
A Plea for Modesty
David Hemmendinger

Department of Computer Science
Union College, Schenectady, NY 12308

hemmendd@union.edu

From time to time a movement arises that promises to save the world, or at least to make it
vastly better. The extraordinary achievements of digital computing make it a locus of such
movements today. Yet we should be wary; when movements fail they provoke backlash that
rejects the more limited gains that they might have afforded. Today "computational thinking" has
a considerable following, and I would like to discuss some problems with its discourse. It is too
often presented in terms that could be interpreted as arrogant or that are overstated. Itsdescrip-
tions too often lack appropriate examples, and perhaps as a result, it gets misunderstood in casual
writing.

Since Jeannette Wing wrote her CACM essay in praise of computational thinking four years
ago [11], we have had numerous discussions of the idea in print and in conferences. Some, such
as an ITiCSE panel last summer [5], are devoted to deciding what it is, but nearly all appear to
view it as a Good Thing. Consider, for example, a National Science Foundation Q&A:

Q: Must I include Computational Thinking (CT) in my proposal?
A: Yes, all CPATH proposals must demonstrate how Computational Thinking is
incorporated within the project. Since CT is fundamental to virtually all disciplines,
this should be a natural part of any transformative vision focusing on a single disci-
pline or across disciplines [9].

So what is computational thinking?Wing’s article offers some characterizations: Computa-
tional thinking "is reformulating a seemingly difficult problem into one we know how to solve",
"is thinking recursively", "is using abstraction and decomposition when attacking a large complex
task", "is separation of concerns", "is using invariants to describe a system’s behavior succinctly",
"is using heuristic reasoning".

However important all these are in thinking about computing or in thinking with it, they are
scarcely peculiar to computing. Reformulating hard problems is typical of all domains of prob-
lem-solving. Philosophershave been thinking about thinking — recursively — for a long time.
Mathematics surely uses abstraction, and so do all disciplines that build models. Separation of
concerns and using heuristics also characterizes problem-solving in general. Invariants: think of
the conservation laws in physics, or of formulations of mechanics in terms of Hamiltonians or of
the principle of least action. In short, Wing has characterized problem-solving, mathematics, sci-
entific reasoning in general, and the use of models.

Perhaps less seriously, Wing’s article adds that computational thinking will be part of our
lives when "garbage collection take[s] on the meanings used by computer scientists; and when
trees are drawn upside down." Butdespite the merits of recycling, surely there is some garbage
that belongs on the rubbish heap and not on the free heap. And as to trees, we might paraphrase
(with apologies to Joyce Kilmer):

Inverted trees are drawn by fools like me,
But only god can make an upright tree.

Consider analogous statements made about other disciplines

Chemical thinking will be part of our lives when bonding is understood in terms of valence
electrons and when moles no longer burrow underground.



2

Mathematical thinking will be part of our lives when theater marqueés use deltas and
epsilons to advertise continuous movie showings and when group identities are actual group
members.

I doubt that anyone would think that this broad application of technical terms and concepts is
either necessary or sufficient to make chemical or mathematical understanding part of our lives, or
ev en that such application is desirable.

Apart from such exaggerations, a problem with Wing’s article is the central role that it gives
Us — computer scientists. The final paragraph suggests that we should offer a course to first-year
college students, "Ways to Think Like a Computer Scientist".A course on what computing can
and can’t do and on how to use it could indeed be valuable. Many other college departments offer
introductions to their disciplines with the goal of showing non-majors what the subject is all
about. They are not generally called "Ways to Think Like a {Mathematician, Historian, Chemist,
etc}", however. They are have topical titles, or perhaps one as broad as "What is Mathematics",
ev en if one of their goals is to show what characterizes modes of thinking in the discipline.

