammars(DG).Theparticularvariantof DG
we use,TopologicalDependency Grammar(TDG)
(Duchier, 2002; Duchier and Debusmann,2001),
wasdevelopedspecificallywith efficientparsingfor
freeword orderlanguagesin mind. Themereexis-
tenceof this encodingprovesTDG’s parsingprob-
lem NP-completeaswell, a resultwhich hasbeen
conjecturedbut never formally shown sofar. But it
turnsout that the complexities that arisein gener-
ation problemsin practiceseemto be preciselyof
thesortthattheTDG parsercanhandlewell. Initial
experimentswith generatingfrom theXTAG gram-
mar (XTAG ResearchGroup, 2001) indicate that
our generationsystemis competitive with state-of-
the-artchartgenerators,andindeedseemsto run in
polynomialtime in practice.

Next to theattractive runtimebehaviour, our ap-
proachto realizationis interestingbecauseit may
provide us with a different angle from which to
look for tractablefragmentsof the generalrealiza-
tionproblem.As wewill show, thecomputationthat
takesplacein oursystemis very differentfrom that
in a chartgenerator, andmay be moreefficient in
somecasesby taking into accountglobal informa-
tion to guidelocal choices.

Plan of the Paper. Wewill definetheproblemwe
wantto tacklein Section2, andthenshow that it is
NP-complete(Section3). In Section4, we sketch
the dependency grammarformalismwe use. Sec-
tion 5 is the heartof the paper: We show how to
encodeTAG generationas TDG parsing,and dis-
cusssomeexamplesandruntimes.Wecompareour
approachto someothersin Section6, andconclude
anddiscussfutureresearchin Section7.

2 The Realization Problem

In this paper, we deal with the subtaskof natural
languagegenerationknown as surface realization:

1

givena grammaranda semanticrepresentation,the
problemis to find a sentencewhich is grammatical
accordingto thegrammarandexpressesthecontent
of thesemanticrepresentation.

Often a flat semanticrepresentationis usedfor
specifyingthesemanticinput to circumventhaving
to worry aboutthestructureof logical formulas.In
this tradition, we assumethe semanticinput to be
a multiset (i.e. multiplicity of elementscounts)of
groundatomsof first orderlogic, suchasbuy(e,a,b).

As our grammar formalism, we use tree-
adjoininggrammars(JoshiandSchabes,1997).Fol-
lowing Kay (1996) andStoneandDoran(1997), we
associatenonterminalnodesin theelementarytrees
with index variablesthat can be boundto ground
termsin theinput. Weassumethattherootnode,all
substitutionnodes,andall nodesthatadmitadjunc-
tion carry such index variables. Furthermore,we
assigna semanticsto every elementarytree,sothat
lexical entriesarepairsof theform

�
ϕ � T � , whereϕ

is a multisetof semanticatoms,andT is an initial
or auxiliary tree,e.g.

� �
buy(x,y,z) � �

S:x

NP:y � VP:x

V:x

buys

NP:z � �

Whenthelexicon is accessed,x � y � z getboundto
termsoccurringin thesemanticinput, e.g.e � a � b in
ourexample.Sincewe furthermoreassumethatev-
ery index variable that appearsin T also appears
in ϕ, this meansthat all indicesoccurringin T get
boundat this stage.

The semanticsof a complex tree is the multiset
union of the semanticsof the elementarytreesin-
volved. Now we saythattherealization problem of
a TAG grammarG is to decidefor agiveninput se-
manticsS andan index i whetherthereis a deriva-
tion tree which is grammaticalaccordingto G, is
assignedthesemanticsS, andwhoseroot nodehas
theindex i.

3 NP-Completeness of Realization

This definition is the simplestconceivable formal-
izationof problemsoccurringin surfacerealization
as a decisionproblem: It doesnot even require
us to computea single actual realization, just to
checkwhetheroneexists. Every practicalgenera-

α1 B:i

N:i � E:k

e

B:k �

sem: � edge(i,k) �

α2 C

eating C 	
sem:
 edge(i,k) �

α3 N:i

n
sem: � node(i)

α4 B:1

eat C �
sem: � start-eating �

α5 C

ate
sem: � end-eating �

Figure1: ThegrammarGham.

tion systemgeneratingfrom flat semanticswill have
to solve thisproblemin oneform or another.

