Proceedings of the Tenth International Workshop of Software Specification and Design. 5-7 November 2000. San Diega, CA. Pages 195 — 199.

Design Guidance Through the Controlled Application of Constraints

Aaron G. Cass and Leon J. Osterwell

Department of Computer Science
University of Massachusetts
Amherst, MA 01003-4610

{acass, |jo}@s. umass. edu

Abstract

We seek to facilitate development of high quality soft-
ware designs and architectures by using rigorous process
definitions to guide application of the complex structure of
relations and constraints that define well-formedness. We
identify various types of constraints and demonstrate spe-
cific instances of these types. We endorse the value of main-
taining the integrity of these constraints by reacting to their
violation with diagnostics and remedies. The sheer number
and diversity of these constraints, however, indicates the de-
sirability of a mechanism for controlling the scope and ef-
fect of their enforcement. Thus, we propose to use proactive
process specifications to control the enforcement of, and re-
action to, the various constraints. This will result in a pro-
cess driven system that supports designers and architects
by guiding them through orderly development and rework
processes, disciplined by the application of constraint en-
forcement at the right times and in the right ways. This
work entails research in defining both types and instances
of constraints with programmable enforcement strategies,
in embedding such constraints in processes, and in appro-
priate process definition formalisms.

1. Introduction

Software artifacts such as designs and architectures are
complex structures of diverse types of software entities.
These various entities can be related to each other by means
of relationships between set of those entities. We can define
a constraint as a boolean expression, expressed in terms of
these relationships and boolean operators, which we can re-
quire to evaluate to true. In defining a well-formed software
artifact, by definition, to be one for which all constraints
evaluate to true (alternatively we say that the artifact is con-
sistent with respect to these constraints), these constraints
then essentially define what quality means for that artifact.

As complex software artifacts are generally quite large, it
is clearly desirable to support the incremental checking of
these constraints in order to detect inconsistencies as they
arise, and constantly improve quality. This can be done by
augmenting the basic notion of the constraint with further
semantics that specify when and how the constraint is to be
checked, and what action is to be taken in case the constraint
is found not to hold. Thus, clearly, constraints can be used
to signal developers when they need to remedy inconsisten-
cies.

There seems to be ample evidence, however, that allow-
ing a large collection of constraints to send signals in an un-
restricted, undisciplined way can cause problems that un-
dermine their effectiveness. In order to address this prob-
lem, we see the need for a countervailing capability for dis-
ciplining the way in which constraints are evaluated and en-
forced. It is our position that an outer proactive process
layer can be highly effective in doing this. In our work
we expect to demonstrate that the effective integration of a
high level, proactive specification for the process of design
or architecting, with a comprehensive suite of lower level
constraints can be an excellent aid to design and architect-
ing. Such a combination can be used to provide developers
with automated guidance on how to proceed forward with
design, and with other sorts of reasoning support.

In this paper, we present issues for the design of a con-
straint specification model and discuss ways in which the
web of these constraints might be used to support auto-
mated guidance, well-formedness enforcement, and reason-
ing. We also suggest how incorporating these constraints
within a larger procedural structure can improve effective-
ness in doing all of these things.

2. High-Level Introduction to the Model

We aim to provide aid to software designers in the com-
plex task of design. A designer must deal with a large num-
ber of diverse artifacts and ensure that together they give



Medical
Assistance
Request Center | Request

Ambulance
Service

Patient Help Ambulance

Monitor Remote Diagnosis

Request Request
. o Remot
Patient Data. | Monitoring Yemote
— Diagnosis
Software
System

Figure 1. Example Data Flow Diagram

. Monitoring Medical Assistance
Patient Software Center
Monitor
Request

Figure 2. Example Message Sequence Chart

a clear picture of the system under design. These artifacts
certainly include requirements specifications and architec-
ture descriptions but might also include related test cases,
maintenance plans, and user documentation, and therefore
the complexity of the entire system can be overwhelming.

