Jeff Rosenberg

Adam Pallus

CSC 244:  Artificial Intelligence

Final Project

March 2004

One Jump Behind

There are 32 possible squares on a checkerboard, so we represented the board as an 8x4 2D array of integers.  Although it may not be quite as fast as other methods, arrays are still fast in java since they are passed by reference and we are still able to go deep enough into the tree to play well in a reasonable amount of time.  We felt that it was more important to have a balance of a good heuristic and a fast checker engine, rather than spending all of our time implementing some bizarre state representation and then just throwing together a simple heuristic the night before the competition.  Our agent represents moves simply as arrays of integers that represent the starting and ending positions of a move, along with any in-between moves for multiple jumps.  The list of moves is held in a vector since it can change size as more moves are generated.


We used a minimax search algorithm for the guts of our agent, and alpha-beta pruning to speed things up.  With this system in place we can reliably get to a depth of 10 in well under a minute.  We wanted to implement timing to use the entire minute for each move and adjust the depth accordingly, but alas all of our efforts failed.  Since minimax is a depth-first algorithm it seemed that the only way to have the program increase the depth after generating out to a predetermined minimum depth would be to do some sort of iterative deepening search combined with the minimax.  This would only result in maybe one or two extra ply since it would have to rebuild the entire tree up to the previous depth first, and we decided it wouldn’t be worth it to implement.  One other thing that we did implement but later got rid of was ordering of the nodes for alpha-beta pruning.  Since alpha-beta does better when the nodes are visited optimally, we had the program order the list of moves that need to be visited, according to their evaluation function value.  However once we implemented this we saw no noticeable improvement in speed, presumably because all of the extra calls to the evaluation function offset the extra pruning, so we went back to our original alpha-beta algorithm.  Since we decided to always just go to depth 10 we wouldn’t need the speed improvement anyways, because our algorithm never takes longer than one minute to do that depth, though the extra speed might have given us enough time to reliably search 12 or 14 ply, our implementation of the ordered alpha-beta search actually decreased the speed with which it completed the search, most likely due to a much increased number of calls through our complicated evaluate function, and multiple construction and copying of arrays and vectors.  

The heart of our intelligence lies in the Evaluate function.  The function takes a game state (the board, a 8x4 int array) and returns an integer value of it’s calculated worth.  The same function works for both red and white moves, though white tries for a min value while red tries for a max value.  The heart of the evaluate function lies in the numbers of checkers and kings of each color.  A white checker is worth 150, a white king is worth 250, and their red equivalents are the opposite, -150 and –250 respectively.  While not a particularly interesting heuristic, as every state with the same number of pieces for each side is worth the same, regardless of the positions or numbers of pieces, it is very useful when used with our search algorithm as it will guide the heuristic toward gaining a material advantage.  However, with a search depth of only 10 ply, the search often does not lead to a state in which such an advantage can be gained, and would thus be unable to differentiate between the states.  In order to evaluate these non-quiescent states, the evaluate function also takes into account a variety of other factors.  

One of the main factors for evaluating these states is the position function, which assigns to each non-king piece a value based on its color and position.  The values for each position can be found in the two constant 4x8 arrays in the search class.  It may not be immediately apparent which states are good for which color due to the multiple negative values, but essentially, it encourages checkers to move off of their original squares, stick to the edges and make it to the other side.   The last rank does not matter as the checkers are kinged, and then subject to a different value.  Once kinged, the pieces are strongly encouraged to stay off of the edges, since in the end game, the king trapped on the edge first will be the loser.  This problem of immobility of kings lead to what may be our strongest heuristic, the immoble function, probably spelled incorrectly, but still very useful. It returns true of a checker has no possible moves.  At first, this may seem to be a positive aspect for reverse checkers, however, just as in standard checkers; a loss of mobility gives the opponent control of the board.   Thus, an immobile checker is twice as bad as a mobile checker.

Other heuristics include a balance function and a shadow function.  The balance function returns an integer that corresponds to the relative balance of the pieces for each side.  An off-balance state for one player has a majority of its pieces to one side of the board.  An  balanced state is better.  The shadow function awards extra points for having empty spaces in the original starting location, as long as some pieces have advanced beyond them.   Each empty space in the area is worth 1 point (times a weight constant), though if pieces are only on the bottom rank, no points are awarded.  This represents the ability for our pieces to be jumped.  Pieces without blanks behind them cannot be jumped and are discouraged.

