
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

School of Computer Science Senior Thesis 
QCNMR: Simulation of a Nuclear Magnetic Resonance Quantum 

Computer 
 

Matthew W. Anderson 
ma@andrew.cmu.edu 

Carnegie Mellon University 
30/4/04 

 
 
 



 2 

Abstract 
 

We present the implementation of a nuclear magnetic resonance (NMR) 
universal quantum computer (QC) simulator we have named QCNMR.  Our 
quantum computer simulator uses a pre-existing open source package, GAMMA, 
for performing the underlying NMR simulation.  QCNMR reads in a quantum 
circuit converts it into a sequences of pulses that can be simulated on an NMR 
system, our system then returns the output of the simulated computation to the 
user.  Our simulator is universal over the space of quantum computation, 
analogous to the way a classical computer may be called “universal”.   

 
 

I. Introduction 
 
A. Overview 

 
Classical computers have been around for a 

large part of a century and the computations that 
they can perform are entirely deterministic.  
There exist classes of problems that are not 
known to be efficiently solvable in polynomial 
time (O(nk)) by classical computers; these types 
of problems are known as non-polynomial (NP) 
time problems.  

In 1996, Grover designed an algorithm to set 
for a marked item on a quantum computer that 
provided a square root improvement over the 
best time a classical computer is thought to take 
to be able to solve the problem [Grov96].  
Grover’s search algorithm provided a more 
efficient way to solve a NP-complete problem; 
“complete” refers to the fact that problem is 
canonical to the set of NP problems therefore an 
efficient solution for this problem could be 
translated into an efficient solution for any other 
NP problem.  Grover algorithm, however, did 
not provide the crucial speedup, as his algorithm 
still took NP time in the worst case.   

 In the later in 1997, Peter Shor devised an 
algorithm for finding the prime factors of a 
number in polynomial (P) time on a quantum 
computer.  This represents a drastic speedup 
over the widely held belief that the problem 
takes NP time on a classical computer [Shor97].  
Factoring, however, is not a NP-complete so 
these results could not be used to translate the 

speedup to all NP problems.  There are 
relatively few other examples of algorithms 
where there is an evident speedup when the 
computer is allowed to take advantage of 
quantum mechanical effects.  It is not known 
whether allowing use of quantum effects 
provides in inherent increase in the available 
computational power.  It is also unknown as to 
whether there exist other algorithms that may be 
more efficiently performed using a quantum 
computer.  In either case, it is important that 
while one is attempting to devise new 
algorithms for quantum computers that one has 
ready access to build and test their algorithm to 
see how and if it performs as expected. 

 
B. Goals 
 

To that end, the implementation of a 
framework to simulate quantum algorithm on 
readily available classical hardware would be 
useful to help researchers study quantum 
algorithms.  There are several possible 
approaches, each with its own level of accuracy 
and practicality.  In the first and simplest 
approach you assume that you have an ideal 
quantum computer and that you can perform 
more or less arbitrary operations on the qubits in 
your computer.  The implementation itself is 
just a series of straightforward matrix 
operations.  It should be noted that the time to 
perform the calculations to simulate the ideal 
QC is not the same asymptotic time that a real 
quantum computer would take, as each matrix 
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operation take O(2n) time in the number of 
qubits. However, to our knowledge such an 
ideal physical system for performing quantum 
computation does not even exist, it can only be 
approximated by other less accurate and more 
limited physical systems.  So, while it is 
important that the algorithm function on an ideal 
quantum computer, it must also function on a 
realistic physical one, otherwise the algorithm 
has limited applicability.  The next level of 
increased realism is the simulation of a 
physically based quantum computation system.  
This means that the simulator must calculate the 
computation based on some physical quantum 
mechanical effects and build a framework for 
quantum computation limited by these effects.  
This is the method that we have chosen to 
implement in this paper.  This method discards 
the assumption that our system is ideal, and 
requires that the computation have basis in a 
physically realizable system.  The third and 
most telling method is to actually implement the 
computation on a physical quantum system.  
This method is by far the most complicated and 
expensive of the three.  Implementing 
algorithms correctly and effectively on real 
systems can take a long amount of time and 
planning; weeks or months.  In addition, these 
systems are by no means widely available, 
require a great deal of technical expertise and 
must be custom built and tailored to the specific 
task.  There exist a number of possible physical 
realizations for a physical quantum computer: 
nuclear magnetic resonance, quantum dots, ion 
traps and optical photon quantum computers and 
others [Cira95, Cory96, DiVi95, Yann99].  
However, it remains to be seen which physical 
realization, if any, will be viable in the end.   

The purpose of our simulator, QCNMR, is 
two-fold.  The first purpose is to allow NMR 
quantum computer researchers to simulate 
algorithms before they attempt to perform them 
on a physical NMR system.  This will hopefully 
decrease the amount of turnaround time to study 
an algorithm for NMR QCs.  It allows basic 
implementation without the investment of much 

time. The second purpose is purely educational; 
it will allow students to quickly experiment with 
quantum algorithms, even with very little 
knowledge of NMR itself; hopefully, gain a 
more intuitive understanding of the algorithm 
and quantum computation as a whole. 

 
 

C. Specific work 
 

Our main contribution in this paper was to 
the implement framework for quantum 
computation on top of an existing open-source 
NMR simulator, GAMMA [Smit94].  QCNMR 
exists as a C++ library that has the ability to 
create qubits, a quantum circuit and to run the 
circuit and return the final state of the system 
after the circuit has run its course.  QCNMR 
first parses the input circuit and then converts 
into a sequence of NMR pulses, which 
represents the computation we wish to perform.  
Pulses are essentially NMR instructions.  We 
pass these pulses on to GAMMA to simulate the 
NMR system and then read back information 
and interpret it for the user.  The main work in 
this project was to implement the generation of 
pulse sequences on the NMR system so that we 
could selectively address individual qubits and 
leave the rest of the system invariant, using a 
technique know as refocusing.  Time was also 
taken to make the graphical interface for the 
QCNMR library that allows the user to quickly 
construct and run quantum circuits. 

