A Pattern for Modeling Rework
in Software Development Processes

Aaron G. Cass!, Leon J. Osterweil2, and Alexander Wise?
! Department of Computer Science
Union College
Schenectady, NY 12308

cassa@union.edu
2 Department of Computer Science
University of Massachusetts Amherst

Ambherst, MA 01003

{ljo, wise}@cs.umass.edu

Abstract. It is usual for work completed at one point in a software development
process to be revisited, or reworked, at a later point. Such rework is informally
understood, but if we hope to support reasoning about, and partial automation
of, software development processes, rework be more formally understood. In
our experience in designing formalized processes in software development and
other domains, we have noticed a recurring process pattern that can be used to
model rework quite successfully. This paper presents that pattern, which mod-
els rework as procedure invocation in a context that is carefully constructed and
managed. We present some scenarios drawn from software engineering in which
rework occurs. The paper presents rigorously defined models of these scenarios,
and demonstrates the applicability of the pattern in constructing these models.

1 Introduction

Rework, the activity of reconsidering and modifying an earlier decision, is a feature
common in software engineering and other creative processes. While reconsideration
may be relatively straightforward, modifying earlier choices can be far more compli-
cated, as it typically entails reconsidering and modifying other choices that had been
made subsequent to the choice being modified. These subsequent modifications can
then lead to still further reconsiderations and modifications, potentially creating a daunt-
ing collection of reconsiderations and modifications that can leave the participants con-
fused and increasingly incapable of keeping the rework activity under control.

In software development, for example, it is not uncommon to find that a design
under consideration is becoming unduly complicated because of requirements or ar-
chitectural decisions that had been made previously. Often this causes the designer to
revisit the requirements, for example, to see if they are needlessly restrictive, and to
revisit either the requirements or architecture to see if they are, for example, inadven-
tently inconsistent either internally or with each other. These revisitations often lead
to changes, which in turn lead to others. Requirements changes then cause reconsid-
eration of architecture decisions, which can cause the architecture to be inconsistent



with the changed requirements. Architecture changes can then require revisiting design
and requirements decisions. The full effect of a single change is often referred to as
the “ripple effect”, and it can be highly disruptive to development processes that might
otherwise seem to be orderly and systematic. Thus, the simplicity of a pure “waterfall”
process is typically augmented by back-edges that denote iteration. But these iterations
are typically driven by changes and cause other changes. Thus what may appear to be
simple iterations are actually iterations needed to effect rework changes. Indeed it has
been estimated that a very large percentage of the total effort in a complex development
project is devoted to rework.

Because of the prevalence of rework, it seems important to better understand it.
A clear understanding of the nature of rework could lead to stronger support for the
activity, through carefully tailored tools and automated aids. Such an understanding
might also help control the propagation of the ripple effect of modifications resulting
from rework. It might also lead to better understanding of the relationship between
rework and traditional development, perhaps helping to identify common subactivities
and a smoother integration of these two dominant components of creative work.

In earlier work [1] we suggested that rework can be modeled as re-invocation of
one or more development activities that had been carried out previously, but now must
be carried out in a context different from the original execution, where a context is
any aspect of the process step’s dynamic, run-time environment (e.g. input parameters,
resources, or personnel employed) that can cause the step to be carried out differently
or produce a different result. In that approach, we used procedure invocation semantics
to view rework as the invocation of a procedure in a context. So, instead of simply
saying that rework is “going back” to a previously-executed development stage, we
say that rework is a re-invocation of some activity, activities, or subphase(s) of that
previously-executed stage. Invocation semantics make it clear where the rework activity
gets its data from and where any output data is passed — down and up (respectively)
the procedure invocation trace. This earlier work left largely unexplored, however, the
specific details of how this rework context information was gathered, passed to, and
used by the rework activity itself. In this paper we present examples of rework, define
a rework process pattern based on re-invocation in a managed context, and use this
pattern to specify rework in some software development activities.

2 Motivating Examples of Rework

As suggested above, rework happens when it becomes clear that a previous decision
has become problematic, often because it has come into conflict with subsequent de-
cisions. In such cases, rework is undertaken to resolve the conflict. In this section we
present several concrete examples of rework that we have encountered, and which seem
amenable to solution using the pattern presented later in this paper. Though we have
found rework in dispute resolution [2], scientific data processing [3, 4], health care de-
livery [5], and other domains, the examples here are drawn from software engineering.