Now we show that this problemis NP-complete.
A similar resultwasprovedin thecontext of shake-
and-bake generationby Brew (1992), but heneeded
to usethe grammarin his encoding,which leaves
the possibility openthat for every singlegrammar
G, theremight be a realizationalgorithm tailored
specificallyto G whichstill runsin polynomialtime.
Our result is strongerin that we define a single
grammarGham whoserealizationproblem is NP-
completein theabove sense.Furthermore,we find
thatourproofbringsoutthesourcesof thecomplex-
ity moreclearly. Gham doesnot permit adjunction,
hencethe result also holds for context-free gram-
marswith indices.

1 � � 2

�
3

The proof is by reducing
the well-known HAMILTONIAN-
PATH problem to the realization
problem.HAMILTONIAN-PATH is
the problemof decidingwhethera directedgraph
hasa cycle thatvisits eachnodeexactly once.The
examplegraphshown to theright, for instance,has
theHamiltoniancycle (1,3,2,1).

We will now constructan LTAG grammarGham

suchthat every graphG � �
V � E � can be encoded

asa semanticinput S for therealizationproblemof
Gham, which canbeverbalizedif andonly if G has
aHamiltoniancycle. S is definedasfollows:

S � �
node

�
i � � i � V �� �

edge
�
i � k � � �

i � k � � E �� �
start-eating � end-eating � �

The grammarGham is given in Fig. 1; the start
symbolis B, andwe want the root to have index 1.
The treeα1 modelsan edgetransitionfrom nodei
to thenodek by consumingthesemanticencodings

2

B:1

N:1 �
N:1

n

E:3

e

B:3 �
B:3

N:3 �
N:3

n

E:2

e

B:2 �
B:2

N:2 �
N:2

n

E:1

e

B:1 �
B:1

eat C �
C

eating C �
C

ate

Figure2: A derivation with Gham correspondingto
aHamiltoniancycle.

of this edgeand(by way of a substitutionof α3) of
thenodei. Thesecondsubstitutionnodeof α1 can
befilled eitherby anotherα1, in which way a path
throughthegraphis modelled,or by anα4, in which
casewe switch to an “edgeeatingmode”. In this
mode,we canarbitrarily consumeedgesusingα2,
andclosethe treewith α5 whenwe’re done. This
is illustratedin Fig. 2, thetreecorrespondingto the
cycle in theexamplegraphabove.

TheHamiltoniancycleof thegraph,if oneexists,
is representedin theindicesof theB nodes.Thelist
of theseindicesis apathin thegraph,astheα1 trees
modeledgetransitions;it is acyclebecauseit starts
in 1 andendsin 1; andit visits eachnodeexactly
once,for we useexactly oneα1 treefor eachnode
literal. The edgeswhich weren’t usedin the cycle
canbeconsumedin theedgeeatingmode.

Themainsourcefor thecombinatoricsof there-
alizationproblemis thus the interactionof lexical
ambiguityandthe completelyfree orderin the flat
semantics.Oncewehavechosenbetweenα1 andα2

in therealizationof eachedge literal,wehavedeter-
minedwhichedgesshouldbepartof theprospective
Hamiltoniancycle, andcheckingwhetherit really
is onecanbe donein linear time. If, on the other
hand,the order of the input placedrestrictionson
thestructureof thederivation tree,we would again
haveinformationthattolduswhentoswitchinto the
edgeeatingmode,i.e. which edgesshouldbe part
of thecycle. A third sourceof combinatoricswhich
doesnotbecomesoclearin thisencodingis thecon-
figurationof the elementarytrees. Even whenwe

peter likes mary

subj obj

Figure3: TDG parsetreefor “PeterlikesMary.”

have committedto the lexical entries,it is conceiv-
ablethatonly oneparticularway of pluggingthem
into eachotheris grammatical.