 
 

D. Organization of Paper 
 

Section two presents some background 
information on NMR, quantum computation and 
performing quantum computation operations 
through NMR methods.  Section three explains 
the structure and implementation of QCNMR. 
Section four describes using QCNMR to 
implement a quantum teleportation algorithm as 
well as some general comments on our 
assumptions in building QCNMR.  Section five 
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concludes this paper and discusses future work, 
related work and summarizes the results of this 
project. 

 
II. Background 
 
A. Quantum Computation 
 

Quantum computation is perhaps best 
introduced in as an analog to classical 
computation.  In classical computation, the 
object that stores or represents information is 
known as the “bit”; it can take only two discrete 
values “zero”(0) or “one”(1).  The analog for 
quantum computation is known as the “qubit”; 
the information the qubit stores, however, is not 
discrete valued.  The qubit is composed of a 
linear combination of vectors in complex space. 
Normally, the two-dimensional Hilbert space is 
describe using the two orthonormal basis states 
|0> and |1>.  As a side note, there exist n-iary 
qubits that are the linear combination of n 
orthonormal basis states.  The value of a general 
2-qubit can be written as: 

( )1.10 baq +=  

Where a and b are complex constants and the 
norm of |q> is 1.  The values of a single qubit 
can be thought of as a vector from the origin 
Euclidean three-space to the surface of a unit 
sphere; this is known as the “Bloch’s sphere” 
representation (Figure 1).  It is clear that the 
orientation of a qubit can be parameterized by 
two real values, giving it the capacity to store 
 
Figure 1: The Bloch Sphere 

real-valued information opposed to the discrete-
valued information that is stored in the classical 
bit.  However, the information that is stored in 
that real-valued state of the qubit cannot be 
directly read.  The most telling measurements 
that can be performed are ones that measure in 
orthogonal basis states, returning the basis state 
that the qubit’s state projected into.  This 
measurement provides a single bit of classical 
information.  To get a more accurate 
determination of the actual qubit state more 
measurements are required, each providing a 
little more information about the qubit.  
However, this is a problem in many physical 
realizations as their measurement operations 
tend to be destructive; meaning that the 
measurement of a qubit disturbs it from its 
original state creating history-dependent effects 
due to measurement; this often makes is 
difficult to make more than one measurement on 
a given physical qubit in practice. 
       Similar to the theory of universal classical 
computation by logical circuit, we can describe 
an analog for quantum computation: universal 
quantum circuits.  The wires of our circuit are 
qubits and the two directions along the wire 
represent the time evolution of the computation.  
We can place gates on the wires that transform 
qubits analogous to the transforms on classical 
bits by classical gates.  The gates in both cases 
can be thought of as transformation matrices, in 
classical case the only values that the 
transformation matrices can contain are zeros 
and ones; in the quantum case the 
transformation matrices are arbitrary unitaries.  
Classically there is a notion of universal 
computation, which is being able to perform to 
construct arbitrary function from n to m bits,  
with some subset of all valid gates.  One 
example is XOR and AND, which are sufficient 
for universal classical computation [Niel00].  
There is the same notion in quantum 
computation, the controlled-not operator, 
UCNOT, the Hadamard operator, UH, and the 
phase shift operator, UP, represents a basis for 
universal quantum computation. 
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Other useful operators are can be thought of as 
rotations about the x-, y-, and z-axis, 
respectively UX, UY, UZ: 
 
 
 
 
       An additional feature of quantum 
computation that does not have an analog in 
classical computation is the notation of 
entanglement.  Entanglement is essentially the 
correlation in the states of two or more qubits.  
To make this more tangible we will present a 
brief example with one of the simplest 
entangled states, a Bell pair: 

( ) ( )4.1100
2

1
00 +=B

This represents a state in the tensor product 
space of two qubits.  We can make a measure of 
the state in the first or second qubit’s space that 
will return a |0> or a |1>, in either of these cases 
the measurement of the second qubit in the same 
basis is fully determined: 
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We see if we measure a |0> for the first qubit 
then the second qubit must also measure a |0>, a 
similar thing happens for measuring |1>.  Most 
of the power of quantum computation seems to 
come from the ability to entangle qubits, 
allowing information to be correlated across 
time and distance.  It allows the state to exist in 
the superposition as the linear combination of 
multiple states.  This allows for the parallel 
processing of many states through the evolution 
of a couple of qubits.  In the end, this parallel 
state processing provides the speedup in most 
cases of quantum improvement over classical 
algorithms.  Constructing entanglement requires 
at least two-qubit operations, such as the 
controlled-not gate, as seen above. 
        One note on terminology, a “density 
matrix” is one representation of a system’s state.  
Suppose we have some state |� > the density 
matrix representation of this state is      

( )7.ψψρ =  

Where �  is the outer product of |� > with its 
conjugate, <� |.  For example: 
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Notice that the diagonal terms of �  sum to one; 
all density matrices of normalized pure states 
have this property.   
 There is one restriction on qubit 
operations.  It is the so-called “no cloning 
theorem”, it simply states that we cannot clone 
the state of one qubit to another qubit, unless we 
know the input comes from a known set of 
orthogonal states [Niel00].  This theorem 
prevents us from allowing fan-out gates which 
clones the probability distributions of qubits, 
though we are free to distribute information 
between the qubits by entangling them.  
However, doing so does not increase the amount 
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of available information, it only spreads it out.   
Thus it is not possible to copy a state many 
times in order to extract more information from 
a destructive measurement process.  