Although there is a lack of agreement about the exact way to develop software,
there is little disagreement that a finished product consists of a set of different types
of artifacts, usually including a specification of requirements, a design meeting those



requirements, executable code, and evidence that the code satisfies the requirements.
Ultimately, these artifacts must be acceptably consistent, both internally and with each
other. For example, the design should be shown to specify an approach that enables
the requirements to be met, and the executable code should be shown to be a correct
implementation of the design.

While all of these dimensions of consistency should be achieved by the end of a de-
velopment project, there is no expectation that all of these consistencies will be achieved
easily or straightforwardly. For example, developers expect that initial design decisions
will be inconsistent with requirements, initial code might not correctly implement de-
signs, and that executing code may make clear the unreasonableness of requirements
specifications. Indeed, the process of developing a finished product inherently entails
the more or less continuous reevaluation and reconsideration of all prior decisions.

For example, a requirements specification may be reconsidered because it is appar-
ently inconsistent with other requirements, because subsequent design efforts are com-
plicated by the requirement, or because code seems unable to satisfy the requirement.
Identifying the inconsistency is what we will call a triggering event. In such cases, the
nature of the conflict is a key part of the context under which developers re-evaluate
and possibly re-produce the problematic requirement. We view this re-evaluation and
re-production as re-instantiation of the activity that produced the faulty requirement
in a new context, with different input parameters. Re-instantiation in the new context
leads to what we will call re-invocation of the decision process, resulting in rebinding
of the results of the execution. The re-invocation may or may not result in a modifica-
tion of the requirement. In either case, execution resumes where it left off, at the site
of the triggering event. This may entail re-evaluating the triggering condition, and that
might trigger further rework. In software development, a modification of an artifact can
wind up triggering a long sequence of rework activities, which can entail multiple re-
considerations of a decision about a single artifact. The fact that there are additions and
changes to the context for subsequent reconsiderations of the same artifact improves the
chance that previous experiences will inhibit making the same decision multiple times,
reducing the chances of unproductive loops in the process.

3 A Pattern of Managed Rework

The previous examples suggest a pattern of rework, which we will now define using the
vocabulary of Gamma et al. [6]. Fig. 1 shows the structure of the pattern using a UML
activity diagram [7].

3.1 Applicability

— Use the pattern if internal consistency of work products must be maintained and
one wants to handle the inconsistencies that arise before continuing.

— Use the pattern if rework will trigger a long, complex sequence of consequences,
whose management will be facilitated by an at least semi-automated process.



e

/
Work(go)ntext_ﬂ Work Task (WT) .
W \

li_l Trigger (t)

Rework Task (RT)

Context (c,)
Context Re-Invocation
: Construction, (C,) R) X
E"a'g“"” : Work Task (WT)
Context Re-Invocation x
Construction, (C,) R)

Context (cn)

Fig. 1. Structure of the pattern.

3.2 Participants

Work task (WT') The process activity in progress when the need for rework is noticed.

Trigger (t = {e,i}) The trigger is a message that is sent in response to the identifica-
tion of an inconsistency that seems to require rework. The trigger should identify
the entity to be reworked e, and the inconsistency detected .

Rework task (RT = {E,{(C1, R1),...(Cpn, R,)}}) The process model must spec-
ify how to respond to each trigger by specifying the following parts:

Evaluation (E(t) — p) An activity to be carried out to evaluate the trigger ¢ in
order to create a plan p that specifies what, if any, response is required as a
response to the trigger. Process models can omit an explicit evaluation activity
if there is only a single possible plan that could result from a trigger, in which
case p = t.

Context Construction (C;(p) — ¢;) An activity to create an appropriate calling
context ¢; for the re-invocation.

Re-invocation (R;(c;)) The re-invocation of a previously executed activity.

3.3 Collaborations

— A process model using to the pattern must define a triggering mechanism. Typically,
the trigger is the result of a checking activity and the trigger is represented as an
exception object — e.g., a design review might check the internal consistency of a
design and throw an exception if the review fails.

— When trigger ¢ is fired, work task W1 is suspended and the rework task BT begins.