2.1. An Example

We propose an approach to dealing with the complex-
ity of keeping all artifacts mutually consistent. We will
demonstrate it by way of a simplified example based on the
IWSSD-10 Case Study, a remote medical assistance system.
For clarity, we focus only on one pair of diagrams. Figure 1
shows a partially complete Data Flow Diagram(DFD) giv-
ing a subset of the requirements of the system, and Figure 2
shows the beginnings of one of the many Message Sequence
Charts(MSC) for a scenario a designer might model to re-
fine the design of the system. The two figures represent the
state of the artifacts at a point shortly after the designer has
modified the DFD to include Monitoring Software, when
previously the designer had only been concerned with re-
quests coming directly from a human patient. The MSC and
DFD show that we have modeled the patient’s request, but
we have not yet modeled the interaction between the Moni-
toring Software and the Medical Assistance Center in either
diagram. While this example only deals with two artifacts,
we will show than even this small system of diagrams can
present a substantial burden, if not appropriately handled.

We wish to examine the kinds of consistency checking
issues that are raised when the designer adds a data flow
edge in the DFD that allows flow of Help Requests from
the Monitoring Software to the Medical Assistance Center.

This addition of edges to the diagrams is part of an over-
all design process in which construction of the DFD is in
parallel with construction of the various MSCs for differ-
ent scenarios, and in parallel with the construction of many
other artifact types. We believe it is very useful to think of
construction of a DFD and construction of an MSC as steps
in this process, potentially decomposed into substeps.

2.2. A Model and Its Application

As an example, consider the enforcement of the con-
straint that all edges in each MSC correspond to edges in
the DFD, and those edges are consistent with respect to data
flow types and direction. Clearly, checking this condition
every time that we add an edge to either diagram will be too
eager — immediately after an edge is added, there is not yet
any corresponding edge in other diagrams and the condi-
tion will fail. Systems which continually check constraints
and immediately indicate failure (such as Argo [10]) would
likely overwhelm the designer with many consistency warn-
ings, especially in the case where the designer is trying to
keep a very large set of artifacts mutually consistent. We
propose to use a less-eager mechanism. We propose to
implement constraints as tuples, C = (C,,C.,Cy, C.),
where C, is a progress measure, or specification of when
to check C., which is the constraint condition that we wish
to be true. Similarly, C,, is a specification of when to exe-
cute C,., which is a specification of what to do in response
to condition failure.

The progress measure is a formula, in some logic, that is
true when it is appropriate to check condition C... C), can be
specified in terms of artifact state, but also in terms of the
history of those states or the actions that arrive at that state.
In the example, C,, can be defined, perhaps using a state
machine model, so as to limit the checking of the condition
to only after we have added two edges, one in the DFD and
one in an MSC, each between the same two components in
the corresponding diagrams. This specification would limit
the checking of the condition, but perhaps in an unsafe way
— the designer can possibly add an edge in one diagram and
never add a corresponding edge in another, thus never trig-
gering the constraint condition. Our solution to this prob-
lem is to add to the progress specification an indication that
if the designer gets to the end of the current design phase, as
specified by the name of a process step, that the constraint
should be checked. So, the full progress specification would
be if the state machine accepts OR the current design phase
finishes.

C), specifies when to check the condition, while C.. spec-
ifies the condition. This condition will also be a formula, in
some logic, perhaps different from the logic used for the
progress measure. For this example, a first-order formula
over the attributes of the artifacts will work for the con-



straint condition C..:

VM € MSC,Ve = (o, 8) € Edges(M) :
Jr = (o, B) € Edges(DFD) :
x.direction = e.direction

Az.annotation.type = e.annotation.type

This formula uses the values of the artifact attributes
Edges, direction, and annotation to determine if the dia-
grams are consistent with one another. If it succeeds and
returns true, we need do nothing. However, if it fails, we
must make some reaction. A straight forward approach,
used by some design environments, is to simply warn the
designer about the inconsistency in the design. We propose
to allow more flexibility through the use of a response spec-
ification, consisting of C,, a specification similar to C, that
indicates when to execute the response specified by C..

