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ABSTRACT

In real-time systems, tasks must satisfy strict timing constraints in order to avoid timing failures. In
situations in which task running times are not known a priori, i.e., at design time, dynamic scheduling
approaches attempt to guarantee, at run time, that tasks will meet their deadlines. Clearly, such guar-
antees may not always be possible, and so schedulability failures are likely. One option to minimize the
effect of such failures is to instead schedule alternative tasks. In this paper, we present and evaluate an
approach that exploits hierarchically structured program representations that naturally occur in many
application scenarios. Hierarchy allows us to (a) simplify the specification of real-time requirements and
(b) specify the alternative tasks to schedule in the event of an impending timing failure. We extend an
existing dynamic scheduling algorithm to deal with hierarchical task structures and present the results of
our experimentation aimed at determining the efficacy of our approach.

1 INTRODUCTION

In real-time systems, tasks must satisfy strict timing constraints in order to avoid timing failures. In
cases in which task running times are not known a priori, dynamic scheduling approaches attempt to
guarantee, at run time, that all tasks will meet their deadlines. However, this guarantee may not always be
possible, and timing failures are likely. In many applications, when this occurs, it might be acceptable to
schedule lower-quality alternative versions for certain (sets of) tasks, where the alternatives are designed
to consume less processing time. Scheduling such alternatives is one way to reduce the likelihood of
(total) timing failures in dynamic systems. Consider, for example, an unexpected emergency situation in
a computer controlled process. Resolving this might require obtaining additional information from a set
S of sensors within a short time window. Ideally, we will want to obtain all the readings from the sensors
in S but it is highly likely that readings from a subset of the sensors will also prove useful.

The specification of these alternatives, as well as the run time approaches used to both choose the best
alternatives and produce schedules for those alternatives, can vary. In this paper, we present a flexible,
generalized hierarchical approach to specifying the alternatives. In addition to the standard software
engineering arguments in favor of hierarchy as a way of providing abstraction and complexity control, we
have found that hierarchy has some scheduling benefits. We exploit hierarchical program representations
to (a) simplify specification of real-time requirements and (b) specify alternative sets of tasks used to avoid
timing failure. We use a scoped exception handling mechanism to limit the likelihood of exposing timing
failures. Our approach is very general in the character of possible alternatives and also in the handling
of timing failure experienced by local actions. Because our approach is based on a scoped exception



handling mechanism, scheduling failure can be handled by any number of remedies, and the remedies
themselves might fail to produce a valid schedule and so they might have to be remedied as well. This
chaining of possible solutions to scheduling failure allows us not only to specify different remedies, but
to specify in what order they should be attempted.

In the next section, we discuss related work on approaches to this and similar classes of problems. We
follow with a formal statement of the class of problems in which we are interested, including a description
of the hierarchical program structures we wish to schedule. Then, in Section 4 we present our approach,
which extends an existing heuristic search based dynamic scheduling algorithm. We then present in Sec-
tion 5 experiments we have conducted to determine for what types of problems this approach is profitable.
We conclude with a discussion of what has been learned in this work, and possible future directions.

2 RELATED WORK

Liestman and Campbell [5] present an off-line approach to a similar problem. They introduce primary and
alternate algorithms for computing solutions of differing quality and timing characteristics. They prefer,
as in our case, to use the higher quality primary algorithm, but might have to use the faster alternate
algorithm if the primary algorithm is predicted to take too long. The approach, however, is static1 in that
it schedules tasks off-line. Because of this, the approach does not handle situations in which the timing of
tasks is unknown until run time, as in the problems we are attempting to solve.

Our approach uses exception handling to absorb dynamic scheduling failures. Other scheduling ap-
proaches have handled scheduling failures in different ways. For example, in Real-Time Concurrent
C [4], the guarantee statement can have an else clause that indicates what to do in the cases where the
run-time system cannot produce a valid schedule or cannot do so quickly enough. This approach allows
the specification of local actions to fix scheduling problems, and the else clause could even be used to
attempt to schedule a faster alternate algorithm. However, this approach requires that scheduling failures
be handled locally. Our approach, based on a scoped exception handling mechanism, allows a programmer
the option of handling the failures at higher scopes instead of requiring handling at the innermost scope.