— Rework begins with the evaluation of trigger ¢ by E to determine whether re-
invocation of a previously-executed activity is needed. Based on the trigger, Eval-
uation will create plan p, which may consist of a choice among several different



34

3.5

4

re-invocations to address the trigger. Evaluation may involve human effort, or the
activity may be (at least partially) automated. If re-invocation is needed, an appro-
priate context c¢; for re-invocation R; is constructed by context construction Cj.
Re-invocation R; can then be undertaken, using parameters provided by context
c¢;. Once re-invocation is complete, rework task T is complete, and the process
proceeds where it left off by re-invoking work task W in its original context c,,
(i.e. with its original parameters).

Consequences

A precise model describes both the context in which rework occurs and how to
proceed after the rework has been completed.

Processes using rework implemented with this pattern may be executable. Because
rework is explicit in the process model, such executable processes could be used to
monitor how well an activity is progressing.

Activities that may be carried out in rework contexts must be designed to be carried
out in all possible re-invocation contexts. For example, a requirements specification
activity within a development process must be designed to allow for modification
of the requirements during phases other than the initial requirement specification.

Related Patterns

When the immediate reworking of an entity is not desired, the exception handling
pattern Deferred Compensation may be used [8]. This pattern breaks rework tasks
into two disjoint activities — one contains the evaluation activity, while the other,
the deferred activity, contains context construction and re-invocation activities.
Object Derivation [9] offers an approach in which requests for inconsistent objects
serves as a trigger for backward chaining.

Observer [6] may be used as a vehicle for creating triggers when reworking an item
can result in the need for forward chaining.

Task Deferral [10] is another mechanism for triggering rework. In this pattern, the
availability of data is itself a trigger for the forward chain.

Managing the Context

It is the context in which the re-invocation occurs that differentiates rework from simple
procedure invocation. The context defines the entities to be modified, the information
available to support this modification, and the constraints placed on the re-invoked ac-
tivity. Therefore, the re-invocation context must define the binding of objects to both
the in- and out-parameters of the re-invocation, ensure that any appropriate constraints
are enforced during the re-invocation, and specify the response to any events that arise
while the re-invocation is in progress. Formally, we define the context as:

a clear designation of the entity that is to be the subject of the rework activity.
a set of bindings between the formal parameters to I2; and the actual arguments in

the plan p : {(f1,a1),-.-(fn,an)}-



Develop Requirements

INE Declare Requirement Define Requirement Check Requirement
Element @ Element @ Element (WT) @

$ Reqt. Check Failed (t)
[

Rework Requirement (RT)

Create Define
Requirement Context
(C) @

Define Requirement Check Requirement
ElementR) @ Element (WT) @

Fig. 2. Control flow in the requirements development process.

— aset of constraints B that are in force during the re-invocation.
— aset of handlers H for any signals s that may occur during the re-invocation.

The set of bindings in the context spec-
ifies the information available, and the
destination of entities that are created dur-
ing the re-invocation. When creating this
binding, the difference between pass-by-
reference and pass-by-value is particularly
important. Since rework often involves the
modification of existing entities, is is usual
to pass these entities by reference. We
note, however, that the derivation history
[9,3,4] of these entities is often particu-
larly important in the creation of a rework
plan as that history is often necessary in
order to guide the re-invocation away from

try
element «— Declare Requirement Element
(informal requirements) O]
Define Requirement Element (element) @)
Check Requirement Element (work context) 3)
catch failure : Reqt. Check Failed
context < Create Define Requirement
Context (failure) @
Define Requirement Element (context) ®
Check Requirement Element (work context) (6)
end try

Fig. 3. Pseudo-code for the requirements
development process. Step numbers corre-
spond to those in Fig. 2.

repetition of choices that have previously been shown to have led to later problems.
In our experience, exceptions are often used as triggers of rework, and as seen in the

examples provided in Section 5, changes made in later phases of a larger activity often
create inconsistencies or problems that are detected as the violations of constraints that
then generate exceptions that in turn initiate rework sequences that “ripple” through the
larger activity. The pattern we define here allows the set of handlers H to control this
rippling by treating re-invocations as “work tasks” from which triggers may be emitted,
each of which associates a set of parameter bindings, specifications of which entities
are to be reworked, and other components of the context for the re-invocation.