 
B. NMR 
 

Nuclear magnetic resonance is a technique 
used in a number of fields.  It can be used in 
analytic chemistry for chemical analysis and is 
the technical basis for magnetic resonance 
imaging (MRI) procedures for medical 
purposes.  The isotopes of some elements have 
non-zero nuclear magnetic moments.  These 
moments can be thought of as a unit vector 
centered at the origin; not surprisingly, it is very 
similar to the concept of the Bloch sphere as 
shown above in Figure 1.  If the atom is placed 
in an external magnetic field, B0z; canonically 
the field is aligned pointing up the z-axis. The 
nuclei’s magnetic moment will begin to rotate 
about the z-axis at a rate known as the Larmor 
frequency:   

( )11.ˆ0zBγω −=  

Where �  is the gyromagnetic ratio of the 
nucleus; this idea is shown diagrammatically in 
Figure 2 below.  The frequency of the rotation is 
linearly proportional to the strength of the 
external field.  In the absence of other atoms and 
other effects the motion of the single atom is 
constant in time. 

When we add other atoms in a molecule 
with the original atom other effects begin to 
appear.  One effect is chemical shift, � � , which 
represents the relative shift from the Larmor 
frequency of the atom in isolation; this is due to 
shielding effects based on the arrangement of 
electrons mediating the bonds between atoms 
[Keel04].  The chemical shift allows us to 
differentiate between atoms two atoms of the 
same isotope in the same molecule.  Another 
effect of the bonds between atoms is the J-
coupling effect, � J; it is simply an interaction 
that encourages the moments of the two nuclei 
to point in the same or opposite directions.  The 
J-coupling interaction can be used to mediate 

information exchange between two nuclei.  The 
J-coupling interaction is anisotropic, however, 
its effective strength in the direction of the 
external magnetic field, far outweighs its 
strength in the two other orthogonal directions 
[Ladd03, Keel04].  

Now if we allow multiple copies of the same 
molecule to reside in the same area, usually in a 
liquid, there can be effects caused by interaction 
between molecules.  These effects are 
collectively known as decoherence.  The first 
decoherence effect is known as thermal 
relaxation, which is caused by interaction 
between the molecules as a whole. It is like 
randomly applying rotations to the molecule 
[Grze03].  It has the effect of bringing the 
system of molecule to thermal equilibrium; an 
essentially random configuration based on the 
temperature of the system.  It has a 
characteristic onset time known as T1.  The 
second decoherence effect is caused by J-
coupling interactions taking place between 
atoms on adjacent molecules this also disturbs 
the state of the system.  The characteristic onset 
time for the second decoherence effect is known 
as T2 [Keel04, Ladd03].  The minimum of T1 
and T2 represents the maximum time before the 
system decoheres and loses a substantial amount 
of information.    

Nuclear magnetic resonance systems exist as 
a conglomeration of molecules.  Usually the 
molecule of interest is put into a liquid solution 
with some other molecule that is not active in 
NMR, has only zero nuclear magnetic moments, 
so that the interesting molecule’s properties can 
be distinguished from the solution’s properties.  
The amalgamation is an ensemble, so that any 
measurement is represents the average value of 
the measurement over all molecules in the 
ensemble.  However, since it is an ensemble, 
measurements that are taken are not necessarily 
as destructive as in other physical realizations.  
The measurement action in an NMR system is 
know as the Free Induction Decay (FID).  The 
measurement is taken by allowing the final state 
of the system to decay to the thermal state.  The 
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change in the orientation of the nuclear 
magnetic moments is made evident by a current 
induce in the coils that perform the r.f. pulses.  
The time-varying induction, rather the Fourier 
transform of the time-varying induction, is used 
to determine the final average state of the 
molecular ensemble before it began to decay 
[Keel04]. 

In physics, one way of describing the time 
evolution of a system is through the 
Hamiltonian of the system.  The Hamiltonian of 
the NMR system of the ensemble of molecules, 
in the frame of the laboratory, can be written as: 

( )12.
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Where Jiz is the z spin operator of ith nucleus;  
the first term represents Zeeman Effect, which is 
essentially the Larmor precession of the nuclear 
magnetic moment about the external field axis.  
The second term, which is the summation, 
represents the J-coupling interactions between 
all pairs of nuclei.  One should notice that this 
construction of the Hamiltonian is time 
independent; therefore the way the system 
evolves is independent of the amount of time 
that has elapsed since it started.  The time-
dependent formulation removes the 
consideration of relaxation effect because their 
onset is time-dependent.  However, to first-
order, the effects of relaxation can be considered 
as maximum runtime cutoffs.   
Figure 2: Larmor Precession in the rotating frame

The Hamiltonian in the rotating frame of each 
isotope is simply the previous equation with � � i 
substituted for � i [Ladd03]. 
         In order to perform any sort of computation 
we have to be able to manipulate the NMR 
system.  We can manipulate the system through 
something known in NMR as a “pulse”.  A 
pulse is simply a radio frequency (r.f.) magnetic 
field applied to the system in a direction 
perpendicular to the external magnetic field.   In 
order to apply the pulses in a more intuitive 
fashion we tend to apply them in the rotating 
frame of the isotope.  This means if we have m 
different isotopes we have m different rotating 
frames or “channels”; these channels have a 
specific carrier frequency that represents the 
frequency of the rotating frame relative the lab 
frame.  Generally the Larmor frequency of 
different isotopes is sufficiently different as to 
be able to address each channel separately; to be 
able to apply pulses to a channel without it 
affecting the other channels.   