4 Topological Dependency Grammar

Thesefactorsareexactly thesamethatmakedepen-
dency parsingfor free word order languagesdiffi-
cult, and it seemsworthwhile to seewhetherop-
timized parsersfor dependency grammarscanalso
contribute to makinggenerationefficient. We now
sketcha dependency formalismwhich hasan effi-
cientparserandthendiscusssomeof theimportant
propertiesof thisparser. In thenext section,wewill
seehow to employ theparserfor generation.

4.1 The Grammar Formalism

The exact flavour of dependency grammarformal-
ism we use is topological dependency grammar
(TDG) (Duchier and Debusmann,2001; Duchier,
2002). As is commonfor dependency formalisms,
theparsetreesof TDG aretreeswhosenodescorre-
spondone-to-oneto thewordsof thesentence,and
whoseedgesarelabelled,e.g. with syntacticrela-
tions. Fig. 3 givesan exampleof sucha tree. The
treesareunordered,i.e. thereis no intrinsic order
amongthechildrenof a node.Word orderin TDG
is initially completelyfree, but thereis a separate
mechanismto specify constraintson linear prece-
dence.Sincecompletelyfreeorderis whatwewant
for the realizationproblem,we do not needthese
mechanismsanddo notgo into themhere.

Thelexicon assignsto eachword a setof lexical
entries;in a parsetree,oneof theselexical entries
hasto be picked for eachnode. The lexical entry
specifieswhat labelsareallowed on the incoming
edge(the node’s labels) and what kinds of edges
cango out (thenode’s valency). Herearesomeex-
amples:

word labels valency
likes /0

� � � � � � � � � � � ! " �
Peter

� � � � � � � � � � /0
Mary

� � � � � � � � � � /0

3

Thelexical entryfor “lik es”specifiesthatthecorre-
spondingnodedoesnot acceptany incomingedges
(andhencemustbe the root), musthave precisely
onesubjectandoneobjectedgegoingout, andcan
havearbitrarilymany outgoingedgeswith label � !
(indicatedby "). Thenodesfor “Peter” and“Mary”
bothrequiretheir incomingedgeto belabelledwith
either

� � � �
or � � �

andneitherrequirenor allow any
outgoingedges. In the full versionof the formal-
ism, it is also possibleto specify more advanced
constraintsonedges,but we donotusethesehere.

A well-formeddependency treefor aninput sen-
tenceis simply a tree with the appropriatenodes,
whoseedgesobey the labels and valency restric-
tionsspecifiedby thelexical entries.So,thetreein
Fig. 3 is well-formedaccordingto thelexicongiven
above. Given just this lexicon, the treewhere“Pe-
ter” is theobjectand“Mary” the subjectwould be
well-formedaswell; this canbeexcludedby word-
orderrestrictionswhichwe won’t discusshere.

4.2 TDG Parsing

Theparsingproblemof TDG canbeseenasasearch
problem: For eachnode,we must choosea lexi-
cal entry andthe correctmother-daughterrelations
it participatesin. Onestrengthof theTDG approach
is that it is amenableto strongsyntacticinferences
thattacklespecificallythethreesourcesof complex-
ity mentionedabove.

Theparsingalgorithm(Duchier, 2002)is statedin
the framework of constraint programming (Koller
andNiehren,2000),a generalapproachto coping
with combinatorialproblems. Before it explores
all choicesthat are possiblein a certain stateof
the searchtree (distribution), it first tries to elim-
inate someof the choiceswhich definitely cannot
lead to a solution by simple inferences(propaga-
tions). Propagationsshouldrun in polynomialtime;
thecombinatoricsis in thedistribution stepsalone.
Thatis, it canstill happenthatasearchspaceof ex-
ponentialsizehasto beexplored,but strongpropa-
gationcanreduceits size,andmay even make the
wholealgorithmrun in polynomialtime in practice.