Another part of the article describes everyday activities in computational terms, as if, like
Molière’s Monsieur Jourdain who discovered that he’d been speaking prose all his life without
knowing it, we may all be computational thinkers in daily life. When a child puts school supplies
in a backpack, that’s prefetching and caching, and retracing one’s steps to find a lost item is back-
tracking. Describingthe backpack as a cache is not a bad idea — in fact, a Web search turns up
several explanations of cache memory that use the backpack analogy. As with step-retracing,
though, the connection goes in the wrong direction when this is offered as an example of our
thinking computationally. Caches in computing are an application of a common practice — keep-
ing frequently used things close at hand; backtracking in computational search is an instance of
another common practice. Those practices do not become computational by virtue of finding
application in computing.

Describing computational thinking in these terms can have an imperialistic flavor. An inter-
view with Joan Peckham has a passage that illustrates it. She spoke about seeing a video on
teaching science and said:

We all looked at it and thought: "But it’s also computational thinking!"

In the course of teaching elementary school students about honey bees, he took them
out on the playground and asked them to act out what the honey bees did: leaving the
hive, finding the pollen, giving directions to the other bees. Then he brought them
back into the classroom, went to a whiteboard, and engaged them in activities that I
would identify as modeling, debugging, and drawing finite state diagrams. He didn’t
call them that, but that’s what they were.

Yes he was teaching them science, but the way he was analyzing the subject, and
engaging them in analysis, clearly involved a set of computational constructs [10].

Constructing models, finding and correcting errors, drawing diagrams, analyzing — these
are all parts of scientific (and other) activities. They are computational constructs, however, only
in that they are also important to computer science.To say that because the teacher was doing
what we also do, he was using computational constructs is to say "it’s ours!"

At such times, in fact, it sounds as if many of the claims for computational thinking amount
to, "If it’ s a good way of thinking, then it’s ours." I once remarked on this to Wing, who of course
said that she didn’t mean that at all. But the appearance of grand territorial claims risks provoking
adverse reactions, and leads to remarks such as Denning quotes, "You computer scientists are hun-
gry! Firstyou wanted us to take your courses on literacy and fluency. Now you want us to think
like you!" [6]



3

There is a systematic ambiguity in statements of the form, "computational thinking is X", as
in "computational thinking is using abstraction and decomposition". As a public figure said a few
years ago, "It depends what the meaning of ’is’ is." If it is the ’is’ of predication, as in "grass is
green", then such statements are quite straightforward: abstraction is one property of computa-
tional thinking (and may also be a property of many other sorts of thinking). If it is more nearly
akin to the ’is’ of identity, howev er, then things are more difficult. In that case, "computational
thinking is X" appears convertible with "X is computational thinking" But then all of the claims
about what computational thinking includes can readily be taken to mean also that each of those
activitiesbelongsto computational thinking. That is, statements that "computational thinking is
..." recursive thinking, problem reduction using abstraction and decomposition, and all the rest can
be construed as: these activities all belong to computational thinking.

Some arguments for the value of everyone’s learning to think like a computer scientist actu-
ally take us in the wrong direction. They emphasize algorithmic thinking, describing it in terms
that resemble what one writes in a procedural language, with conditionals and iteration. This is
not the place to get into a discussion of the virtues of non-procedural programming languages, but
these arguments amount to recommending that people learn to think in the way in which they
would have to program in a standard machine instruction set; i.e, at a low lev el. In a recent article
in which he discusses how to make computing more accessible, Mark Guzdial describes some
computing-education research that suggests that people should not be encouraged to think in such
low-level terms [7]. The studies showed that when people were asked to describe tasks in proce-
dural terms, they generally didn’t specify control flow — explicit iteration or conditionals — and
that when given a task description that lacked explicit control flow, they had no difficulty in under-
standing what was to be done. If this is so, then teaching people to think in standard program-
ming-language terms is a striking example of "dumbing down" and scarcely what we want com-
putational thinking to be. If, as Guzdial (and Wing) say, people should become familiar with the
metaphors of computation, we need to cast them in the terms that take into account how people
rather than machines learn.