The simplest pulse is a one on a single qubit, 
it uses an r.f. pulse on the carrier frequency at 
the same frequency as the Larmor frequency in 
the qubit’s rotating frame (fig 3).  In the rotating 
frame the effective external magnetic is many 
orders of magnitude smaller because the 
moments are now only rotating with respect to 
the already rotating frame, though they may not 
be rotating at all in the rotating frame if their 
chemical shift is zero.   
Figure 3: Larmor Precession in the rotating frame of a 
pulse.
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       Therefore the dominant effect is the applied 
pulse which causes the qubit’s magnetic 
moment to rotate about the axis of the applied 
r.f. magnetic field (Figure 3 (above)).   So in 
order to get a ninety degree rotation about the x-
axis, we must apply a pulse on the rotating x-
axis for a time proportional to the Larmor 
frequency in the rotating frame about the pulsed 
axis. It should be noted that the only pulses that 
can be applied are pulses about an axis in the x-
y plane.  There exists no z-axis pulse because 
there is already a large constant magnetic field 
in the z direction.  In order for the pulse to be 
selective the Fourier transform of the pulse must 
have negligible value at the frequencies of 
atoms you do not wish to affect; this loosely 
translates into a constraint on the length of time 
you may apply a pulse.   

Longer pulses are more highly selective and 
shorter pulse time lengths are more 
indiscriminate. One important thing to note is 
that while a pulse is being applied selectively to 
one qubit all the other qubits are continuing to 
evolve as they normally would without the 
presence of the pulse, this will necessitate the 
use of the technique known as “refocusing”, 
which we will describe later on.  Basic 
parameters for defining a pulse are: start time, 
pulse time, central resonant frequency and r.f. 
strength.   

  
 
C. NMR for QC 
 

In order to perform quantum computation 
using an NMR system we need to define a 
mapping from qubits and operators to molecules 
and pulses.  The mapping is mostly obvious.  
The separate qubits in the NMR system are 
unique atoms in a given molecule with uniquely 
addressable spins.  If there are two atoms with 
very similar resonant frequency it will be 
difficult to use them in any way to store or 
transfer information.  They are still part of the 
system and must be refocused to prevent their 
interactions from affecting the rest of the 

computation state. They are more or less 
ignored except in refocusing when they are 
grouped together and refocused.  We will 
assume from now on that the only qubits that 
are in the system are individually addressable 
and will be useful at some stage of the 
computation, although the second assumption is 
not really necessary.  When you wish to perform 
a QC on physical NMR equipment, much 
thought must go into the engineering of the 
specific molecule that you will use.  You must 
have sufficiently different Larmor frequencies, 
which means that the molecule will likely 
consist of different isotopes or the small 
isotopes with large chemical shifts; this is all 
necessary to be able to reliably address nuclei.  
You must have the appropriate molecular 
structure to both mediate a strong J-coupling 
interaction, for quicker information exchange 
and a structure that increases relaxation times, 
T1 and T2, to allow more time for computation.  
This is only a qualitative discussion of the 
requirements of NMR properties for robust QC; 
however, a real quantitative discussion is 
beyond the scope of this paper, in the realm of 
chemical engineering.   

The quantum computation operators are 
analogous to pulse sequences.  Let us consider a 
simple molecule with only one atom; this 
negates the need for any refocusing because 
nothing else is evolving.  We can perform a UZ 
operation by simple waiting the time required 
for the magnetic moment to rotate by �  around 
the z-axis (or more likely wait for 2� m + � ).  
We can apply UX and UY by applying r.f. pulses 
for the appropriate time about the x- and y-axis 
respectively.  We can therefore apply any 
arbitrary rotation of a qubit on the Bloch sphere. 

We can generate the phase shift by 
performing a Z(� /2), waiting half the time as for 
the Z(� ) [Niel00].  The Hadamard operator can 
be expressed as the sequence single qubit 
rotations: Y(� /4)X(� )Y(-� /4).  To have the two-
qubit UCNOT, we obviously now need two 
qubits, the UCNOT pulse is constructed using 
several single qubit rotations and allowing the J-
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coupling interaction between the qubits to 
evolve (eqn 13).  

 
 
 

Thus we now have a basis for of a universal 
set of quantum unitary operators available.  This 
gives us universality of computation in the 
realm of unitary quantum operators, analogous 
to the universal set in the classical realm. 

The final issue that remains is that 
measurement of final computational state.  
Measurements in NMR cannot be made of 
individual atoms.  Measurements made in NMR 
are ensemble measurements of the average 
value of some state variable, like the projection 
of the magnetic moment of the ith qubit onto the 
z-axis.  Measurements are determined by the 
FID measurement as described before.  In 
general, most of the average final state of the 
system can be determined, and we can use the 
FID to generate the final density matrix 
describing the system, though the density matrix 
may not be unique.   

 
D. Refocusing 
 

Refocusing is the technique of stopping the 
time evolution of certain nuclei in a NMR 
system.  During a pulse unless a given nuclei is 
being addressed by the pulse that nuclei will 
continue to evolve as it normally would.  The 
evolution of the entire system can be expressed, 
by the rotational frame, by the Hamiltonian:   
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What we would ideally like to be able to do is 
perform an arbitrary unitary operation on some 
subset of qubits and have the rest remain 
unchanged.  In order to perform refocusing we 
must determine a sequence of auxiliary pulses to 
prevent the unwanted time evolution. 
        The technique we used for generating 
appropriate refocusing pulse sequences is from 
Leung [Leun99].  This technique utilizes the 
properties of Hadamard matrices.  Hadamard 

matrices are boolean n-dimension square 
matrices, where n is an even integer or one.  
Hadamard matrices have the property that all 
pairs of rows and all pairs of columns differ by 
n/2 elements.  These matrices are isomorphic 
under swapping of rows and swapping of 
columns and the logical negation of rows and 
columns.  It is always possible to make one row 
and one column of a Hadamard matrix all 
TRUE elements.  Note, that in all but the one 
row or column that has all TRUE elements, the 
number of TRUE elements in each row or 
column must be exactly n/2.  There are several 
methods for generating Hadamard matrices, 
most are fairly complex, however, there is one 
simple construction method for the some (eqn 
16): 
 
 
 
 
 
 
 
 
 

 
Hadamard matrices are not guaranteed to exist 
for all even numbers nor are all Hadamard 
matrices of a given dimension necessarily 
isomorphic under simple swap and negation 
operations.  In order to perform efficient 
refocusing we need a Hadamard matrix with 
dimension at least as great as the number of 
nuclei in our system.  The dimension of the 
matrix is the same as the number of discrete 
refocusing intervals we must use. The 
refocusing method is as follows: 
 

1. We transform the Hadamard matrix so that 
the first row and the last column of the 
matrix contain only TRUE values. 

2. Each nuclei is assigned a row in the 
matrix. 
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3. Each column in the matrix represent a T/n 
step in the time evolution, where T is the 
total evolution time of spent refocusing. 