Liu et al. [6] describe dynamic algorithms for scheduling imprecise calculations in which a calculation is
logically broken into a mandatory subtask and an optional subtask. In that work, Liu et al. discuss fairly
sophisticated algorithms to handle this class of problems. In our work, we have chosen instead to keep
the scheduling algorithm relatively straightforward and build a structure around it that helps to solve the
problem at hand in a flexible manner. This structure is the scoped exception handling approach. Also,
while our overall goals are similar to Liu’s in that we allow the specification of subtasks for a task, we do
not limit the description to a single optional subtask.

The work we describe in this paper is also related to the area of intelligent scheduling, surveyed by
Zweben and Fox [12]. In this work, there is a common distinction between planning and scheduling. The
real-time systems community and the intelligent scheduling community share a definition of scheduling,
namely that scheduling “assigns resources and times for each activity” so as to meet precedence and
timing constraints [3]. Planning, on the other hand “selects and sequences activities” to achieve system
goals [3]. Informally, planning is deciding which tasks to perform, while scheduling is deciding if they
can be performed in time.

As shown by Durfee and Lesser [2], planning and scheduling must work together. They describe an
approach that uses a planner to devise a plan of action, and then predicting using a scheduling algorithm
how long the plan will take. They re-plan as necessary if the plan will overrun deadlines. Similar to our
work and that of Liestman and Campbell [5] referenced earlier, Durfee and Lesser are willing to trade

1We take definitions of static and dynamic from Cheng, et al. [1].
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quality of result for timeliness of achieving that result. In their paper, they focus on how to make the
timing estimates on which a scheduler will predict the running time, something that we have not done in
our work.

Instead of using an intelligent planner that designs a plan based on potentially conflicting criteria, such
as Wagner and Lesser’s Design-to-Criteria Scheduler [9], we have opted to hard-code the plan. This
gives our approach a desired simplicity at the expense of lost intelligence. A planner that trades off
various criteria to produce the optimal schedulable plan is likely to introduce combinatoric complexity –
if removing single tasks from the schedule doesn’t make it schedulable, or doesn’t produce the highest
quality, then the planner must then attempt removing pairs of tasks, then triples, etc. We are interested
in providing some of the flexibility of such approaches, while keeping the number of plans to schedule
tractable (perhaps linear in the number of tasks). However, it also seems fruitful to explore the use of such
powerful planners in future work to see precisely what benefit they provide and at what complexity cost.

3 STATEMENT OF THE PROBLEM

We are interested in providing structures and approaches to help build real-time programs that provide
graceful degradation under overloads in dynamic real-time systems.

We can formalize the scheduling problem for the window as follows:2

Given T = {T1, T2, ..., Tn}, the tasks that are to be scheduled, each task description Ti = (ti, di, ri), where:

• ti, the estimated processing time of the task.
• di, the deadline for the task, relative to the beginning of the time window.
• ri = {Ri1 , Ri2 , ..., Rim}, the resource requirements of the task, where Rij = {RIij1

, RIij2
, ..., RIijk

} is
a set of resource instances, such that Ti can be executed only if ∀Rij : ∃r′ ∈ Rij , and r′ is allocated to
Ti. In this work, we assume that all resources so allocated are acquired for exclusive use.

In this section, we present a formal description of a class of problems for which schedules are desired. We
start with a description of a traditional scheduling problem, which we call the Unconstrained Schedul-
ing Problem, in which the input is a flat set of independent tasks that must be scheduled to complete
before their deadlines. We generalize this to the set of problems, the precedence Constrained Scheduled
Problem, in which some pairs of tasks are constrained by a precedence relation. We then extend this to
address the Alternatives Scheduling Problem, in which some sets of tasks can be replaced in the schedule
with alternative sets. Finally, we present the Hierarchical Scheduling Problem, a class of problems for
which we have developed a flexible approach. Here, sets of tasks and there precedence relationships and
alternatives are described using a hierarchical program representation and a schedule is constructed to
exploit this hierarchical representation.

We define the Unconstrained Scheduling Problem, USP(T ) 7→ S, where:

• T = {T1, T2, ..., Tn} is a set of tasks.
• S is a valid, feasible schedule. S = {ST1, ST2, ..., STn}, a set of n scheduled tasks STi = (Ti, Si, RAi),

where:

– Ti is the task that is scheduled.
– Si is the start time assigned to the task. Si + ti ≤ di.
– RAi = {RIi1 , RIi2 , ..., RIim} is the resource assignment for Ti. ∀RIij ∈ RAi : RIij ∈ Rij and
∀Rij ∈ ri : ∃(r′ ∈ RAi) ∈ Rij . Because the resources are acquired for exclusive use, no other

2We use notation similar to that found in [6].
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task executing during the interval (Si, Si + ti) can be assigned any of the resource instances in
RAi.

