
A novel program for philosophers to study computer science
David Hemmendinger

Union College

For three years in the mid-1980s, Wright State University (WSU), near Dayton, Ohio, had a
fellowship program that brought people holding Ph.Ds in philosophy to campus for an intensive
15-month M.S. degree program in computer science. It enrolled thirteen philosophers over the
three years, eleven of whom completed the program.

A l ittle background is in order. I had a Ph.D. in philosophy, which I taught for over a
decade. In1981 began studying computer science because I found it interesting and because I
hoped that it would lead to steadier employment. Ifound that computer-science departments fre-
quently had difficulty in hiring Ph.Ds in computing, and in some cases, were happy to hire people
with Ph.Ds in other subjects if they knew enough computer science to teach it. Wright State hired
me after two quarters of study, at the same time that I entered its M.S. program, and they gav eme
the hardest undergraduate course to teach, on concurrent and real-time programming.

In the year after WSU hired me, the department continued to try to hire Ph.Ds in comput-
ing, with no success — one problem was that with no Ph.D. program itself, the department didn’t
have Ph.D. students to work on faculty research projects.I seemed to have worked out well, and
so the department decided to try to hire another philosopher. The department chair and I went to
a national philosophy conference and hiring meeting, where we interviewed about twelve candi-
dates. Ifound it interesting that despite our different backgrounds — he had a Ph.D. in electrical
engineering — we agreed completely on our ranking of candidates.We hired our first choice,
who began studying computer science in the summer before starting work and then, as I had,
enrolled in the M.S. program while also teaching two courses a quarter. She completed the pro-
gram and then went to a liberal-arts college to teach computer science in 1985.

In 1984, the department chair, having seen the quality of philosophy Ph.D. holders who had
applied for our job, proposed offering an intensive M.S. program for philosophy Ph.Ds, some of
whom might choose to join computer science departments, he thought. He managed to get
money from the university to try such a program. Our proposal said:

Computer science departments have a shortage of professors; well-qualified Ph.D.’s
in philosophy are unable to find rewarding academic jobs, and many of these people
have skills that would readily transfer to computer science. There are also a growing
number of philosophers who find that solid grounding in computer science would be
valuable in their philosophical work. We propose a special M.S. program in com-
puter science to meet the needs of these two groups. Itwould prepare them for
employment in computer science, would enable those who continue to work in phi-
losophy to apply detailed knowledge of computer science to their work, and would
support new interdisciplinary work.

We offered grants of tuition and $5,000 stipends to four students who enrolled in the summer of
1984. Whilethe stipend was low, it was somewhat more than average college room and board
fees; that is, it was manageable by people still accustomed to living like a student. Oneof the
four was on sabbatical, and the others were under- or unemployed. Threecompleted the program,
and the fourth, who didn’t enjoy the intensive study, continued to take some undergraduate cour-
ses. Inaddition a, student with an M.S. in philosophy, who was not eligible for our program,
enrolled in the regular computer science graduate program.

We advised the prospective students to learn as much Pascal programming as they could
before coming to us in June. During the summer, they took three undergraduate courses: data
structures, PDP-11 assembly-language programming, and formal-language theory. These courses
were supplemented by a tutorial that I taught, which addressed difficulties that the students



2

encountered, together with material to tie the courses together. One of the latter topics was recur-
sive-descent parsing of simple languages. Although many beginners find recursion difficult, these
students had a background in formal logic and found it quite natural.

In the fall, the students took the real-time programming course that was required of all
undergraduate majors and M.S. students. Students commonly regarded it as arite de passage;
they wrote in assembly language to build device-drivers and application programs, coordinated by
a multi-tasking kernel that we had written. They had to pass an oral exam on the final program,
which required them to explain the program operation with the aid of an octal dump. This was
quite different from anything that the students had encountered, and it was impressive that they
could handle the course after rather brief preparation.

The remainder of the students’ program was not prescribed, but generally included courses
on programming-language theory and artificial intelligence, along with options that included
operating systems, natural-language processing, logic programming, compiler design, and sequels
to some of these courses. They also participated in an informal seminar with several faculty
members and other graduate students. The seminar had initially been about functional languages
and their implementation, but, in part to take advantage of the philosophers’ knowledge, it turned
to natural-language processing, knowledge representation, and other topics in cognitive science.

The three students who completed the program all obtained positions in CS departments
either immediately or subsequently, though I believe that only one remained in the field some
years later; he has been a prolific author of textbooks on introductory programming and data
structures.