4. Assume without loss of generality, that all 
the elements outside the matrix are TRUE. 

5. A 180-degree rotation (pulse) about the y-
axis is applied to the nuclei at the 
beginning of each time step where the 
element in the matrix is FALSE and the 
previous element was TRUE. 

6. A -180-degree rotation (pulse) about the y-
axis is applied to the nuclei at the 
beginning of each time step where the 
element in the matrix is TRUE and the 
previous element was FALSE. 

 
Because of (1.) no refocusing pulses are applied 
to qubits assigned the first row of the matrix, 
this means that Zeeman evolution is allowed to 
continue for this nuclei, through the J-coupling 
interaction is refocused with nuclei assigned to 
other rows.  Also from (1.) there are no pulses 
applied at the end time of the refocusing 
sequence, T, which is a practical concern since 
pulses take a non-zero, finite amount of time to 
apply.  If any qubits share assigned rows the J-
coupling interaction between them is not 
refocused.  The reasons that this scheme works 
are a bit mathematical and would take a bit of 
time to explain; we direct you to the original 
paper for a more insightful and thorough 
explanation [Leun99].   
       The intuition, however, is to think that the 
value of the element describes the direction in 
time the nuclei is evolving.  TRUE implies 
forward time motion and FALSE backward time 
motion.  Because Hadamard matrices have the 
property that all but the first row differ by 
exactly n/2 elements all the nuclei assigned 
other rows than the first evolve half the time 
going forward and half the time going backward 
so the net evolution is zero. This effectively 
refocuses the Zeeman/Larmor evolution.  The J-
coupling is refocused similarly, as all pairs of 
unique rows differ by n/2 elements meaning that 
half the time the two qubits are moving in the 

same direction and half the time they are 
moving in opposite directions effectively 
stopping the time-evolution of the interaction 
between them.   
     To make thing more concrete we will 
describe how we applied this scheme to 
construct our quantum gates.  The Zi(� ) gate 
pulse sequence with refocusing is simple.   
Assign the nuclei we wish to evolve the first 
row of the matrix and all the other nuclei to 
unique rows in the matrix.  The total evolution 
time is given: 

( ) ( )17,2

i
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π
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where m is the number of extra full period z-
rotations.  This depends on the length of the 
refocusing pulses and the number of qubits 
being refocused.  The constraint on T can be 
formed as 

( )18,ntT mpl ⋅≥  

where tmpl is the maximum pulse length over all 
possibly applied pulses on a single nuclei for 
any of the refocusing intervals.  Given these two 
constraints we can choose a minimum T subject 
to both those constraints.   One thing to note is 
that if the chemical shift is zero the evolution 
time is infinite. It is a removable singularity, 
however, since the carrier frequency of the 
rotational frame is arbitrary, so we can change it 
to keep the refocusing times finite and 
reasonable.   
 The constructions for the Xi(� ) and 
Y i(� ) gates are very similar to the Zi(� ) gate.  
There are two important changes, however.  The 
total evolution time is now: 

( ) ( ) ( )19
i
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m
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ω
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The nuclei are assigned rows the same way as 
for the Zi(� ) gate, and the second constraint is 
still in effect.   At the beginning of the pulsing 
sequence we apply the appropriate pulse to 
generate the rotation we want on the active 
qubit.  The time constraint serves to refocus the 
Zeeman interaction for the active nuclei, 
because it was assigned the first row.  Strictly 
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speaking, this is not necessary, because we can 
assign the active qubit a different row in the 
matrix, thereby refocusing the Zeeman 
interaction using pulses instead of letting the 
evolution repeat.  This would remove the 
constraint involving the chemical shift entirely 
and let the evolution time be only dependent on 
the maximum pulse length constraint.   
 The Jij(� ) gate is also very similar.  The 
ith and jth nuclei are assigned same row of the 
matrix, though not the TRUE-valued row, and 
all other nuclei are assigned unique rows in the 
matrix, though also not in the TRUE-valued 
row.  The time constraint for this gate is as 
follows: 

( ) ( )20.2
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The standard constraint of maximum pulse 
length (Eqn. 18) is also considered in the choice 
of evolution time.  Note it is necessary that � Jij 
be non-zero for there to exist a finite refocusing 
time.  This is not a removable singularity like 
the one for the Zi(� ) gate, the interaction must 
exist for  the gate to be perform and the closer 
� Jij is to zero it is the longer the it will take to 
perform this action. 

 
III. Implementation 
 
A. GAMMA capabilities 
 

GAMMA is an open-source library for 
conducting NMR Simulations created by 
researchers at ETH in Zurich, Switzerland for 
the study of nuclear magnetic resonance 
techniques [Smit94].  For our purposes, the 
GAMMA library provides a means of 
constructing spin systems with various 
interactions and properties of isotopes.  It 
provides a means of constructing and applying 
pulses to the system.  At the end of a run 
GAMMA can produce an FID (and more 
importantly its Fourier transform) to read the 
output of the final system state or can simply 
just provide the final density matrix. 

Constructing our molecule for use in 
GAMMA is simply a matter of telling GAMMA 
the isotopes we would like to use, their chemical 
shift values and the J-coupling interaction 
strengths that exist between the various nuclei.  
We can then choose to set the initial state of the 
nuclei to whatever initial state we wish by 
inputting the initial density matrix to GAMMA.  
The capability to automatically generate initial 
thermal equilibrium states is provided by the 
library.   