The Constrained Scheduling Problem, CSP(T, P ) 7→ S, adds a precedence relation, P as input:

• P ⊂ T × T , a partial order.
• S is constrained such that STj ∈ S ∧ (Ti, Tj) ∈ P → STi = (Ti, Si, RAi) ∈ S ∧ Si + ti ≤ Sj .

We are interested in generalizations of this problem that allow more flexibility in what tasks are scheduled.
For example, if the application uses pairs of redundant sensors to improve fault tolerance, it may be
acceptable to schedule only one sensor of each pair under overloaded situations. While it is desirable to
read all the sensors present, this may not be strictly required.

Let A = 〈A1, A2, ..., Ap〉 be a collection of alternatives ordered by preference. Each alternative Ak ⊆ T is a
set of tasks to be scheduled. The goal for this problem is then to schedule the most desirable alternative
to meet the deadlines, which involves both choosing the best alternative and producing a valid, feasible
schedule for it. We call this problem the Alternatives Scheduling Problem, ASP(T, P,A) 7→ (A ′, S) where:

• T, P are defined as above.
• A = 〈A1, A2, ..., Ap〉, where Ak ⊆ T .
• A′ ∈ A
• ∀Ti : Ti ∈ A′ ↔ Ti ∈ S.

The decisions regarding which alternatives are schedulable may have to be taken dynamically if the ex-
pected durations of the tasks depend on run-time conditions (e.g., because of uncertainties in measure-
ment, network load, sensor noise, mobility, etc... ).

Many traditional scheduling approaches (e.g., [8]), are designed to determine only whether tasks are
schedulable or not. In this paper, we present a dynamic approach to choosing and scheduling alternatives,
and thus provide a more flexible solution to this class of problem. We give particular attention to the
subclass of problems in which the alternatives A2, A3, ..., Ap ⊂ A1. In the sensor reading example, an
alternative to reading all the sensors is to read some subset of the sensors.

Under the hypothesis that having more tasks successfully scheduled is better than having fewer, we
propose to measure the effectiveness of solutions to the Alternatives Scheduling Problem by counting
the total number of tasks scheduled in a given time interval. The goal is thus to maximize the amount of
work scheduled to meet the given deadlines.

3.1 An Example

Consider, for example, a control application that reads two pairs of redundant sensors. The application
uses four tasks, each reading one sensor: T = {T1a, T1b, T2a, T2b}, where each of the tasks has an estimated
processing time, ti = 150 time units, and a deadline, di = 300. Each task has a resource specification
ri = {R1}, where R1 is a set of resource instances. The precedence relation, P , contains no pairs and
therefore the tasks can be scheduled concurrently.

If R1 = {RI1, RI2}, then two of the leaf tasks can be scheduled concurrently, and all tasks are schedulable.
A possible valid, feasible schedule is S = {ST1a, ST1b, ST2a, ST2b} in which S1a = S1b = 0 and S2a = S2b =
150.

If these tasks are executed repeatedly, and if the time estimates, ti, vary from iteration to iteration and
may exceed 150 in some, it is possible that in some iterations not all four readings are schedulable. In a
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root
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Figure 1: An example hierarchical program

traditional dynamic scheduling algorithm [8], this failure to produce a schedule for all four readings will
result in none of the tasks being scheduled. Therefore the total number of tasks scheduled is not increased
on that iteration.

In this class of problems it is desirable to schedule some instead of no tasks on each iteration, if possible.
In the example, we can afford to schedule T1a, T1b, and T2a in those cases where the time estimates are
too high to schedule all four tasks. Therefore, a programmer might define two acceptable task sets, A1 =
{T1a, T1b, T2a, T2b} and A2 = {T1a, T1b, T2a} for the Alternatives Scheduling Problem.

3.2 Hierarchical Program Structures

In the descriptions of the problem presented above, T is a set of tasks, Ti, each of which must be defined
individually. However, we have found that the introduction of a hierarchical notation allows for simpler
specification of the time, resource, and precedence constraints of the tasks, and so will use hierarchical
program structures in the rest of this paper.