My colleagues and I thought that the program had been successful. As it turned out, the
university had accidentally deposited funding for the first year twice, so we had enough to run it a
second year. We advertised the program to linguistic departments too, and one linguist was inter-
ested, but she decided not to apply to it.We offered grants to four more philosophers, two of
whom were on sabbatical from small colleges that wanted to start computing programs (one had
been acting president of his college). Thisgroup also did well. One of them, with no prior pro-
gramming experience, became the best programmer in the group and went to an AT&T lab in
Ohio, along with another non-Ph.D. philosopher who got a regular M.S. degree. Thelast went on
to teach computing and then joined NASA, where he has been for many years.

I don’t recall where our funding came for a third year. It was less than during the first two,
but we offered five stipends. Oneparticipant didn’t complete the program, being interested in
continuing his work on cognitive science instead. Of the other four, one went to a CS department
and also became an author of computer science texts. Threeremained in philosophy departments,
though one taught CS at WSU for a year. At that time, the computing accreditation board began
to ask programs to include a course on computing and social issues, and the department asked
him to develop its course. He not only did, but went on to co-author a well-regarded book on the
subject, one of the first of its type.

Program participants wrote master’s theses during their second summer. One, who had
written his Ph.D. dissertation on the philosophy of history, wrote a thesis on some problems of
compiling the Ada language. Other theses that I supervised were on semantic networks, synthe-
sizing programs from logic specifications, natural-language processing with a categorial grammar,
and using Prolog for teaching formal logic.Tw o of these theses yielded journal articles, and
another participant was the senior editor of a book on computational linguistics.

For eleven of thirteen participants to complete this intensive program despite having little
prior computing experience, was impressive. Studying philosophy includes some work on formal
logic, which was probably helpful, but it would be too simple to say that philosophical problem-
solving was a major factor (philosophical problems often don’t get solved!). Researchin any dis-
cipline requires analytical thinking and problem solving in terms appropriate to the discipline,



3

and could help to prepare one to study computing. But the participants were evidently capable
and motivated. Oneof them wrote recently that he’d found the program "extremely rigorous,
challenging, and exhausting".

There were several reasons for the program’s ending in 1987. The WSU CS department
was starting a Ph.D. program and focused its energies on it. As we expected, once the program
started, it became easier to hire Ph.Ds in computer science and computer engineering. It also
appeared to us, though without much analysis, that undergraduate CS departments were generally
finding it a little easier to hire Ph.Ds in computing, so that graduates of our philosophers’ pro-
gram were finding it more difficult to get jobs in CS departments

Our program achieved sev eral things. It brought some talented people into work in com-
puter science and gav eothers a broader range of teaching and research skills, enriching their work
in philosophy. The presence of these people benefited WSU graduate program by giving us a
group of scholars capable of doing advanced work in computer science. The faculty who worked
with them agreed that the contribution they made in courses through their philosophical training
has by far offset their relative lack of experience in computing. As an unintended consequence,
the program also influenced at least one other CS department to emulate it, according to the
philosopher in the department who started it.

Although the program was demanding, it had a lighter moment, too. The "dining philoso-
phers" is a synchronization problem that Dijkstra introduced to illustrate deadlock prevention.
Five philosophers sit around a table, with a bowl of spaghetti in the middle and a fork between
each pair of philosophers, which represent independent processes. The philosophers alternate
between thinking and eating, and to eat, a philosopher must acquire the two forks on either side.
Unlike most real philosophers, they don’t communicate. The problem is to avoid the deadlock
that would result from each philosopher taking the fork to the left (or right) at once, and gener-
ally, to avoid starvation as well, which would be literal in this example. There are a variety of
standard solutions to the problem, using synchronization primitives such as semaphores. Because
one of the goals of the WSU program was to help philosopher get jobs and hence avoid starva-
tion, it seemed appropriate to offer a new solution to the problem. To that end, I made single-fork
deadlock-free solutions to give graduates of our program, as illustrated in Figure 1. In return, the
third group of participants presented me with a gardening fork, inscribed with the names of of the
philosophers who’d studied with us, which I still use.

Figure 1. Dining philosophers deadlock-free spaghetti fork

About the author

David Hemmendinger is an emeritus professor of computer science at Union College, Sch-
enectady, NY, where he taught courses on programming languages, computer architecture, paral-
lel processing, and the history of computing. He has studied the history of mathematics and of
science, and for the past two decades, the history of computing. He also co-edited the fourth edi-
tion of the Encyclopedia of Computer Science (John Wiley & Sons, 2003) with Tony Ralston and
Ed Reilly. Hemmendinger has a Ph.D. in philosophy from Yale University and an M.S. in com-
puter science from Wright State University, Dayton, Ohio. He is on the editorial board of the



4

Annals. Contacthim at hemmendd@union.edu.