GAMMA allows us several different types 
of pulses to apply to a system of nuclear spins.  
The first type of pulse is an ideal pulse. The 
ideal pulse is performed instantaneously in 
simulation time and acts on a single isotope 
rotating all nuclei of a given isotope by a set 
amount.  The pulse’s time-strength function is a 
delta function.  This is neither practical nor 
realistic.  Pulses must have some finite time 
duration and some selectivity.  The next type of 
pulse that GAMMA provides is a hard pulse.  
The hard pulse pulses all nuclei of a certain 
isotope about a set angle.  The hard pulse length 
is non-zero in time, through it is usually quite 
short.  The time-strength function for this pulse 
type is a square function.  These sorts of pulses 
are appropriate when there exists only one 
nucleus in the molecule per isotope, if there 
exist more than one nuclei in the channel, they 
will both be excited by the pulse.  The final type 
of pulses GAMMA provides are shaped pulses.  
Shaped pulses are simply pulses who’s time-
strength function is inputted by the user.   These 
types of pulses allow the user to tune the 
selectivity of the pulse and excite only nuclei in 
certain frequency regions of the channel by 
varying the pulse strength over time.  The 
frequencies that are excited by the shaped pulse 
are dependent on the Fourier transform of the 
time-strength function.  One can tune the shaped 
pulse to selectively address multiple nuclei on a 
given channel without affecting other nuclei on 
the same channel.  GAMMA provides some 
capability for the construction of the time-
strength function and even has some built-in 
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functions that are usually used in these types of 
pulses (i.e. Gaussian functions).   

One thing that GAMMA does not provide is 
the ability to apply more than one pulse 
simultaneously in simulation time.  While it 
represents some of a complicated issue to even 
physically apply two simultaneous pulses on a 
single channel; it is not a physical restriction 
that prevents applying two simultaneous pulses 
on two different channels.  Applying two pulses 
at the same time on different channels is a 
common occurrence in everyday NMR, 
GAMMA’s lack of capacity for this task is 
likely due to the inherent complexity in making 
an API that provide for that general purpose use.  
As a result we will have to implement this 
capacity in QCNMR. 

GAMMA can return output in two ways.  
The first is to simply return the density matrix 
of the final state.  The second way is to simulate 
the free induction decay of the system and 
return an array that stores the current induced in 
the r.f. coils as a function of time.  It also 
provides that capability to take the Fourier 
transform of the FID.  However, GAMMA stops 
there; there is little built in to the API that 
allows for analysis of the FID.  There is nothing 
that attempts to estimate the final state by 
analysis the FID, there is nothing built in to 
even find peaks on the FID’s Fourier transform.  
With the lack of built in functional for analyzing 
FIDs, producing FIDs is only for qualitative 
purposes.   
GAMMA has several limitations.  The first was 
already mentioned, the lack of simultaneous 
pulsing.  The second limitation is the lack of 
FID analysis.  The third limitation is that 
including the T1 and T2 relaxation effects in a 
way that would have been meaningful for 
QCNMR would have been very difficult. The 
implementation of that part of the library was 
not fully featured or complete, though the 
authors left notes in some of the source files for 
hinting at possible ways to expand the 
implementation.  However, despite this its 
limitations, it is very simple to construct and run 

pulses for simple NMR simulations using 
GAMMA.  GAMMA made the work of this 
paper possible, even though it was not tailored 
exactly to our needs.  
 
B. Program Structure 
 
The core of QCNMR is its C++ library kernel.  
The kernel provides all the capacities for 
constructing qubits, circuit gate, executing the 
circuit and marshalling the output.  The library 
is meant to work along side GAMMA providing 
extra functionality for quantum computation 
tasks.  Some of the datatypes that are returned 
from QCNMR are quantum computationally 
useful mathematical types like matrices and 
operators, which inherently provide for more 
power computation in QCNMR user’s 
programs.  In addition, there is a graphical user 
interface that allows the quick construction and 
testing of circuits, without the need to compile a 
C++ program; its computational power is 
limited due to the complexity of making an 
interface that can fully exercise the library under 
an arbitrary C++ program.  However, the 
graphical interface is more meant as an 
educational tool than a power computational 
apparatus 
 
i. The Kernel 
 

The kernel consists of  three main classes: 
1.     QCNMRQubit 
2.     QCNMROperator 
3.     QCNMRProgram 

The respective purpose of each of these classes 
is almost obvious, but we will explain it 
anyway.  The instantiation of the QCNMRQubit 
class is the equivalent of a single qubit.  It 
contains all information about the qubit 
including its isotope, chemical shift, J-coupling 
interaction strengths, pointers to all the 
operators that will operate on it, pointers to all 
the other qubits of the same isotope and 
information about what types of pulses can be 
applied to it.   



 13 

 
 
 
 
 
 
.               
 
 
 
 
 
 
 
 
 