The introduction of hierarchy changes the Alternatives Scheduling Problem slightly in that T is redefined
and an additional function, p is added:

• p is the parent function, defining a tree. p(i) = j ↔ Tj is the parent of Ti in the tree. p(x) is not defined
if x is the root of the tree.

• We define the root of the tree: Troot : @i : p(root) = i.
• T = {T1, T2, ..., Tn}, where Ti = (ti, di, ri), where:

– ti returns the duration of Ti. If Ti is not a leaf, i.e. ∃x|p(x) = i, then ti = 0. Otherwise, ti is equal
to the duration specified for Ti. We define ti this way because, in this hierarchical structure, the
leaf tasks are those tasks that need to do work, while the non-leaf tasks are used for structuring
to ease specification.

– di returns the deadline of Ti. If there is a deadline specified for Ti directly, di returns it. Other-
wise, di returns dp(i).

– ri returns the resource specification for Ti. If there is a resource specification specified for Ti

directly, ri returns it. Otherwise, ri returns rp(i).

Instead of requiring the specification of a deadline, di for each task, the programmer can specify a deadline
for a parent task. This is shown in the hierarchical program description of the sensor reading example
problem in Figure 1. Each of the leaf steps in the example has a processing time, ti, specified but the
deadline, di, is derived from the root step.
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Read Sensors
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r = {R1}

d = 300
o = false

Figure 2: A more complex hierarchical program

Similarly, task T1a in Figure 2 is defined to consist of the two tasks, T1aa and T1ab. The programmer
does not have to indicate a deadline on T1a, in which case the deadline for the two subtasks will be
derived from the deadline for the root. Using a hierarchical description also allows the specification of
resource requirements to be simpler. In Figure 2, T1aa and T1ab use the same resource as is specified in T1a,
namely a resource from the set R1. In this way, the hierarchical representation provides a flexibility to the
programmer to specify only the real timing requirements, instead of being forced to specify deadlines at
all levels just to make the scheduling algorithm simpler.

A further redefinition of non-leaf tasks, Ti = (ti, di, ri, oi), simplifies the specification of the precedence
relation, P :

• oi ∈ {true, false} provides ordering information for subtasks. If oi is true, the subtasks of Ti are said
to be ordered from left to right. If oi is false, the tasks are unordered.

• We now define P ′:

– ∀Ti : (Ti, Tp(i)) ∈ P ′.
– Let si = 〈Ti1 , Ti2 , ..., Tin〉 be the subtasks of Ti, Tij |p(ij) = i, ordered in the same order as the

left-to-right order of the task descriptions in the graphical description.
– oi = true→ ∀i≤j≤n−1Tij : (Tij , Tij+1

) ∈ P ′).

• P can now be defined based on the transitive closure of P ′, P ′∗. Since we are only interested in the
precedence relationships between leaf tasks, P = P ′∗ − {(Ti, Tj)|∃Tx : p(x) = i ∨ p(x) = j}.

In the example show in Figure 2, because oa1 = true, P ′ = {(T1a, Troot), (T1b, Troot), (T2a, Troot), (T2b, Troot),
(T1aa, T1a), (T1ab, T1a), (T1aa, T1ab)}. Therefore, P = {(T1aa, T1ab)}.

However, if oroot = true also, then P ′ = {(T1a, Troot), (T1b, Troot), (T2a, Troot), (T2b, Troot),
(T1aa, T1a), (T1ab, T1a), (T1a, T1b), (T1b, T2a), (T2a, T2b), (T1aa, T1ab)} and therefore P = the transitive closure
of {(T1aa, T1ab), (T1ab, T1b), (T1b, T2a), (T2a, T2b)}.

Clearly, in order to enjoy these specification simplifications, the scheduling algorithm must deal with
the hierarchical representation of tasks. We extend a heuristic search scheduling algorithm, originally
designed for non-hierarchically defined sets of tasks, to schedule hierarchical structures and use the hi-
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erarchy to help provide the needed flexibility. We further use exception handling to provide planning
capabilities.

4 OUR APPROACH

In this section we first describe a simple dynamic scheduling algorithm for solving the Constrained
Scheduling Problem, that we then extend to deal with hierarchical task structures. Then we show how
to deal with scheduling failures by capitalizing on the specifications of scoped exception handling, thus
solving the Alternatives Scheduling Problem. The approach is evaluated in the next section.