5 Examples Using the Pattern

We begin with rework in requirements specification, shown in Figures 2 and 3. This ac-
tivity consists of the parallel creation of a set of Requirement Elements, each of which
consists of a Requirement Specification Declaration (created by Declare Requirement



Create Design

Declare Design
Element

Define Design
Element

Check Design
Element (WT)

Design Check Failed (t)

Rework Based on Design Error (RT)

Evaluate

Create Define @
Element Context (C))

Define Design @
Element (R

Failure () @ Create Develop

Requirements Context
<) @,

Check Design
Element (WT) ®,

Develop
Requirements (R2)®

Fig. 4. Control flow in the design process.

Element) and a Requirement Specification Definition (created by Define Requirement
Element). Each Requirement Element is reviewed in Check Requirement Element, and
reworked if the review indicates any deficiencies.

The failure of Check Requirement El-
ement serves as the trigger. As the Re-
quirement Element must always be re-
worked if its review fails, this use of
the rework pattern contains no evalua-
tion activity — responding to the trigger
immediately results in the creation of
an appropriate context. In this example,
we assume that the failure indicates the
need to rework a specific Requirement
Specification Definition whose identity
is passed as part of the trigger. The re-
work then begins with creation of the
appropriate context by Create Define Re-
quirement Context, then proceeds with
the re-invocation of Define Requirements
Element, and then resumption of the ex-
ecution of Check Requirement Element
in the context from which the initiating
trigger occurred.

try
element «— Declare Design Element
(requirement)
Define Design Element (element)
Check Design Element (work context)
catch failure : Design Check Failed
plan «— EvaluateFailure(failure) O]
if plan is rework the design then
context, «— Create Define Element
Context(plan)
Define Design Element (context;)
else rework the requirements
contexta < Create Develop Requirements

©)
®

Context(plan) ®@
Develop Requirements(contexts) ®
end if
Check Design Element(work context) [O)
end try

Fig. S. Pseudo-code for the design process.
Step numbers correspond to those in Fig. 4.

In reinvoking Define Requirements Element as the response to the detection of a diffi-
culty with the result of a prior invocation, this process definition demonstrates our view
of how rework can be defined accurately. In order to explain this approach to defin-
ing rework adequately it is necessary to elaborate upon the way in which this process
definition manages its artifacts and their flow. Develop Requirements takes as input an
informal set of requirements and produces a set of Requirement Elements as output.
When, as described above, Check Requirement Element fails it fires a trigger ¢ this results



in an instance of the rework pattern. As there is only a single response to the failure, the
evaluation activity F(t) has been left out, and no plan is created, and the re-invocation
context is created using information from Reqt. Check Failed directly. While the context
should include a range of information to support the modification of the element such
as the reason the check failed, of particular interest to us is the requirement element to
be defined. In the original work task Check Requirement Element (WT'), the element is
defined by the normal flow of Develop Requirements but here is defined to be the element
e that is part of the trigger Reqt. Check Failed. Because the context binds the formal pa-
rameters in an activity to the actuals in the calling context, the changes to the element
are reflected in the set of requirement elements.

As previously noted, Develop Requirements takes an informal requirements descrip-
tion and produces requirement elements by, in parallel, defining individual elements by
creating a requirement element for part of the informal requirements (1), defining the
requirement (2), and finally reviewing the defined requirement (3).

In the event that the requirement is inadequate, Check Requirement Element signals
this by throwing failure, an instance of the trigger Reqt. Check Failed that includes the
failed element. The trigger is the input to Create Define Requirement Context which cre-
ates a context including the element to be passed (@) to the re-instantiation of Define
Requirement Element (5) and finally, control is returned to Check Requirement Element (6).

We now use the pattern to specify a more complicated form of rework. Figures 4
and 5 present a design activity, the overall structure of which is similar to that of the
Develop Requirements activity presented above. Specifically, after the design elements
are declared and defined, there is a review activity, Check Design Element that may trigger
rework. In Create Design however this review activity incorporates a determination of
whether or not the design element should be revised (by the re-invocation of Define
Design Element) or if the requirements must be reworked by Develop Requirements to
accommodate discoveries about Requirement Elements that have been made during
design. This is an example of the not-uncommon situation where detecting the existence
of a problem is only the first step in a process that leads to a re-invocation.