  Figure 4: QCNMR Design Layout 
 
There really is not much work being done 
within this class during the course of the 
computation, it is really just a glorified struct.   
     The instantiation of the QCNMROperator 
class is the equivalent of a single qubit gate. It 
stores information about which QCNMRQubits 
are being operated on, at what time the gate is 
applied and the types of pulses need to occur at 
the top level (ignoring refocusing) to 
accomplish the requested operation.  An 
auxiliary class QCNMROperatorGen is used to 
actually generate instances of 
QCNMROperators; this is because some global 
knowledge must be stored to determine whether 
or not that creation of an operator on certain 
qubits at a certain time is a valid thing to do. 
     The final kernel class is QCNMRProgram.  It 
is the workhorse of the implementation.  It takes 
in an array of QCNMRQubits and then allows 
the addition of circuit elements in the form of 
QCNMROperators.  Most of the work happens 
in the QCNMRProgram::Run() function, which 
actually interfaces with GAMMA to transform 
our QCNMRQubits into their GAMMA 
representation.  Then QCNMRProgram converts 
the inputted QCNMROperators in pulse 
sequences that it then runs on GAMMA, the 
QCNMROperators are destroyed in this process, 
though the pulse sequence that they were 
converted into to can be returned to the user. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The idea is that user is be allowed to perform 
some arbitrary circuit, look at the output and 
then proceed from the final state by adding new 
elements and running the new circuit.  
QCNMRProgram has the power to return pulse 
sequences to user or to save them to disk as in a 
human readable format.  QCNMRProgram can 
also output a text-based diagram of the circuit 
that it sends to the disk. 
      The main computation in QCNMRProgram 
is dedicated to generating and running 
refocusing pulses.  The first part of this was 
implementing that refocusing pulse sequence 
generation as was fully described in section two.  
The second key concern was allowing GAMMA 
to run simultaneous pulses.  To understand what 
was done we must first give a brief explanation 
of how pulse sequences are implemented in 
GAMMA.  A pulse on a single channel, iso, on 
a specific resonant chemical shift frequency, 
� � , is implemented in the following fashion 
(without loss of generality the pulse is for �  
radian about the x-axis): 
1. Shifting all nuclei of that isotope from the 

original rotating frame into the rotating 
frame of the resonant chemical shift 
frequency, we get a new Hamiltonian: 

 

( )21.
�

∈
∆−=′

isoi

i
zrotrot JHH ω
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2. Next we add the r.f magnetic field in the 
direction of our axis (the x-axis).  The 
strength of the field is determined by the 
pulse time length and the angle we wish to 
rotation through: 

 

( )22.
2

�

∈
+′=

isoi

i
xroteff J

t
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π
θ

 
3. We then leave the system to evolve under 

Heff for time t. 
4. Since we shifted to another rotating frame 

we need to shift back to the original frame, 
this can be done by constructing a 
Hamiltonian: 

 

( )23.
�
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i
zshift JH ω

 
5. We evolve the system again for time t under 

Hshift, though this time is not real simulation 
time, it is just some mathematical 
bookkeeping to put us back in the original 
rotating frame. 

6. The pulsing is now complete and we return 
to using our original Hrot. 

 
This method performs a hard rectangular pulse 
or, if the time is long enough a soft rectangular 
pulse centered on the specified frequency.  In 
order to perform more complex pulses this 
method is used as an atomic operation.  To 
perform shaped pulse we apply a series of 
rectangular pulses with varying strengths.  The 
shaped pulse is applied through the 
discretization of its time-strength function.  So 
in order to allow pulses to fire simultaneously in 
a general sort of way you have to keep track of 
all the changes that you have made and all the 
changes you need to make to the effective 
Hamiltonian.  The discrete time step method for 
performing shaped pulses adds even more 
complexity to the problem.  However, when you 
get down to, it is not a technically difficult 
problem, it is just tedious.  We will not go into 

the implementation details for scheduling and 
ordering changes to the Hamiltonian and 
evolving the state appropriately as it is just a 
programming task and does not add anything 
interesting to this discussion. 
      QCNMRProgram’s main output is the final 
density matrix of the system.  This is clearly not 
a realistic feature, an NMR machine will not 
simply give the final density matrix of the 
system; you must compute it from the FID.  
There are basically two reasons we choose not 
to provide the output via FID.  The reason one 
reads an FID and converts it to a density matrix 
was simply because the density matrix itself is 
unavailable, so since GAMMA freely gives us 
the density matrix it makes little sense to 
transform the density matrix to an FID for the 
purposes of transforming it back to an FID.  The 
second reason is that as we mentioned before 
GAMMA does not have much built in capacity 
for analyzing FIDs, so it would have required 
significant extra work to add that on to support 
an admittedly dubious process.  We did add the 
ability to take the partial trace of a density 
matrix against some parts of the space to make 
it easier to examine the states of subspaces of 
the system. 
 
ii. The GUI 
 

The graphical front-end of QCNMR is almost 
an afterthought.  It has a simply point-click 
interface that allows the user to quickly 
construct quantum circuits and view the final 
output of the system as a graphically expressed 
density matrix or as a diagram of pulses.  At the 
time of writing this paper, the first version of the 
GUI is finished, though a few minor bugs still 
remain.  It makes it very easy to just put down a 
few gates and experiment with some small 
circuits.  The output capabilities are limit to 
diagrams and graphs, because large amounts of 
textual data are confusing and often not useful.  
In the short time we have had to experiment 
with it, it seems as though it will be useful 
educationally, even if a person knows little 
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about the nuclear magnetic resonance effects it 
is based on.  It is an interesting thing to play 
with if nothing else. 

 
Figure 5: Graphical User Interface Screenshot 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
IV. Results - Quantum Teleportation 
 

One interesting quantum algorithm that we 
had a chance to implement using QCNMR, was 
the canonical quantum teleportation circuit.  The 
circuit is shown below in Figure 6.  All three 
qubits start out in the state |0>.  Operations may 
be performed on the Q1, state to produce a 
different input to the system (step one on the 
diagram).  Next qubit two and three are 
initialized into an entangled Bell state (step two 
on the diagram): 

( ) ( )241100
2

1 +=ooB  

In the original formulation of the problem the 
qubit two was given to Alice and qubit three 
was given to Bob after the qubits have been 
entangled.  Alice starts by initializing qubit one 
into some state.  Then Alice can make some 
local measurements on qubit one and qubit two 
and send the results classical to Bob, who may 
be some distance away.  Bob can then use the 
classical information that Alice sent him to 
decide whether or not to apply certain 
operations to his qubit three.  The end result is 
that the final state of Bob’s qubit three is the 

same quantum state as initial state that Alice 
prepared.  Because we have not implemented 
classical channels with QCNMR, we have to use 
an equivalent circuit with only quantum 
operations.   

