Project 3

03.11.2004

[image: image21.png][image: image22.png]

This Page Blank

Table of Contents…
The Problem
 4
The Inspiration
 7
The Details
 8
The Placard
 12
Works Cited
 13

Attachments…
Java Classes:

1. mainDriver - class that will act as a driver program to initiate execution of the various pieces of Project 3.
2. CheckerBoard – the workhorse class that will construct and manipulate the checker board.
3. aNode – a storage class for the various CheckerBoard nodes.
4. Stack – a class that implements a simple array based stack.
5. arrayLocs – this class holds the locations of each of the red pieces in one array and the locations of the white pieces in another array used for keeping track of what each side’s positions look like.
6. succStates – a class that returns a stack of successor states when given a checker board and who is requesting a stack of successors.
7. ReadStdInt – a class that is used to retrieve input from the user.

The Problem….
Objectives

· To practice in multi-agent environments

· To implement an agent that can potentially use a wide range of concepts as related to search including adversarial search, heuristics, evaluation functions, and many more

· To lose...

Your Mission

In the last project for this course, you'll apply much of what you have learned about the concept of search to a game-playing agent. The game is Reverse Checkers, where the goal is to lose a standard game of checkers. Your job is to build an agent that will accomplish this goal in as intelligent a manner as possible. It's Checkers...in reverse!

The rules of Reverse Checkers are as follows:

Each player starts with 12 checkers placed on a standard 8 X 8 chessboard as shown below.

[image: image5.png]
· A player wins reverse checkers by being the first player to have no legal moves. Normally, this means a player wins by having all of his/her pieces captured, but a player also wins if his/her remaining pieces have no legal moves.

· As shown below, checkers move diagonally forward 1 space, or jump diagonally forward over an adjacent enemy piece to an empty space immediately beyond. The piece which is jumped over is captured and removed from the board. A series of jumps with the same piece can be done in a single turn. You cannot jump your own pieces. You cannot jump over the same piece twice.

	[image: image6.png]
	
	
	
	
	
	
	
	[image: image7.png]

· When a checker reaches the far side of the board, it is "crowned" and becomes a King. Kings move and jump the same as regular checkers, but may move and capture backwards as well as forwards.

· If a player has jumps available, s/he must jump. If a piece can continue jumping, it must. (i.e. a jumping piece must jump maximally.) However, if a player has a choice of jumps, s/he can choose any of them, not necessarily the longest one. For example, if a checker can jump 2 pieces by going diagonally to the left, but can only jump 1 piece by going diagonally to the right, the player can choose the single jump to the right.

The Details

You may build your agent using any search algorithms you wish, including those gleaned from other sources such as the Web or from other textbooks. (If you do get inspiration from other sources, make sure to cite them as references. Of course, you are not allowed to take actual code from other sources. All code must be your own.)

You are required to work in teams of two for this project. One of the interesting parts of this project is the collaboration between you and your partner. You'll have to make choices and have discussions about what's important: do you implement A*? Minimax? A genetic algorithm? All three? What add-ons should you employ to speed things up so you can get more plys? An anytime algorithm? A quiescent search? What heuristics are important? What weights will be used? How should they be tweaked? Every teams' agent will be different depending on the choices you make.

One good starting point is for you and your partner to play several games against each other so you can start to get a feel of what a favorable board position (state) looks like. This is one way to start forming heuristics. Here's some thoughts to help you get started:

· Perhaps getting Kinged is a bad thing, since a King has more ways of jumping (and thus more ways of helping your opponent) than a regular checker.

· Perhaps getting Kinged is a good thing, since a King has a better ability of running away from a situation where the opponent is trying to force a jump.

· Perhaps keeping your checkers clustered near your starting position is a good thing, since it keeps your opponent from getting Kings and having more options.

· Perhaps keeping your checkers clustered is a bad thing, since spreading them out will lead to more multiple-piece jumps.

Your own style of play will affect the behavior of your agent. Don't be afraid to experiment.

A few ground rules

Though playing style will vary from agent to agent, every team should implement the following.

· Your team should design your agent to play a 1-player game against a human opponent. Either the agent or the human should be allowed to go first.

· Your agent should print every move it makes according to standard checkers notation, which is done by labeling the 32 squares that a checker can legally move to, as shown below.

[image: image8.png]
A move is represented by naming the starting and ending squares, such as 11-15. A jump is represented by naming the intermediate squares too, such as 23-14-5. This is how your agent should output its next move and how the human player will input moves. You can represent this as a single string, or have the human input the numbers individually, or whatever. It's up to you. Just don't spend time on a fancy interface. The important part is the AI. The agent, however, should be able to play on either side of the board.

· You should have an UNDO feature that allows the human to take back his/her last move. This is just a safety precaution that may be needed during the tournament (see below).

· After the human player has input a move, your agent has a 1-minute time limit to output its next move.

· When a game is over (and your agent should know when a game is over), your agent should output the number of moves that the game took. Remember, a move is 2 plys.