A Web site, IAE-pedia, uses a low-level notion of algorithm in its article on computational
thinking [8]. It describes doing a dictionary lookup with linear search and observes that this is a
poor algorithm. It goes on to say that it can be quite hard to write out the algorithm that we use,
and hard for a third-grader to follow it if w ritten, and it concludes that simply looking up a word
definition with Google is a good example of computational thinking: it combines our interests
with machine search capabilities. It’s easier and faster for a child to learn to use Google than a
dictionary.

We need not get into the merits of these ways of looking up definitions. Writing out a pro-
cedure for a child to follow, rather than inviting the child to figure out a good way to look up
words, or showing by example how to do it, is a very poor way of teaching. Casting computa-
tional thinking in such machine-level terms does it a disservice.I don’t intend to suggest that pro-
ponents of computational thinking are responsible for what’s in a wiki article, but they need to be
aw are of how the concept becomes distorted.

Let’s return to the question of what computational thinking is. The Carnegie Mellon Center
for Computational Thinking [3] offers an example: an algorithm for matching kidney donors and
recipients that can build chains of donor-recipient pairs to find a sequence of compatible trans-
plants. Itis a striking example of a computational solution of a difficult and important problem,
but it was developed by a quite eminent computer scientist on the CMU faculty. If we are to show
the value of computational thinking, we need to find people other than computer scientists who
are using it.A much more prosaic example was the subject of a seminar that a mechanical-engi-
neering colleague gav erecently: on using machine-learning to improve the performance of control
systems. Althoughcontrol systems have a well-developed theory, here is a small instance of
being able to ask new questions and get new answers with computation.



4

Alan Bundy describes a seminar series on computational thinking at Edinburgh [2]. Like
Guzdial, he speaks of the importance of computational metaphors; for example, a psychologist
studies facial recognition as a computational process and uses concepts such as "nearest neigh-
bor". A biologist models protein interaction with process algebras, and in addition to the compu-
tational models of mind that philosophers have discussed, a philosopher uses the notion of an
emulator to study planning.

New wine in old bottles may spoil, but new metaphors in old disciplines can stimulate
thinking. We need to distinguish between metaphors and mere jargon, however. Terms like "con-
text switch" and "multitasking" have entered everyday discourse, though garbage collection has
not yet acquired its computational meaning.I do not think that using these terms has led people
to use the computational ideas or structures that underlie them, and I hope that we will not urge
that people adopt the outward garb of computational thinking — the lingo — rather than its sub-
stance.

The Edinburgh seminar series had speakers from a wide range of fields. Several
astronomers spoke of computer modeling as the closest thing that they had to a laboratory. A
musician talked about algorithmic composition both old and new. A linguist described modeling
of adaptive systems and a geographer, ways of visualizing information and "zooming in" on both
geographical maps and other representations of information (metaphors abound here). Computa-
tion is also used to help to remind lawyers and physicians of information relevant to their investi-
gations, and to help recognize art forgeries.

What do all of these examples of thinking with computation. have in common? Idon’t
want to offer yet another definition of computational thinking, which is as varied as the examples
are. Someof the capabilities that computation offers, however, appear common. Modeling is
ubiquitous in problem-solving domains, and modeling benefits greatly from the speed and data-
handling capacity of digital computers, allowing us to build new sort of models readily. Machine
learning can play a role — again, employing massive data processing to extract information that
we would not be able to obtain in other ways. Computationlets us display information effectively
with high-performance graphics.

Of course thinking with computation uses abstraction and resolution of complex problems
into simpler ones — as do all sorts of thinking. Of course computational thinking uses algo-
rithms. Asev ery algorithms text tells us, they aren’t new; the word comes from the name of a
12th century Persian mathematician, and we find procedural thinking laid out in Babylonian
tablets nearly four millennia old. What the theory of computation has contributed to algorithmic
thinking is to make precise various notions of complexity, something that had not been a part of
the mathematical study of algorithms until recently. Whether complexity is measured by space or
time required or by power dissipated, computational thinking leads us to pay attention to scalabil-
ity and feasibility, as Wing says. Thinking with computation requires us to be resource-aware.