The TDG parser translatesthe parsing prob-
lem into constraintsover (variablesdenoting)finite
setsof integers,asimplementedvery efficiently in
theMozartprogrammingsystem(Oz Development
Team,1999). This translationis complete: Solu-

tionsof thesetconstraintcanbe translatedbackto
correct dependency trees. But for efficiency, the
parserusesadditional propagatorstailored to the
specificinferencesof thedependency problem.For
instance,in the “PeterlikesMary” exampleabove,
onesuchpropagatorcould contribute the informa-
tion that neitherthe “Peter” nor the “Mary” node
canbean � ! child of “lik es”, becauseneithercan
acceptan � ! edge.Oncethechoicehasbeenmade
that“Peter” is the

� � � �
child of “lik es”,apropagator

cancontribute that“Mary” mustbeits � � �
child, as

it is theonly candidatefor the(obligatory) � � �
child

left anywherein thetree.
Finally, syntacticambiguityis handledby selec-

tion constraints. Theseconstraintsrestrict which
lexical entry shouldbe picked for a node. When
all possiblelexical entrieshave someinformation
in common(e.g., that there must be an outgoing� � � �

edge),this information is automaticallylifted
to the nodeandcanbe usedby the otherpropaga-
tors. Thus it is sometimeseven possibleto finish
parsingwithout committingto singlelexical entries
for somenodes.

5 Generation as Dependency Parsing

Now that we know the target grammarformalism,
we can definethe encodingof TAG generationas
TDG parsingproblems. Then we give an exam-
ple anddiscusssomeruntimeresults. Finally, we
consideraparticularrestrictionof ourencodingand
waysof overcomingit.

5.1 The Encoding

Let G be a (lexicalized or non-lexicalized) TAG
whoselexical entriesareof the form

�
ϕ � T � asde-

scribedin Section2. We make the following sim-
plifying assumptions.First, we assumethat theel-
ementarytreesof G are simply context-free trees
whicharenotdecoratedwith featurestructures(but
with index variablesas above). Next, we assume
that whenever we canadjoin an auxiliary treeat a
node,we canadjoinanarbitrarynumberof treesat
this node. The idea of multiple adjunctionis not
new (SchabesandShieber, 1994),but it is simpli-
fied herebecausewe disregardcomplex adjunction
constraints.Wewill discussthesetwo restrictionsin
theconclusion.Finally, we assumethatevery lexi-

4

start mary buy car indef red

$ % # & NP' m ' 1
() * (+

S , e , 1
- . / - 0

N 1 c 1 1
2 3 4 2 5

NP6 c 6 1
7 8 9

N : c

Figure 4: Dependency tree for “Mary buys a red
car.”

cal semanticsϕ haspreciselyonemember;this re-
strictionwill belifted in Section5.4.

Now let’s say we want to find the realizations
of the input semanticsS � �

ϕ1 � � � � � ϕn � , using the
grammarG. The input “sentence”of the pars-
ing problemwe constructfrom this is thesequence�
start � �

S, where start is a special start sym-
bol. The parsetree will correspondvery closely
to the TAG derivation tree, its nodesstandingfor
theinstantiatedelementarytreesthatareusedin the
derivation.

To this end, we usetwo typesof edgelabels–
substitutionandadjunctionlabels. An edgewith a
substitutionlabel

� � � � ;
A < i < p from the nodeα to the

nodeβ (both of which standfor elementarytrees)
indicatesthatβ shouldbepluggedinto thep-th sub-
stitutionnodein α thathaslabelA andindex i. We
write

� � � � ; �
A � for themaximumnumberof occur-

rencesof A asthelabelof substitutionnodesin any
elementarytreeof G; thisis themaximumvaluethat
p cantake.

An edgewith anadjunctionlabel � �
A < i from α to

β specifiesthatβ is adjoinedatsomenodewithin α
carryinglabel A andindex i andadmittingadjunc-
tion. It doesnot matterfor our purposesto which
node in α β is adjoinedexactly; the choice can-
notaffectgrammaticalitybecausethereis nofeature
unificationinvolved.