4.1 A dynamic real-time scheduling algorithm

Since we extend an existing dynamic scheduling algorithm [8] to suit our needs, we first give a short
summary of this basic algorithm which solves the Unconstrained Scheduling Problem. At the end of this
subsection, we show how to extend it to solve the Constrained Scheduling Problem.

The basic approach uses a working list, Lw and a scheduled list, Ls, which represents the current partial
schedule. Initially, Lw = T . There is no precedence relation, P , and therefore all tasks on Lw can be
scheduled to execute in parallel. From this starting point, the algorithm iterates until Lw = ∅, on each
iteration choosing the heuristically determined “best” task to move from Lw to Ls. An additional data
structure is used to keep track of the availability of resources, such that we can use EAT (r) to determine
the earliest available time that a resource is available. Initially ∀r : EAT (r) = 0. As a task Ti is added to
Ls,

• The resource assignment, RAi ← {RIi1 , RIi2 , ..., RIim}, where ∀RIik ∈ RAi : @r′ ∈ Rik |EAT (r′) <
EAT (RIik).

• The starting time Si ←MAX1≤k≤mEAT (RIik).
• The EAT structure is updated: RIik ∈ RAi → (EAT (RIik)← Si + ti).

This iteration continues as long as the schedule represented by Ls is feasible (all tasks complete before
their deadlines). If the schedule is infeasible, the algorithm backtracks. If Lw = ∅ and the schedule
created in feasible, then the algorithm succeeds because the partial schedule is now a complete feasible
schedule.

This basic approach can be modified to solve the Constrained Scheduling Problem by ensuring that the
heuristic that chooses a task from Lw only chooses tasks from the set, T ′ = {Tj |∀Ti : (Ti, Tj) ∈ P → Ti ∈
Ls}, of all tasks whose preceding tasks are already in Ls.

4.2 Modifications to support hierarchy

In the next extension we develop the hierarchical algorithm. To this end, we adapt the above-described
algorithm to take the hierarchy of our program structures into account. We again use a working list Lw

and a scheduled list Ls. Initially, Lw = {Troot}. The hierarchical algorithm then iterates until Lw = ∅,
just as in the basic algorithm, adding a task from Lw to Ls based on a heuristic application as long as the
schedule is still feasible. However, in order to effectively enforce the hierarchical precedence relationship,
P , in the hierarchical algorithm, Lw can grow. In particular, when a task Ti is added to Ls, a set of following
tasks can be added to Lw: Lw ← Lw ∪ Fi, where Fi is defined as follows:

• @Tj ∈ Lw : p(j) = i:

– op(i) = true ∧ (Ti = Tij ∈ sp(i), j < |sp(i)|)→ (Fi ← {Tij+1
}), the next substep after Ti.

– op(i) = true ∧ (Ti = Tij ∈ sp(i), j = |sp(i)|)→ (Fi ← Fp(i)).
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– op(i) = false ∧ (∀Tij ∈ sp(i) : Tij ∈ Ls)→ (Fi ← Fp(i)).

• ∃Tj ∈ Lw : p(j) = i:

– oi = true→ (Fi ← {Ti1}), the first element of the subtasks set.
– oi = false→ (Fi ← si), all of the subtasks.

By growing the work list in this way, at any time during execution, Lw contains all those tasks that can
be added to the partial schedule represented by Ls. By construction, Lw is such that ∀Ti ∈ Lw : @Tj 6=
Ti|(Tj , Ti) ∈ P ∧ Tj /∈ Ls. Therefore, at every iteration of the algorithm any of the tasks on the work list
can be added to the schedule.

We should note that this is not the only way to adapt the algorithm to work with hierarchical structures.
We could have, for example, allowed Lw to contain all tasks T as in the basic approach, and constrained
the selection of tasks from Lw as in the basic approach. However, this would have made the implemen-
tation more difficult to write and made it harder to reason about what tasks, at any point, can be added
to Ls. Our approach keeps Lw simple and makes it easy to reason about what tasks are allowed on the
schedule. The main loop of the algorithm does not have to keep track of the precedence relationship – it
is only after a task is added to the schedule that we use the precedence semantics to update Lw. A smaller
number of tasks in Lw also implies lower scheduling overheads.

We also believe that our approach keeps Lw sufficiently short so as to reduce the number of heuristic
applications during the execution of the scheduler to a tractable number. We propose to attempt to verify
this hypothesis in future work.