3. Model Specification Issues

A key part of the future direction of this work is to de-
termine useful formalisms for the specification of the four
elements of the constraint tuple. In this section, we explore
some of the issues with those formalisms.

3.1. Progress Specifications

Both C, and C,, need to specify some measure of
progress. We see three main elements that might be used
in such a specification, namely the state of the artifacts, the
events that arrive at a state of the artifacts, and the phase of
design currently being performed.

Conceivably, a progress measure can be specified in
terms of attribute values using the Object Constraint Lan-
guage(OCL) [1] or another first-order formalism. However,
it seems that history or temporal relationships between ac-
tions will be valuable. So, a progress specification in terms
of actions on the artifacts is being explored, as outlined
above. We might also consider a temporal logic such as
LTL [9] or GIL [7].

Progress might also be specified in terms of the process
step which we are currently performing. In fact, Little-
JIL [3] has pre- and post-requisites designed to be used to
specify that some task needs to be performed before or after
a step is performed. This task could be activating or deacti-
vating the checking of a constraint.

3.2. Constraint Condition Specification
To motivate some of the issues involved in choosing a

formalism for constraint conditions, in this section we give
examples of relations between artifacts and constraints on

those relations. For this discussion, we focus on the set
of relationships within and between architectures and re-
quirements specifications because requirements are a driver
for architectures [6]. The following is a partial list of the
sorts of relationships that are typically used to specify well-
formedness in software products. We denote by A; an ele-
ment of an architecture description and by R; an element of
a requirements specification.

A is part of a component mentioned in R

A provides the functionality required by R

A takes as input the data item defined by R

A outputs the data item defined by R

A is connected to all A; such that A; relatesto R
A implements an interface defined in R

A7 uses Ay

Ais composed of Ay, Ao, ..., A,

A constraint condition is a boolean expression which
we require to be true. Therefore, each of these relation-
ships could serve as conditions (the relationship exists or it
doesn’t). Such a suite of conditions is valuable, but does
not seem to us to be sufficient to provide the support that
developers need. For example, well-formedness cannot re-
alistically be defined solely in terms of single relationships
but rather on the combination of multiple relationships like
the following:

e There is no cyclic inheritance. This is a state-
ment about the set of relationships defined by the
inherits from relationship, namely that the graph
representing the relationship is acyclic.

Also, as the Object Constraint Language (OCL) [1] al-
lows, we would like to be able to express constraints about
properties of artifacts. These properties can be constrained
by constant values or they can be constrained by the values
of other properties, of the same artifact or others.

This is clearly not an exhaustive list. In particular, these
are structural relationship between requirements and archi-
tectures and behavioral assumptions(that might cause archi-
tectural mismatch [8]) are not included.

Clearly, the space of all potentially interesting con-
straints contains some that are not easily expressible in
languages for which automated checking will be efficient.
Some of the constraints mentioned above can be repre-
sented easily in OCL through the use of constraints between
properties of objects, while others can be checked by type-
checking algorithms used in compilers. However, in order
to specify all of the kinds of constraints outlined above,
something more powerful seems to be required. An im-
portant part of the work will be incrementally developing a
constraint language that effectively supports the specifica-
tion of constraints that are both useful and automatable. We
will take an experimental approach to doing this.



3.3. Failure Response Specification

As stated above, a simple response to a constraint viola-
tion is to inform the designer of the problem. This will not
always be very useful and we propose to allow a specifica-
tion of precisely what to do in these cases. Because design
is a process, presumably formulated in a process program-
ming language such as Little-JIL [3], we can take advan-
tage of the process language’s features for this specifica-
tion. For example, if the process formalism has an excep-
tion handling mechanism, then C,. can indicate which ex-
ception to throw. In Little-JIL’s scoped exception handling
mechanism, this would then cause a response by a handler,
possibly in some outer scope. The handler is a potentially
complex process step and might involve the re-instantiation
of some previously executed activity. It might also be prof-
itable to specify a local handling of the constraint failure by
specifying in C,. a process step to instantiate instead of an
exception to throw.