The Tournament

On the last day of class (when the project is due), we will be meeting in Olin 110 where your agents will compete against each other in a single-elimination checkers tournament. A game will be conducted between agents with the help of manual input, where the output of Team 1's agent will be fed in manually by the human player of Team 2. (That's why you have the UNDO feature -- in case you make a typing mistake.) Winners of the first round will go on to play each other. Rounds will continue until only one agent is left standing. The creators of the winning agent will both receive five extra points on the final exam, enough to raise your final grade for the course a full step.

Grading

This project is worth double a normal programming project due to its complexity. No lates will be accepted for this last project.

Please hand in both an electronic copy of your project on BlackBoard and a paper copy. In addition, you should hand in a brief writeup containing

· what search algorithm(s) you used

· what heuristic/evaluation/objective functions you used

· a description of how you represented states in your agent

I will be grading your project on how well you were able to incorporate good searching algorithms into your agent. An agent with one simple type of search coupled with one or two obvious heuristics will not receive as many points as a more sophisticated agent. Note that your ranking in the tournament will have no direct affect on your grade, though I wouldn't be surprised if the rankings followed the general curve of the grades, since more sophisticated agents will tend to do better (though not always...)

Last Words

There's lots to do for this project (which is why I'm giving you three weeks). Divide up coding tasks between your partner and yourself. Test all code thoroughly. Try to think up good ideas on your own as well as together. Do some research to get more inspiration. Test your agent over and over. (You'll be sick of checkers by the time the term ends.) START EARLY.

The Inspiration….
The story behind agent “Tricky Dick”
[image: image23.jpg][image: image10.jpg]
[image: image24.jpg]

The Details….
What’s in our code?

Description: Tricky Dick is an agent that plays reverse checkers; reverse checkers as defined in the Project 3 description.
Search Algorithm: At the heart of the agent, an alpha-beta pruning search algorithm is used to compute the optimal moves. To help in the search process, Tricky Dick also employs tricks to limit the number of and manage successor states. Since the rules of the competition state that jumps must be taken if available, the successor function first determines if each piece on the board has a successor which requires a jump. If the piece requires a jump, the successors based on moves are not calculated. This helps cut down the overall number of successor states. Also, to add some randomness to the order the successors are evaluated, the stack returned by the successor function is jumbled-up before being sent to the alpha-beta algorithm. This feature prevents the agent from being biased either left or right in it’s choice of the next move.

Heuristics/Evaluation/Objective Functions:
When evaluating the total heuristic for the game board, Tricky Dick first determines each player’s heuristic separately in a weighted linear function by assigning material value to each of the game piece. The total heuristic is then evaluated as the sum of the opponent’s pieces minus the sum of the agent’s pieces.

[image: image12.wmf]å

å

=

=

-

=

-

=

n

i

m

j

AGENT

j

OPP

i

AGENT

OPP

TOT

p

w

p

w

h

h

h

0

0

This implementation takes into account the total set of game pieces on the board and calculates the heuristic from the agent’s point of view. So, when there are more opponent pieces on the board and/or less agent pieces, the overall heuristic will be larger, therefore making that heuristic more appealing to the agent (i.e., the Max part of the minimax algorithm.) Likewise, less opponent pieces and/or more agent pieces will bring down the value of the overall heuristic, making these board configurations less appealing to the Max algorithm.

The weighting is assigned by three methods. First, checkers are worth twice the value of kings because Tricky Dick considers kings too powerful and would like to limit their affect on the heuristic. Next, the position of the piece on the board is taken into account in two ways. The first way position affects weight is via a table which assigns a higher value to the squares closer to the edges. The intent of this method is to bias the pieces toward the center of the game board since they will have more options to get jumped. Pieces that are on the edge have no opportunity to be jumped, but can jump pieces adjacent to them, therefore they are not desirable. The second position bias is to assign a weight to the rows of the board to bias the pieces to keep moving toward the opponent if a checker, and back toward home if a king. If the board is laid out with row 1 on the top and row 8 on the bottom, the functions for biasing the rows are (9 - (i % 4) + 1) to bias the pieces north (i.e., move them ↑) and ((i % 4) + 1) to bias them south (i.e., move them ↓), where i is the position of the piece being evaluated. A graphical representation of the board and the positional biases are shown below in the figure.

As an example of a heuristic calculation, let’s say the red side has a king at location (6, 5) and a checker at (2, 7) and the white side has a checker at location (4, 5), where location (x, y) means row x starting at the top and column y starting on the left. The red heuristic would be hRED = (1*3*2) + (2*2*3) = 72. The king is assessed 1*3*2 because it is a king (1), on the 6th row going north (3) and on a square assigned 2 by the position table. Likewise, the red checker is assessed as 2*2*3 because it is a checker (2), on the second row going south (2) and in a square assigned 2 by the position table. By this logic, the white checker nets hWHITE = (2*5*1) = 10.