The dependency grammarencodeshow an ele-
mentarytree can be usedin a TAG derivation by
restrictingthe labelsof the incomingandoutgoing
edgesvia = � � > = �

and! � = > ? @ A
requirementsin thelex-

icon. Let’s say that T is an elementarytree of G
whichhasbeenmatchedwith theinputatomϕr, in-
stantiatingits index variables.Let A bethelabeland
i theindex of therootof T . If T is anauxiliary tree,
it acceptsincomingadjunctionedgesfor A andi, i.e.
it getsthe = � � > = �

value
� � �

A < i � . If T is aninitial tree,

it will acceptarbitraryincomingsubstitutionedges
for A andi, i.e. its = � � > = �

valueis
� � � � � ;

A < i < p � 1 B p B � � � � ; �
A � �

In eithercase,T will requirepreciselyoneout-
going substitutionedgefor eachof its substitution
nodes,andit will allow arbitrarynumbersof outgo-
ing adjunctionedgesfor eachnodewherewe can
adjoin.Thatis, the ! � = > ? @ A

valueis asfollows:� � � � � ;
A < i < p � ex. substitutionnodeN in T

s.t. A is label,i is index of N, and
N is p-th substitutionnodefor A in T �� � � �

A < i " � ex. nodewith labelA, index i
in T whichadmitsadjunction�

We obtain the set of all lexicon entriesfor the
atomϕr by encodingall TAG lexicon entrieswhich
matchϕr asjust specified.Thestartsymbol,start,
getsa speciallexicon entry: Its = � � > = �

entry is the
emptyset(i.e. it mustbecometheroot of thetree),
andits ! � = > ? @ A

entryis theset
� � � � � ;

S < k < 1 � , wherek
is thesemanticindex with which generationshould
start.

5.2 An Example

Now let us go throughan exampleto make these
definitionsa bit clearer. Let’s saywe want to ver-
balizethesemantics�

name
�
m � mary � � buy

�
e � m � c � �

car
�
c � � indef

�
c � � red

�
c � �

TheLTAG grammarwe usecontainstheelemen-
tary treeswhich areusedin thetreein Fig. 5, along
with the obvious semantics;we want to generatea
sentencestartingwith themainevente. Theencod-
ing producesthe following dependency grammar;
the entriesin the “atom” columnareto be readas
abbreviations of the actualatomsin the input se-
mantics.

atom labels valency
start /0

� � � � � ;
S < e < 1 �

buy
� � � � � ;

S < e < 1 � � � � � � ;
NP< c < 1 � � � � � ;

NP< m < 1 �
� �

V P< e " � � �
V < e " �

mary
� � � � � ;

NP< m < 1 � � � �
NP< 1 " � � �

PN < m " �� � � � ;
NP< m < 2 �

indef
� � � � � ;

NP< c < 1 � � � �
NP< c " �� � � � ;

NP< c < 2 �
car

� � � � � ;
N < c < 1 � � � �

N < c " �
red

� � �
N < c � /0

5

S:e

NP:m C
NP:m

PN:m

Mary

VP:e

V:e

buys

NP:c C
NP:c

Detnoad j

a

N:c C
N:c

Adjnoad j

red

N:cD
N:c

car

Figure5: Derivedtreefor “Mary buysa redcar.”

If we parsethe“sentence”

start mary buy car indef red

with this grammar, leaving the word order com-
pletely open, we obtain preciselyone parsetree,
shown in Fig. 4. Readingthis parseas a TAG
derivation tree,we canreconstructthederived tree
in Fig. 5, which indeedproducesthe string “Mary
buysa redcar”.

5.3 Implementation and Evaluation

The overall realizationalgorithm we proposeen-
codesthe input problemasa DG parsingproblem
and then runs the parserdescribedin Section4.2,
which is freely availableover the Web, asa black
box. Becausetheinformationlifted to thenodesby
the selectionconstraintsmay be strongenoughto
computethe parsetreewithout ever committingto
uniquelexical entries,thecompleteparsemaystill
containsomelexical ambiguity. This is noproblem,
however, becauseit is guaranteedthat every com-
binationof choiceswill begrammatical.Similarly,
a nodecanhave multiple childrenover adjunction
edgeswith the samelabel, andtheremay be more
thanonenodein theupperelementarytreeto which
thelower treecouldbeadjoined.Again,all remain-
ing combinationsareguaranteedto begrammatical.