4.3 Planning via exception handling

The scheduling algorithm above solves the Constrained Scheduling Problem (CSP) for hierarchical struc-
tures. However, the scheduling algorithm alone does not solve the Alternatives Scheduling Problem,
ASP. To solve ASP, we introduce scoped exception handling to the hierarchical program structures, as
exemplified by Little-JIL [10, 11] in which hierarchical program structures can be specified with exception
handling. Little-JIL provides a graphical representation for the specification of the hierarchical structures,
very similar to those shown in Figures 1 and 2. The sequencing of subtasks is defined by either an arrow
or two parallel lines, representing the state when oi = true or oi = false, respectively.

Figure 3 shows the sensor reading example problem, as implemented in this language. This program
represents a controlled approach to solving two instances of the CSP: We first attempt the scheduling
algorithm on the task called Take All Readings, because there is a deadline specified on the task, which
makes it the root of a CSP problem. If the hierarchical algorithm described above fails to produce a
schedule for this CSP, a SchedulingFailure exception is thrown, which is handled by the handler attached
to the Read Sensors task. The handler, called Perform Three Readings is the root of another CSP problem
in which we attempt to schedule three of the tasks. This approach solves the ASP problem that consists of
the two alternatives A = {A1 = {T1a, T1b, T2a, T2b}, A2 = {T1a, T1b, T2a}}, by first attempting to schedule
A1 and then scheduling A2 if that is unsuccessful.

This approach represents a hard-coded plan: it provides an answer to the question of which tasks to
attempt in the case when not all can be scheduled. As we will see in the next section, this seemingly
rudimentary, hard-coded plan is surprisingly well-suited in improving the schedulability of tasks.

While we have, in this example, defined the alternatives A as a sequence of subsets of the first alternative,
A1, our approach can be used to provide different planning solutions. For example, we could handle the
scheduling failure by attempting a completely different set of tasks that gives desirable timeliness. The
flexibility of the approach allows us the ability to execute many different types of remedies.
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Figure 3: An example hierarchical program with exception handling for scheduling failure

Also, because the exception handlers are themselves tasks that fit into a larger hierarchy, we can specify
at even higher levels what to do in the event of a failure to schedule the exception tasks. For example,
in Figure 4, a first scheduling failure causes the system to attempt to schedule three tasks. However, if
the scheduler is unable to do so, a second scheduling failure occurs, which is handled by attempting to
schedule only two tasks. This chaining of possible solutions to scheduling failure allows us not only to
specify different remedies, but also to specify in what order they should be attempted. So, unlike the
approach taken by Liu, et al. [6], the task is not simply divided into two subtasks.

Also note that the approach using exception handling allows the specification of handling at higher levels.
So, if multiple CSP problems are being attempted in a hierarchical program, failures from all of them can
all be handled by the same response, as shown in Figure 5. In this example, a scheduling failure can
occur at any level deep in any of the three main subtasks of the root, but they are all handled by the same
response. This provides more flexibility than the local specification required by other approaches (e.g., as
in Real-Time Concurrent C [4]).

While the flexibility, simplicity, and quality of output the approach provides is desirable, we seek in future
work to develop approaches that require less hard-coding of the manner in which scheduling failures are
handled.

5 EXPERIMENTATION

In this section, we describe experiments performed to ascertain the usefulness of using hierarchical struc-
tures and scoped exception handling to derive a plan for the sensor reading program described in Figure 3.

We compare our approach to an approach, which we call the all-or-nothing approach, that does not use
exception handling and therefore only solves the Constrained Scheduling Problem, CSP, for the original
set of tasks, ignoring the alternatives possible.
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Figure 4: More complex exception handling
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Figure 5: Handling Failures at Higher Levels

Our first set of experiments was aimed at determining what problem parameters affect the benefit of
our proposed approach the most. It is clear that the approach will never fail to schedule A1 when the
traditional approach would do so. However, the benefit of our approach should be less for some task
structures than for others.

In order to determine how full the scheduling window on average needs to be in order for our approach
to be of benefit, we modeled the problem as follows:

• We consider two alternatives A = {A1 = {T1a, T1b, T2a, T2b}, A2 = {T1a, T1b, T2a}}. Clearly, we should
first attempt to schedule A1 and then schedule A2 if that is unsuccessful.

• ∀i : ri = {R1}, where R1 = {R1, R2} is a resource class with only two instances. This means that
only two of the leaf tasks of A can execute concurrently.