Before re-invocation can take place, participants must determine an appropriate so-
lution to the problem. The pattern represents this as evaluation activity Evaluate Failure
(D that takes the failure and produces a plan to assess the problem (E(¢) — p). In this
example, in response to the Design Check Failed trigger, Evaluate Failure creates one of
two possible plans: one that requires reworking the design element in much the same
way as the requirement element was reworked above (2) (3), and a second in which new
requirement elements are created in response to new informal requirements created as
part of the plan by re-invocation of Develop Requirements (5) in a context created by Cre-
ate Develop Requirements Context (4) that includes the new informal requirements, and
then finally returning to the work context Check Design Element (6.

6 Related Work

Others have studied process patterns, notably Russell et al., who have specifically stud-
ied workflow structures that can be used for exception handling [11]. They derive sev-
eral patterns that can be used to handle exceptions caused by a single work item. While



our pattern is rightly seen as one way of handling a kind of exception — namely those
exceptions that cause a previous decision to come under suspision — our work differs
from that of Russell et al. in that we observe a pattern in existing process models instead
of deriving possible patterns from low-level considerations.

The pattern presented in this paper helps to describe rework in formal process mod-
els. As such, it aims to help solve a long-standing problem in process improvement. It
is generally accepted that rework is a feature (or a bug) in real-world software develop-
ment, and that modelling processes therefore requires modeling rework carefully [12,
13]. And yet, most life-cycle models do not formally model rework and rework is not
formally treated in popular software engineering texts (for example, [14—-16]). Many
life-cycle models (e.g. the Spiral Model [17]) assume that steps are repeated many times
with different contexts, but do not formally model how context is managed.

In order to implement the pattern described here in a process or workflow model, the
modelling language must support a trigger mechanism and a mechanism for managing
the parameter binding needed for a re-invocation context. Some modelling languages
support this approach more directly than others. For example HFSP’s [18] redo clause
allows reinstantiation of a step with different parameters. With other languages, es-
pecially those with semantics similar to general-purpose programming languages, this
pattern can be implemented using exception handling and scopes.

6.1 Implementing Triggers as Exceptions

Because triggers are seen as devices for initiating activities that are considered to be
outside the normal flow of control, it seems natural to implement a trigger with an ex-
ception handling mechanism. Several languages provide such a mechanism, borrowing
from general purpose programming-language semantics [19-21]. Other languages al-
low the specification of consistency conditions that produce exceptions when violated
(for example, AP5 [22], Marvel [23], Merlin [24], EPOS [25], and ALF [26]).

Wang and Kumar [10] propose a different approach to exception handling that could
also be used to support rework. Their approach assumes a data-flow based workflow
system, in which control flow is inferred from data dependencies between activities —
if an activity B must occur after activity A, even with no data flow between A and
B, a soft data dependency is added. Then, if A should fail, the soft dependency can
be relaxed and activity A can be deferred to such a time as it can be safely executed
(reworked). However, their approach does not seem to allow specifying a change in the
invoking context of A — the source of A’s data is fixed. Therefore, it seems that some
kinds of rework could be modelled in this approach but it is not flexible in managing
the context for rework.

6.2 Implementing Context with Scope

An invocation context must bind parameters and exceptions and provide an environ-
ment in which the re-invocation is carried out. It seems natural to use a scope to de-
fine such an environment. Any inputs an activity needs or outputs it produces can be
found by searching within a scope. Therefore, by providing a different scope through re-
invocation, we provide a different environment in which the activity can be performed.



Little-JIL [19] supports hierarchical scoping for parameter binding and exception
handling. Also, several languages based on flow graphs and Petri-nets allow nesting of
activities, where each nesting provides a scope [27-29].

7 Conclusions and Future Work

The examples provided in this paper fit nicely into the pattern that we have presented.
Moreover the examples seem to us to provide elegant representations of the actual na-
ture of rework. The pattern makes it clear that rework does indeed entail repeating activ-
ities and steps that had been executed previously, but it also shows that the re-execution
is not exactly a repetition, but is a revisitation of previous work now with new knowl-
edge, as contained in context information such as calling arguments. The pattern makes
clear how the new knowledge is created and brought to bear.

The pattern makes it clear that rework does not entail “returning to a previous
phase”. In an important sense it has always been obvious that reworking a require-
ment because of a problem found in design did not cause a “return to the requirements
phase”, but rather a pause in the activities involved in design while activities involved
in requirements were revisited. This intuition now seems to be very well represented in
the pattern of “re-execution in a managed context”, expressed precisely and elegantly
through the semantics of procedure invocation. In short, the rework examples we have
shown are some form of carefully managed, potentially recursive, procedure invocation.