4. Classification of Constraints

The sheer number of constraints that restrict the com-
ponents of an architecture can be overwhelming. Because
of this, it seems profitable to determine ways to classify the
constraints as a basis for understanding them better, and also
as the basis for devising disciplines that can be effective in
better managing the complexity inherent in enforcing them.

4.1. Meta-constraints Versus Instance Constraints

Constraints might be applied to all instances of a class or
to a single instance. Those applied to all instances might be
profitably viewed as constraints on meta-level entities. They
are constraining the meta-entities from which the individual
entities are instantiated. It might also, then, be profitable to
view some constraints as meta-constraints: constraints on
constraints. The meta-constraints are essentially types of
constraints: a type restricts the instances of the type in much
the same way that a constraint restricts the instances. In our
work, we are attempting to outline what types of constraints
will be useful, and for what purposes.

4.2. Process Constraints Versus Artifact Con-
straints

Another distinction between constraints that we have
found useful is between process constraints and artifact con-
straints. The examples above are artifact-constraints: con-
straints on the legal structuring of the relationships between
artifacts. However, because our goal is to provide auto-
mated support for designers, we want to help the designer

to decide what actions to perform next. Some of the in-
formation about what to do next is captured in a standard
process definition. The process definition represents a set of
constraints on the sequencing relationships between process
tasks. We shall call these constraints process constraints.
An important goal of our work is to develop approaches to
using the information provided by artifact constraints to de-
rive process constraints. This is based on the hypothesis
that the way artifacts need to be constrained is related to
how those artifacts should be built.

In the next section, we present some of our ideas about
how the web of constraints might be used to support the
design of complex software systems.

5. Using Constraints
5.1. Well-Formedness Checking

Constraints have already been proposed for well-
formedness checking [1, 10]. Constraints are used to spec-
ify the composition rules for a design or architecture and
those constraints are checked to ensure the rules are fol-
lowed. Argo’s critics [10] are checked continuously and
pessimistically — they assume that every inconsistency rep-
resents an oversight of the designer instead of assuming that
the artifact is simply in a temporarily inconsistent state.
Argo does allow users to turn off the evaluation of con-
straints, but obliges users to do this on their own initiative,
and to also decide when enforcement is to be reactivated.
We believe that we can offer users substantial relief from
these obligations by providing process guidance.

5.2. Design Guidance

In a minimally-constrained software development pro-
cess, there are, at any point, many choices of what next to
do. For example, dependencies might state that we must
have the code before we can test it, but they would not say
that we have to wait for the code before we can begin devel-
oping test cases. In order to allow the expert developer the
latitude to make intelligent decisions, it is desirable to keep
the process definition minimally-constrained, only specify-
ing those process constraints that are independent of the ar-
tifact constraints and absolutely required to produce appro-
priate, complete, and correct artifacts.

In an architecting or designing process, there may be
very few of these process constraints — perhaps we need the
specification of a module before we can begin design of it or
perhaps we need specifications of data types before we can
design inter-component connections to communicate those
data types between components. Therefore, a design pro-
cess will be relatively unconstrained and will provide much
freedom to choose which aspects of the architecture to work



on next. However, this freedom can be overwhelming, es-
pecially to the novice designer.

Therefore, a key part of helping people do design is to
help them make these choices. This is essentially a priori-
tizing problem. Others have suggested that risk should be a
key factor in deciding which parts of a software project to
explore next [2] and processes and tools have been proposed
for helping determine where risks are.

Our position is that the artifact constraints are a key to
determining where risks are. It has been proposed that the
linkages between requirements and architecture be used to
determine if the requirements have been covered by the
architecture and also to determine the effects of changes
(or what elements contribute to a bug). These linkages
have been defined relatively vaguely, but if they could be
made more precise, they could possibly be used for help-
ing novices with their designs by providing the basis from
which to infer process constraints (or at least priorities).
The web of constraints between artifacts could be used to
help determine where the risks are and therefore where to
focus effort.