In order to measurethe performanceof our re-
alizationalgorithm, andcompareit to the stateof
theart, we have tried generatingthefollowing sen-
tences,which are examplesfrom (Carroll et al.,
1999):

(1) Themanagerin thatoffice interviewedanew
consultantfrom Germany.

(2) Ourmanagerorganizedanunusualadditional
weeklydepartmentalconference.

We have convertedthe XTAG grammar(XTAG
ResearchGroup, 2001) into our grammarformat,
automaticallyaddingindicesto thenodesof theel-
ementarytrees,removing features,simplifying ad-
junctionconstraints,andaddingartificial lexical se-
manticsthatconsistsof thewordsat thelexical an-
chorsand the indicesusedin the respective trees.
It turnsout that the dependency parserscalesvery
nicely to the higher degree of lexical ambiguity:
Thesentence(1) is generatedin 1.4seconds(asop-
posedto Carroll et al.’s 1.8 seconds),whereaswe
generate(2) in about800milliseconds(asopposed
to 4.3seconds).1

The mostencouragingaspectof theseresultsis
that despite the increasedlexical ambiguity, the
parser gets by without ever making any wrong
choices,which meansthat it runs in polynomial
time, on the exampleswe have tried. This is pos-
sible becauseon the one hand, the selectioncon-
straintautomaticallycompressesthemany different
elementarytreesthat XTAG assignse.g. to verbs
into very few classes.On theotherhand,theprop-
agationthat rulesout impossibleedgesis sostrong
thatthefreeinput orderdoesnot make theconfigu-
rationproblemmuchharderin practice.Finally, our
treatmentof modificationallows us to multiply out
the possiblepermutationsin a postprocessingstep,
after the parserhas done the hard work. A par-
ticularly striking exampleis (2), wherethe parser
givesus a singlesolution,which multiplies out to
312 � 13 E 4! different realizations. (The 13 basic
realizationscorrespondto differentsyntacticframes
for the main verb in the XTAG grammar, e.g. for
topicalizedor passive constructions.)

5.4 More Complex Semantics

Sofar, we have only consideredTAG grammarsin
which eachelementarytreeis assigneda semantics
that containspreciselyone atom. However, there
are caseswhere an elementarytree either has an
emptysemantics,or a semanticsthatcontainsmul-
tiple atoms. The first casecan be avoided by ex-
ploiting TAG’sextendeddomainof locality, seee.g.
(GardentandThater, 2001).In thissection,weoffer
somethoughtson how to dealwith caseswherethe
semanticshaslengthmorethanone.

1Our timesweremeasuredona 700MHz Pentium-IIIPC.

6

The simplestpossibleway for dealingwith the
problemis to preprocessthe input into several dif-
ferentparsingproblems. In a first step,we collect
all possibleinstantiationsof LTAG lexical entries
matchingsubsetsof the semantics.Thenwe con-
structall partitionsof the input semanticsin which
eachblockin thepartitionis coveredby alexical en-
try, andbuild aparsingproblemin whicheachblock
is onesymbolin thesentenceto beparsed.

Thisseemsto work quitewell in practice,asthere
are usually not many possiblepartitions. In the
worstcase,however, this approachproducesanex-
ponentialnumberof parsingproblems.Indeed,us-
ing a variantof the grammarfrom Section3, it is
easyto show that theproblemof decidingwhether
thereis a partition whoseparsingproblemcan be
solved is NP-completeaswell. For this reason,we
have put somepreliminary work into pushingthe
partitioningprocessinto theparseraswell. Oneal-
ternative thatwewantto exploreis thatwheneveran
elementarytreeT hasa semanticsof lengthk F 1,
we could add k G 1 temporaryone-nodeelemen-
tary treesto the grammarwhich canonly be used
in conjunctionwith T , anddistribute thesemantics
over thetemporarytrees,restoringtheoriginal con-
dition. We expectthis will not hurt the runtimeall
thatmuch,but theexacteffect remainsto beseen.