	Column Value for going South ↓
	Red Side
	Column Value for going North ↑

	1
	
	4
	
	4
	
	4
	
	4
	8

	2
	4
	
	3
	
	3
	
	3
	
	7

	3
	
	3
	
	2
	
	2
	
	4
	6

	4
	4
	
	2
	
	1
	
	3
	
	5

	5
	
	3
	
	1
	
	2
	
	4
	4

	6
	4
	
	2
	
	2
	
	3
	
	3

	7
	
	3
	
	3
	
	3
	
	4
	2

	8
	4
	
	4
	
	4
	
	4
	
	1

	
	White Side
	

If the agent were white, the total heuristic hTOT = hRED - hWHITE = 72 – 10 = 62, and if the agent were red hTOT = hWHITE - hRED = 10-72 = -62. Obviously, to the Max algorithm, this is a much more desirable board configuration for the white player than the red player.

State Representation:

Each state represents an instance of the checker board. This instance includes an array of 32 characters that holds the pieces, or lack there of, that occupy the 32 positions assigned to the checker board. These pieces (characters) include the following:
· r – represents a red checker

· R – represents a red king

· w – represents a white checker

· W – represents a white king

· ‘ ’ – (blank) represents an open position on the board

Also associated with each state is a variable that represents whose turn it is. 0 is used to represent red and 1 to represent white. The board itself and the position locations are defined in the project handout.
How do you use our code?
1. Execute the main() method in the mainDriver class.
2. Answer the two questions that follow:

[image: image13.png]
3. If the agent goes first, its initial move will be displayed, else the human will be prompted for a move.
4. The human’s moves are entered by entering the starting position (1 – 32), hitting <enter>, entering the next position (1 – 32), hitting <enter>, etc., etc., until all the human’s positional moves have been entered. After the last move has been entered, a zero (0) is entered followed by <enter>, to signify that the human is done and it is the agent’s turn. For example, to move from position 2 to 9 to 18 (i.e., a double jump) the human would enter:
2
<enter>
9
<enter>
18
<enter>
0
<enter>
Then it’s the agent’s turn. At any time a user prompt is provided, a human’s move can be undone by typing 33 and <enter> . This implements the requisite UNDO command. At any time a user prompt is provided, the game can be terminated by typing 99 and <enter>.
5. After an agent move is made, the board state will be displayed as follows:

[image: image14.png]
6. The game then continues until someone wins…or loses as it goes for this project.

The Placard…
Tricky [image: image16.jpg] Dick

Created by:

Bob Conti & Tom Bush

Heuristics:

· Game piece position weighting function
· Directional bias weighting function
· Kings worth less than checkers

· Total game board evaluation (both red and white
pieces factor in heuristic)
AI Features:

· Alpha-beta pruning with depth cutoff
· Successor evaluation “tricks”

Works Cited…
Images, etc.
http://www.onehitwonders.com/newchessboards.html

http://store.encore-editions.com/gifts/cocker.html
[image: image20.jpg]
http://www.fiftiesweb.com/pop/nixon.htm
Other Sources
1. Artificial Intelligence A Modern Approach, Second Edition, Russell & Norvig, 2003: this is the class text and was used for guidance on how to implement alpha beta pruning (pseudo-code) and other general AI type information.
2. http://ai-depot.com/LogicGames/MiniMax-Cutoff.html: when searching for viable heuristics functions, we were looking for a way to assign weights to locations on the board; something similar to how the text discussed assigning weight to chess pieces for an evaluation function. This web-site had an interesting way to assign ‘weights’ to locations on the board that we chose to implement. Our evaluation included many variations of that found online but ended being similar. However, the code to implement it was our own.
This Page Blank

CSc-244: Artificial Intelligence

Project 3 – Loser Takes All

By

TJ Bush & RJ Conti

� HYPERLINK "http://www.onehitwonders.com/2341.html" �� INCLUDEPICTURE "http://store5.yimg.com/I/1hitwonders_1783_16492566" * MERGEFORMATINET ����"We did get something, a gift, after the election... It was a little cocker spaniel... our little girl, Tricia, the six-year-old, named it Checkers... I just want to say this right now, that regardless of what they say about it, we're gonna keep it."��(Los Angeles, California, September 23, 1952)

We did get something, a gift, after the election... It was a little cocker spaniel... our little girl, Tricia, the six-year-old, named it Checkers... I just want to say this right now, that regardless of what they say about it, we're gonna keep it."�

� HYPERLINK "http://www.onehitwonders.com/2341.html" �� INCLUDEPICTURE "http://store5.yimg.com/I/1hitwonders_1783_16492566" * MERGEFORMATINET ����Our agent, Tricky Dick, has been so named in honor of the one political contribution that Richard Nixon admitted to receiving….a black and white cocker spaniel named Checkers………

Agent

Tricky Dick

CSc-244: AI

Winter 2004

TJ Bush & RJ Conti
Page 8 of 14
CSc-244: AI

_1140371127.unknown