6. Status and Future Work

Our investigation of artifact constraints is an outgrowth
of our long-running research program in process engineer-
ing and our desire to develop approaches to aid software de-
signers. This research program has seen the development of
Little-JIL [3], a process programming language with both
proactive and reactive control mechanisms. Via its proac-
tive control specification, Little-JIL allows the specification
of a class of process constraints, while the reactive control
mechanisms include an exception management facility that
seems like a natural fit for specification of constraint re-
sponses. We plan to experiment to determine what classes
of constraints are and are not easily captured using these
two mechanisms.

We have developed a prototype interpreter for Little-
JIL [3, 4] and we have begun to use it to define processes
and to define environments based on those process defini-
tions [11]. Our plan is to further explore the approaches to
unobtrusively, yet helpfully, driving a design environment
with a process. We believe that inferring process constraints
from artifact constraints in a design environment will al-
low us to present priorities upon which designers, especially
novices, can base decisions about how to proceed.

Lastly, our work on constraint modeling is informed by
previous work outlining a meta-model for constraints [5].
In this paper, we have presented further development of a
classification of the types of constraints with which we wish
to deal. We have also presented some of the issues that we
see must be addressed as the constraint model develops.

Our plan is to further develop the constraint model and

experiment to determine its usefulness for design guidance.
We will also experiment with our process programming
technology to determine its applicability to this problem do-
main.

Acknowledgements

This research was partially supported by the Air Force
Research Laboratory/IFTD and the Defense Advanced Re-
search Projects Agency under Contract F30602-97-2-0032
and by the U.S. Department of Defense/Army and the De-
fense Advance Research Projects Agency under Contract
DAAHO01-00-C-R231. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied of the Defense Advanced Research
Projects Agency, the Air Force Research Laboratory/IFTD,
the U.S. Dept. of Defense, the U. S. Army, or the U.S. Gov-
ernment.

References

[1] Object Constraint Language Specification, Sept. 1997. ver-
sion 1.1.

[2] B. W. Boehm. A spiral model of software development and
enhancement. IEEE Computer, 21(5):61-72, 1988.

[3] A.G.Cass, B.S. Lerner, E. K. McCall, L. J. Osterweil, S. M.
Sutton, Jr., and A. Wise. Little-JIL/Juliette: A process defini-
tion language and interpreter. In Proc. of the 22™¢ Int. Conf.
on Soft. Eng., June 2000. Limerick, Ireland.

[4] A.G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and
A. Wise. Logically central, physically distributed control in
a process runtime environment. Technical Report 99-65, U.
of Massachusetts, Dept. of Comp. Sci., Nov. 1999.

[5] L. Clarke, E. K. McCall, A. Naithrakashyap, L. J. Osterweil,
K. Ramamritham, J. Shanmugasundaram, S. M. Sutton, Jr.,
and P. Tarr. Internal papers of Inconsistency Management
Working Group. University of Massachusetts, 1997.

[6] P. C. Clements. Understanding architectural influences and
decisions in large-system projects. Apr. 1995. Seattle, WA.

[7] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and
Y. S. Ramakrishna. A graphical interval logic for specifiying
concurrent systems. ACM Trans. on Soft. Eng. and Method-
ology, Apr. 1994,

[8] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match: Why reuse is so hard. IEEE Software, 12(6):17-26,
1995.

[9] A. Pnueli. A temporal logic of concurrent programs. Theo-
retical Computer Science, 13:45-60, 1981.



[10] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Software
architecture critics in Argo. pages 141-144, Jan. 1998. San
Francisco, CA.

[11] T. Sliski. An architecture for flexible, evolvable process-
driven environments. Master’s thesis, University of Mas-
sachusetts, 2000.