6 Comparison to Other Approaches

Theperspective on realizationthatoursystemtakes
is quitedifferentfrom previousapproaches.In this
section,we relateit to chartgeneration(Kay, 1996;
Carroll etal., 1999)andto anotherconstraint-based
approach(GardentandThater, 2001).

In chartapproachesto realization,themain idea
is tominimizethenecessarycomputationby reusing
partial resultsthat have beencomputedbefore. In
the settingof fixed word orderparsing,this brings
an immenseincreasein efficiency. In generation,
however, the NP-completenessmanifestsitself in
chartsof worst-caseexponentialsize.In addition,it
canhappenthatsubstructuresarebuilt whicharenot
usedin the final realization,especiallywhen pro-
cessingmodifications.

By contrast,our systemconfiguresnodesinto
a dependency tree. It solves a searchproblem,
madeup by choicesfor mother-daughterrelations

in the tree. Propagation,which runsin polynomial
time, hasaccessto global information (illustrated
in Section4.2) and can thus rule out impossible
mother-daughterrelationsefficiently; every propa-
gationstepthat takes placeactually contributesto
zoomingin onthepossiblerealizations.Oursystem
can show exponentialruntimeswhen the distribu-
tionsspanasearchtreeof exponentialsize.

GardentandThater(2001) also proposea con-
straintbasedapproachto generationworkingwith a
variantof TAG. However, theperformanceof their
systemdecreasesrapidly as the input gets larger
evenwhenwhenworking with a toy grammar. The
main differencebetweentheir approachand ours
seemsto be that their algorithm tries to construct
a derived tree,while oursbuilds a derivation tree.
Our parseronly hasto deal with information that
is essentialto solve thecombinatorialproblem,and
note.g.with theinternalstructureof theelementary
trees.Thereconstructionof thederivedtree,which
is cheaponcethederivationtreehasbeencomputed,
is delegatedto apost-processingstep.Workingwith
derivation trees,GardentandThater(2001) cannot
ignore any information andhave to computerela-
tionshipsbetweennodesat a point wherethey are
not relevant.

7 Conclusion

Generationfrom flat semanticsis an NP-complete
problem. In this paper, we have first given an al-
ternative proof for this fact, which works even for
a fixed grammarand makes the connectionto the
complexity of free word orderparsingclearlyvisi-
ble. Thenwe have shown how to translatethe re-
alizationproblemof TAG into parsingproblemsof
topologicaldependency grammar, andarguedhow
theoptimizationsin thedependency parser– which
wereoriginally developedfor freewordorderpars-
ing – helpreducetheruntimefor thegenerationsys-
tem. This reductionshows in passingthat thepars-
ing problemfor TDG is NP-completeaswell, which
hasbeenconjectured,but never proved.

The NP-completenessresult for the realization
problem explains immediately why all existing
completegenerationalgorithms have exponential
runtimesin theworstcase.As ourproof shows, the
main sourcesof the combinatoricsare the interac-

7

tion of lexical ambiguityandtreeconfigurationwith
thecompletelyunorderednatureof theinput. Mod-
ification is importantanddeservescarefultreatment
(andindeed,our systemdealsvery gracefullywith
it), but it is not as intrinsically importantas some
of theliteraturesuggests;our proof getsby without
modification.

By using techniquesfrom constraintprogram-
ming, the dependency parserseemsto coperather
well with the combinatoricsof generation. Prop-
agatorscanrule out impossiblelocal structureson
the groundsof global information, and selection
constraintsgreatlyalleviatetheproliferationof lex-
ical ambiguity in large TAG grammarsby mak-
ing sharedinformationavailablewithout having to
commit to specific lexical entries. Initial experi-
mentswith theXTAG grammarindicatethatwecan
generatepracticalexamplesin polynomialtime,and
aremorethancompetitivewith state-of-the-artreal-
izationsystemsin termsof raw runtime.