The pattern presented here suggests opportunities to improve development environ-
ments. In recognizing that rework often entails creating new contexts for previously
executed process steps, this work seems to highlight the importance of maintaining the
information basis for constructing such contexts. This information basis may consist
of specific instances of types of software development artifacts such as design com-
ponents and design decisions, or of large and elaborate structures of such instances
that have arisen during extensive development and rework activities. This suggests to
us that future work aimed at creating powerful development support systems might do
well to focus on how to maintain precise and articulate information about these arti-
fact instances, and the histories of their development. As most of our previous work
has focused on defining process steps, the work indicated here suggests a complemen-
tary focus on the artifact instances that they require and generate. Such complementary
work might then focus on how to store, structure, and present artifact structures in ways
that enable tools to better support development, which inevitably includes rework. Such
tools would not simply present a developer with the need to revisit a previously executed
step, but would supplement that with an articulate description of the circumstances un-
der which the step had previously been carried out. This would enable the developer to
make better informed decisions about how to address the needed rework.

The modest number of examples provided in this paper are only a representative
sample of a larger number of examples that seem to fit into the pattern that has been
presented here. These examples all seem to be cleanly and clearly represented as in-
stances of the pattern that we have presented. It is our conjecture that this pattern will
suffice to describe many other instances of rework, found both in software engineering
and in other disciplines. We remain interested in examining other instances in order to



explore our hypothesis that this pattern might well serve as a definition of the term “re-
work”. Should our conjecture prove to be correct, then we expect that this work could
lead to more effective support for rework as is needed in many of the varied domains in
which it is a central feature of how work is carried out.

Acknowledgements

The authors wish to express gratitude to Stanley M. Sutton, Jr, Reda Bendraou, Barbara
Staudt Lerner, Stefan Christov, Lori A. Clarke, and members of the Laboratory for
Advanced Software Engineering Research at the University of Massachusetts Amherst
who have participated in this research, and clarified the points made in this paper.

This material is based upon work supported by the US National Science Founda-
tion under Award Nos. CCR-0427071, CCR-0204321 and CCR-0205575. The views
and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of The National Science Foundation, or the U.S. Government.

References

1. Cass, A.G., Sutton, Jr., S.M., Osterweil, L.J.: Formalizing rework in software processes.
In: Proc. of the 9th European Workshop on Soft. Proc. Technology. (September 1-2, 2003)
Helsinki, Finland.

2. Clarke, L.A., Gaitenby, A., Gyllstom, D., Katsh, E., Marzilli, M., Osterweil, L.J., Sondeimer,
N.K., Wing, L., Wise, A., Rainey, D.: A process-driven tool to support online dispute res-
olution. In: Intl. Conf. on Digital Government Research, ACM Press (2006) San Diego,
CA.

3. Osterweil, L.J., Wise, A., Clarke, L.A., Ellison, A.M., Hadley, J.L., Boose, E., Foster,
D.R.: Process technology to facilitate the conduct of science. In: Soft. Process Workshop
(SPW2005), Spring-Verlag (2005) 403—415 Beijing, China.

4. Osterweil, L.J., Clarke, L.A., Podorozhny, R., Wise, A., Boose, E., Ellison, A.M., Hadley,
J.: Experience in using a process language to define scientific workflow and generate dataset
provenance. In: Proc. of the 16th ACM SIGSOFT Intl. Symp. on Foundations of Soft. Engi-
neering (FSE16), ACM Press (2008) Atlanta, GA.

5. Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Brown, D., Cassells, L.,
Metens, W.: Rigorously defining and analyzing medical processes: An experience report. In:
Ist Intl. Workshop on Model-Based Trustworthy Health Information Systems (MOTHIS),
Springer-Verlag (2007) Nashville, TN.

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

7. Object Management Group: OMG Unified Modeling Language (OMG UML) Superstruc-
ture. Technical Report formal/2007-11-02, Object Management Group (November 2007)
Version 2.1.2.