"Ways to Think Like a Computer Scientist" may be an interesting course, just as it may be
interesting to learn how mathematicians or historians think.Teaching computational thinking,
however is something else; not to lead people to think like us — which is pretty varied anyway.
Instead, it is to teach them how to think like an economist, a physicist, an artist, and to understand
how to use computation to solve their problems, to create, and to discover new questions that can
fruitfully be explored. Computerscientists can contribute, but we should be careful not to speak
as if we are the ones to lead people to a promised land. In the end, though, perhaps we should talk
less about computationalthinking, and focus more on computationaldoing— carrying out one’s
work (and one’s play!) in new ways by using computational tools. As Owen Astrachan wrote
recently, "let’s make sure we don’t lose sight of computational doing" [1].

My plea for modesty, then, is that we talk about the value of computation and of its methods
without appearing to lay claim to very broadly applicable ways of thinking. It is that we write



5

papers and give talks about striking examples of thinking computationally, but without "computa-
tional thinking" in the title. It is that we avoid suggesting that if only people would be more like
us, the world would be so much better. It is that we focus onshowingexamples of what can be
done by thinking with computation rather than by talking about its attributes — and as both Den-
ning and Astrachan urge, to give due attention to computationaldoing.

There is a nice quote by Leo Cherne, a twentieth-century economist and public servant, one
that numerous Web pages erroneously attribute to Einstein:

The computer is incredibly fast, accurate, and stupid. Man is unbelievably slow, inac-
curate, and brilliant. The marriage of the two is a force beyond calculation [4].

Jeannette Wing writes in similar terms:

We humans make computers exciting. Equippedwith computing devices, we use our
cleverness to tackle problems we would not dare take on before the age of computing.

Let us agree on this, and agree also that thinking well is not the province of any one discipline.

References

1. Astrachan,O., “Out-of-the-box: cogito ergo hack,”inroads (ACM SIGCSE Bulletin)41(2),
p. 80 (June, 2009).http://doi.acm.org/10.1145/1595453.1595476 .

2. Bundy, A, “Computational thinking is pervasive,” Journal of Scientific and Practical Com-
puting1(2), pp. 67-69 (2007).

3. Centerfor Computational Thinking, Carnegie Mellon University.
http://www.cs.cmu.edu/˜CompThink (retrieved 4 Jan. 2010).

4. Cherne,L., remarks at the Discover America meeting, Brussels, June 27, 1968. as cited in
"Computer science: A neglected area in schools of education," Gary D. Brooks,The Phi
Delta Kappan 53, 2 (Oct., 1971), pp. 121-122.
http://www.jstor.org/stable/20373101?seq=2 .

5. Curzon,P., Peckham, J., Settle, A., and Roberts, E., “Computational Thinking (CT): On
Weaving It In,” Proceedings of the 14th annual ACM SIGCSE conference on Innovation
and technology in computer science education,pp. 201-202 (2009).
http://doi.acm.org/10.1145/1562877.1562941 .

6. Denning,P. J., “The profession of IT: Beyond computational thinking,”Communications of
the ACM52(6), pp. 28-30 (June, 2009).
http://doi.acm.org/10.1145/1516046.1516054 .

7. Guzdial,M., “Paving the way for computational thinking,”Communications of the ACM51
(8), pp. 25-27 (Aug., 2008).http://doi.acm.org/10.1145/1378704.1378713 .

8. IAE-pedia,Computational Thinking.http://iae-pedia.org/Computa-
tional_Thinking (retrieved 20 January 2010).

9. NationalScience Foundation,CISE-CNS-CPATH FAQ.
http://www.nsf.gov/cise/funding/cpath_faq.jsp (retrieved 31 Jan.
2010).

10. Udell,Jon,Talking with Joan Peckham about computational thinking.
http://blog.jonudell.net/2009/05/04/talking-with-joan-peck-
ham-about-computational-thinking (retrieved 31 Jan. 2010).

11. Wing, J. M., “Computational thinking,”Communications of the ACM49(3), pp. 33-35
(April, 2006).http://doi.acm.org/10.1145/1118178.1118215 .