In thefuture,it will first of all benecessaryto lift
the restrictionswe have placedon the TAG gram-
mar: So far, the nodesof the elementarytreesare
only equippedwith nonterminallabelsandindices,
not with generalfeaturestructures,and we allow
only a restrictedform of adjunctionconstraints.It
shouldbepossibleto eitherencodetheseconstruc-
tionsdirectlyin thedependency grammar(whichal-
lows user-definedfeaturestoo), or filter out wrong
realizationsin a post-processingstep.Theeffect of
suchextensionson theruntimeremainsto beseen.

Finally, we expect that despitethe generalNP-
completeness,therearerestrictedgenerationprob-
lemswhich canbe solved in polynomial time, but
still containall problemsthatactuallyarisefor nat-
ural language.The resultsof this paperopenup a
new perspective from whichsuchrestrictionscanbe
sought,especiallyconsideringthat all the natural-
languageexampleswetriedareindeedprocessedin
polynomial time. The next naturalstepis then to
consideralgorithmsfor identifying the best possi-
ble realization. This problemprobablyintroduces
a wholenew level of complexity, but a polynomial
algorithmfor the realizationproblemwould be the
perfectstartingpoint for its exploration.

References

G. Edward Barton, RobertC. Berwick, and Eric Sven
Ristad. 1987. Computational Complexity and Natu-
ral Language. MIT Press,Cambridge,Mass.

ChrisBrew. 1992. Letting thecatout of thebag: Gen-
erationfor Shake-and-Bake MT. In Proceedings of
COLING-92, pages610–616,Nantes.

JohnCarroll, Ann Copestake, Dan Flickinger, andVic-
tor Poznanski.1999. An efficient chartgeneratorfor
(semi-)lexicalistgrammars.In Proceedings of the 7th
European Workshop on NLG, pages86–95,Toulouse.

Denys DuchierandRalphDebusmann.2001. Topolog-
ical dependency trees:A constraint-basedaccountof
linear precedence.In Proceedings of the 39th ACL,
Toulouse,France.

Denys Duchier. 2002. Configurationof labeledtrees
underlexicalizedconstraintsandprinciples. Journal
of Language and Computation. To appear.

Claire Gardentand Stefan Thater. 2001. Generat-
ing with a grammarbasedon tree descriptions: A
constraint-basedapproach.In Proceedings of the 39th
ACL, Toulouse.

Aravind JoshiandYvesSchabes.1997.Tree-Adjoining
Grammars.In G. Rozenberg andA. Salomaa,editors,
Handbook of Formal Languages, chapter2, pages69–
123.Springer-Verlag,Berlin.

Martin Kay. 1996. Chartgeneration.In Proceedings of
the 34th Annual Meeting of the ACL, pages200–204,
SantaCruz.

AlexanderKoller and JoachimNiehren. 2000. Con-
straintprogrammingin computationallinguistics. To
appearin Proceedingsof LLC8, CSLI Press.

Oz DevelopmentTeam. 1999. The Mozart Program-
ming Systemweb pages.http://www.mozart-oz.
org/.

Yves Schabesand StuartShieber. 1994. An alterna-
tive conceptionof tree-adjoiningderivation. Compu-
tational Linguistics, 20(1):91–124.

Matthew StoneandChristyDoran.1997.Sentenceplan-
ning asdescriptionusingtree-adjoininggrammar. In
Proceedings of the 35th ACL, pages198–205.

Oliver Suhre. 1999. Computationalaspectsof a gram-
mar formalism for languageswith freer word order.
Master’sthesis,Departmentof Informatics,Eberhard-
Karls-UniversiẗatTübingen.

XTAG ResearchGroup.2001.A lexicalizedtreeadjoin-
ing grammarfor english.TechnicalReportIRCS-01-
03, IRCS,Universityof Pennsylvania.

8