8. Lerner, B.S., Christov, S., Wise, A., Osterweil, L.J.: Exception handling patterns for pro-
cesses. Technical Report 08-06, UMass Dept. of Comp. Sci. (March 2008)

9. Clemm, G., Osterweil, L.: A mechanism for environment integration. ACM Trans. on Prog.
Lang. and Systems (TOPLAS) 12(1) (1990)



10.

11.

12.

13.

14.
15.

16.
. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Computer

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

Wang, J., Kumar, A.: Exception handling using task deferral in document-driven workflow
systems. In: Proc. of the Annual Workshop on Information Technology and Systems (WITS).
(2005)

Russell, N., van der Aalst, W.M.P, ter Hofstede, A.H.M.: Exception handling patterns in
process-aware information systems. Technical report, BPM Center (2006)

Haley, T., Ireland, B., Wojtaszek, E., Nash, D., Dion, R.: Raytheon Electronic Systems expe-
rience in software process improvement. Technical Report CMU/SEI-95-TR-017, Carnegie-
Mellon Software Engineering Institute (November 1995)

Butler, K., Lipke, W.: Software process achievement at Tinker Air Force Base. Technical Re-
port CMU/SEI-2000-TR-014, Carnegie-Mellon Software Engineering Institute (September
2000)

Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice
Hall, Englewood Cliffs, NJ (1991)

Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Fourth edn. McGraw-
Hill, New York (1997)

Sommerville, I.: Software Engineering. Sth edn. Addison-Wesley (1996)

21(5) (1988) 61-72

Suzuki, M., Iwai, A., Katayama, T.: A formal model of re-execution in software process.
In: Proc. of the 2nd Intl. Conf. on the Soft. Process, IEEE-PRESS (February 1993) 84-99
Berlin, Germany.

Wise, A.: Little-JIL 1.0 Language Report. Technical Report 98-24, UMass Dept. of Comp.
Sci. (April 1998)

Sutton, Jr., S.M., Osterweil, L.J.: The design of a next-generation process language. In: Proc.
of the 6th European Conf. on Soft. Engineering, Springer-Verlag (1997) 142-158 Zurich,
Switzerland.

Sutton, Jr., S.M., Heimbigner, D., Osterweil, L.J.: APPL/A: A language for software-process
programming. ACM Trans. on Soft. Engineering and Methodology (TOSEM) 4(3) (July
1995) 221-286

Cohen, D.: AP5 Manual. USC, Info. Sci. Institute. (March 1988)

Kaiser, G.E., Barghouti, N.S., Sokolsky, M.H.: Experience with process modeling in the
MARVEL software development environment kernel. In Shriver, B., ed.: 23rd Annual Hawaii
Intl. Conf. on System Sci. Volume II., Kona HI (January 1990) 131-140

Junkermann, G., Peuschel, B., Schifer, W., Wolf, S.: MERLIN: Supporting cooperation in
software development through a knowledge-based environment. In Finkelstein, A., Kramer,
J., Nuseibeh, B., eds.: Soft. Process Modelling and Technology. Wiley (1994) 103 — 129
Conradi, R., Hagaseth, M., Larsen, J.O., Nguyén, M.N., Munch, B.P., Westby, P.H., Zhu, W.,
Jaccheri, M.L., Liu, C.: EPOS: Object-oriented cooperative process modelling. In Finkel-
stein, A., Kramer, J., Nuseibeh, B., eds.: Soft. Process Modelling and Technology. Wiley
(1994) 33 -70

Canals, G., Boudjlida, N., Derniame, J.C., Godart, C., Lonchamp, J.: ALF: A framework for
building process-centred software engineering environments. In Finkelstein, A., Kramer, J.,
Nuseibeh, B., eds.: Soft. Process Modelling and Technology. Wiley (1994) 153 — 185
Bandinelli, S., Fuggetta, A., Grigolli, S.: Process modeling in-the-large with SLANG. In:
Proc. of the 2nd Intl. Conf. on the Soft. Process, IEEE Computer Society Press (1993) 75-83
Deiters, W., Gruhn, V.: Managing software processes in the environment melmac. In: Proc.
of the 4th ACM SIGSSOFT/SIGPLAN Symp. on Practical Soft. Dev. Environments, ACM
Press (1990) 193-205 Irvine, CA.

Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of excep-
tions in workflow management systems. ACM Trans. on Database Systems (TADS) 24(3)
(September 1999) 405-451