• droot = 300 time units for each of the two roots.
• ∀i : ti ∼ N(µ, σ), where we varied µ and σ for different experimental runs such that 50 ≤ µ ≤ 200,

σ = µ
10 .

Given tasks with the above characteristics, we experimented over 10000 iterations of A and measured the
performance in terms of the metric W =

∑
0≤i≤N |A(i)|, where |A1| = 4 and |A2| = 3 and N = 10000 is

the number of iterations.

Figure 6(a) shows the results of this first set of experiments. As can be seen, when µ ≤ 100, both the all-
or-nothing approach and our approach schedule the same number of readings. However, as the means
get higher, more scheduling failures are noticed for A1, and the more we have to resort to A2, scheduling
only three tasks. For 100 ≤ µ ≤ 130, the difference in the number of readings scheduled is less than two
thousand, out of a possible total of forty thousand. For µ ≥ 150, the difference starts to be very noticeable,
and when µ = 200, our approach is able to schedule over thirty thousand tasks, whereas the all-or-nothing
approach schedules less than three hundred. Roughly, in this problem when µ ≤ 100, our approach does
not provide a benefit, while when µ > 130, our approach’s exception handling-based scheduling provides
significant benefits.

This experiment shows that with µ = 100 and σ = 10, there is almost always sufficient time to execute
the complete set of leaves, while with µ = 150 and σ = 15, the time window of 300 units was over-full
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Figure 6: Results – Varying Mean Duration Estimates

approximately half the time.

In order to determine the sensitivity of these results to deviations in processing times, we undertook two
additional sets of experiments.

First, for the case with µ = 150, in which the window is full about half the time, we expect to see that with
even small deviations the system will fail to schedule A1. To test this hypothesis, we model the problem
as follows:

• ∀i : ti ∼ N(150, σ), 1 ≤ σ ≤ 100.

Second, for the case with µ = 100, we would expect, since the time window is under-full by 100 time units,
on average, that the system would be able to schedule A1 very often but that for very large deviations we
would expect to see failures to schedule A1, resulting in attempts to schedule A2. To test this hypothesis,
we model the problem as follows:

• ∀i : ti ∼ N(100, σ), 1 ≤ σ ≤ 75.

As can be seen in Figure 7(b), when the window is full on average approximately one half of the itera-
tions cause a scheduling failure and therefore the approach is not very sensitive to large variances in the
execution time durations. Even with a large variance, the approach was consistently one and a half times
better that the all-or-nothing approach. However, as shown in Figure 7(a), where µ = 100 and the average
case does not come very close to filling the time window, the approach is more sensitive to variance in the
execution times. As the variance becomes larger, the benefits of our approach increase.

5.1 Analysis

Our experiments quantitatively show the benefits of using our approach under different circumstances.
When designing a real-time system, a designer has many scheduling approaches to choose from. Depend-
ing on the characteristics of the tasks to be scheduled and the time window in which to schedule them,
some approaches will be better suited than others. Our experimentation has provided some guidance to
help such a designer.

As can be seen in Figure 6(b), the difference between the all-or-nothing approach and our approach is
negligible in non time-constrained situations (µ ≤ 120), but in time-constrained situations (µ ≥ 150), the
difference is quite noticeable.
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Figure 7: Results – Varying Standard Deviations

Based on our experimentation, we would therefore advise the designer to use the approach presented in
this paper when:

• The problem is more naturally described using hierarchical representations;
• The task processing times is expected to vary significantly from iteration to iteration; or
• The time window duration is such that it will be, on average, a tight fit for the tasks.

This analysis, however, does not address the costs of this approach. In our approach using exception
handling for planning, we have to schedule A1 just as the traditional approach does. In addition, if that
attempt fails, we have to then attempt to schedule A2. We can approximate the cost of the approach by
assuming that the scheduling algorithm is linear in the number of tasks (which is supported by results
presented in [8]). Therefore, if the cost to schedule A1 = 4x, then the cost to schedule A2 = 3x. In the case
when µ = 150, in which the scheduler fails in approximately half the cases to schedule A1, the expected
scheduling cost will be: 4x

2 + 7x
2 = 5.5x. This cost seems quite reasonable for the benefits we can get.

In order to more carefully pinpoint the problem characteristics for which this approach is useful, further
experimentation is needed. For example, our current experiments did not vary the resource availability.
A designer of a dynamic real-time system is likely to face varying resource availability, for example, due
to failures or noise levels.

Another potential difference between our models and actual real-time systems is the uniformity of the
tasks. In our experiments, we have assumed four tasks, each with similar mean processing times. How-
ever, in real-world systems, task characteristics are likely to be much more varied.

6 LESSONS LEARNED AND FUTURE WORK

6.1 Benefits of Hierarchy

We have made good use of hierarchy. In addition to the standard software engineering arguments in favor
of hierarchy as a way of providing abstraction and complexity control, we have found that hierarchy has
some scheduling benefits. We have used the hierarchy and a scoped exception handling mechanism to
provide planning that helps us get more work scheduled in a broadly applicable class of problems.

In addition to this quality benefit, there are other benefits of hierarchy:

• Clarity of precedence relationships – Specifying the precedence relationship between tasks in this
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hierarchical way makes it clear which groups of tasks must precede which other groups.
• Working list size – The size of Lw in our scheduling algorithm is kept relatively small by virtue of

only containing, during each invocation of the scheduling algorithm those tasks that can currently
be scheduled. Keeping track of which tasks that can be scheduled and adding to the list when new
tasks are scheduled is aided by the hierarchy.

• Multiple alternative types – In this work, we have concentrated on the class of problems in which the
alternatives A2, A3, ..., An ⊂ A1. The hierarchically-scoped exception handling mechanism allows
the specification of differing alternatives. We plan to experiment with the more general problem as
part of our future work.

6.2 Applicability of Approach

We have found through experimentation that for problem domains in which processing times deviate a
lot, or in which scheduling windows are very tight, our approach has an advantage over an all-or-nothing
approach. We believe that there are important real-time problem domains that fit this description. We plan
in future work to investigate the use of this approach with real-world problems.

6.3 Planning

Dealing with real-time issues requires not just scheduling, but planning. The example hierarchical pro-
gram shown in Figures 1 and 3 exhibit such a planning problem. Instead of just scheduling alternative A1,
the approach must first determine which alternative to schedule, and then schedule it. In the example,
we have hard-coded the planning by using the exception handling mechanism of Little-JIL.

Other approaches to hard-coding the plan should be investigated. For example, allowing the specification
of optional tasks is one way to give the programmer flexibility in expressing a plan. Instead of explicitly
defining A1 and A2, the programmer could specify that A1 = {T1a, T1b, T2a, T2b}, and specify that task T2b

is optional. This is, in effect, defining two alternatives, A1 with T2b and A′
1 without T2b. The plan would

still be hard-coded (because the alternatives are completely, though implicitly, specified and the order in
which to attempt them is defined), but this would provide a simpler way to specify the plan.

If T2b and T1b were both defined to be optional, there would be four alternatives. Further, the order in
which to attempt the alternatives would not be fully specified. If the number of optional tasks is not
limited, the number of alternatives possible increases exponentially. This provides one way in which
we might allow a programmer to avoid hard-coding the plan. However, in order to keep the approach
tractable, we might try only those alternatives in which a single optional task is removed. Choosing which
alternative to attempt first could be determined intelligently. Perhaps, for example, the programmer
would specify priorities on tasks that can be used by the exception handler to determine how to construct
the next-attempted alternative.

We might also try a multi-version approach similar to that described by Marlin et al. [7]. In that approach,
a version variable can be used by the higher-level task to determine which subtasks to include. The plan-
ner can then attempt to schedule the highest-numbered version first, and respond to failure by attempting
the second highest. In this way, the programmer could specify a chain of responses.

The system development complexity would be much easier for the programmer to handle if plans did
not have to be hard-coded into the programs. We could rely, for example, on an artificially intelligent
planning component. Such a component could use a scheduler to determine if the tasks can be done
in time, as was done in the work described by Durfee and Lesser [2]. If the scheduler fails to produce
a schedule, the planner can re-plan, deciding which tasks to remove based on how long the tasks were
supposed to take or on other criteria such as quality and cost [9]. The scheduler can then attempt to
schedule the newly planned tasks. This iteration would continue until a feasible schedule is produced.
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While we seek solutions that do not introduce undue complexity, we do seek more intelligent and flex-
ible solutions. Some of the approaches mentioned here should be investigated to provide this needed
flexibility in simple ways. More complex solutions from intelligent scheduling should also be investi-
gated [12, 3, 9].
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