We implemented this circuit on a 
heteronuclear three-qubit system.  The spin 
parameters where more or less arbitrary, the 
chemical shift for each nuclei was 200Hz, and 
the J-coupling strength between each pair was 
set to 10Hz.  Since we have a heteronuclear 
system all pulses are hard pulses on a channel.  
The nominal pulse length was one microsecond.  
The pulse sequence for the sections two and 
three of the teleportation circuit are shown 
below in Figure 7.  As you can see the total 
execution time for the circuit is on the order of 
0.3 seconds.  Notice the four symmetric open 
regions in the pulse diagram.  These are the 
regions where the J-coupling interaction was 
being allowed to evolve.  Since the J-coupling 
term is an order of magnitude smaller than the 
chemical shift, the time required to perform the 
J-coupling over some angle increases by an 
order of magnitude.  Similarly, the tightly 
packed regions of the diagram correspond to the 
single-qubit evolution that occur as part of the 
CNOT gates and the initial Hadamard gate.  The 
numerical results themselves are not too 
interesting.   

The original density matrix after 
preparation of the qubit one traced down to 
qubit one is almost identical to the final density 
matrix traced down to qubit three.  
 The interesting thing is that when we 
interesting the length of the hard pulses, the 
fidelity of the final teleported state to the initial 
prepared state decreases dramatically.  
However, this is to be expected, one of the 
requirements of the refocusing processes was 
that the pulse lengths must be kept short 
[Leun99].  The time that the pulses are being 
applied is larger relative to the total duration of 
the refocusing, likely due to the fact that not all 
qubits are being pulsed for the same amount of 
time during the refocusing sequence; we believe  
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Figure 6 (top): Quantum Teleportation Circuit 
Figure 7 (bottom): Quantum Teleportation Pulse 
Sequence  
 
that this causes the effectiveness of the J-
coupling refocusing between qubits to break 
down.  The Zeeman refocusing should be 
unaffected.  This suggests that smaller J-
coupling strengths would improve this problem, 
however, that would increase the total 
refocusing time required.  In the end it is a 
balancing effort between pulse length and 
refocusing time.  
 We did not have a chance to examine as 
many quantum circuits as we would like to 
have.  The main stumbling block other than 
time, was that most of the interesting circuits 
involve construction of some set of Uf’s that act 
as oracles in the Deutsch-Jozsa problem or the 
Grover Search problem [Erma03].  It was not 
obvious to us how to construct these unitary  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
functions using the gates we had available.  
However, during the early stages of 
development of QCNMR, we did test out the 
unitaries provided for the three-qubit Deutsch-
Jozsa algorithm [Kim00]. These unitary 
functions where not constructed using the 
standard gate set, they we constructed using 
NMR rotations and interactions.  It is in the 
realm of QCNMR to perform such operations as 
we described in previous sections; that 
functionality is privately internal to the kernel 
and for design choices was not exposed to the 
user.  It would be simple to allow the 
construction gates that allowed for arbitrary X, 
Y and Z rotations, but they were hidden in order 
to make the user’s interface cleaner.  In future 
iterations of the QCNMR, this functionality will 
likely be exposed. 
 Finally, a note about simulated and 
experimental accuracy; QCNMR is not intended 

1. Initialize 

2. Create Entangled Bell State 

3. ‘Local’ Measurements 

Hadamard 
J-coupling 
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to exactly simulate a nuclear magnetic 
resonance computer in complete detail.  There 
are a number of practical assumptions that had 
to be made in order to make this project 
tractable.  The most important assumption is 
that we consider the NMR system as a statistical 
ensemble as opposed to a physical n-body 
system, which is, itself, is a horribly intractable 
problem.  Along with that assumption was the 
assumption that the Hamiltonian for our system 
was time-independent, meaning the bulk 
relaxation effects were not being considered, 
though they could be included to zero-th order 
as a constraint on total computation time.  
Another assumption that we considered was that 
the only qubits in the system were nuclei that 
we involved in the computation, this is not 
strictly necessary, the user can add whatever 
extra qubits they wish to add, the only cost is 
that refocusing is performed uniquely on each 
one of them.  The final, and perhaps somewhat 
understated assumption, is that we assumed that 
refocusing was necessary for atomic operation, 
strictly speaking, refocusing is probably not 
always necessary, in fact, it is probably wasteful 
sometimes.  The problem is that it is difficult to 
quantify the effectiveness of using refocusing at 
some point in the evolution of the circuit.  While 
always refocusing is good from a correctness 
point of view, it can often be dubious from an 
efficiency perspective.  Again, it is a case where 
balance and optimization of parameters comes 
into play.  We decide to err on the side of 
correctness as opposed to the side of efficiency, 
for it will likely be easy to approach an optimal 
solution from a solution that is already correct. 
 
V. Conclusion 
 
A. Summary 
 

We presented our construction of a nuclear 
magnetic resonance quantum computer 
simulator, QCNMR.  We discussed the 
necessary background for a layman to get a 
good physical understanding of NMR and 

quantum computing at a basic level.  Our 
algorithms for constructing refocusing 
sequences and for performing simultaneous 
pulses were also discussed.  We examined the 
structure and interface to the open-source NMR 
simulation library that we used as a backend for 
QCNMR’s nuclear magnetic resonance 
simulation as well as its technical short-comings 
and limitations.  The basic structure and classes 
in our implementation were briefly described in 
their form and function.  We have concluded 
with a short example circuit that we 
implemented on QCNMR.  For the most part 
this project constructed what it set out to do; to 
implement an emulator that takes a “classical” 
quantum circuit and performs it by using NMR 
pulses.  Finally we commented on a number of 
assumptions that were made in the formulation 
and implementation of QCNMR.  The next 
major step from QCNMR is to construct a time-
correctness optimization solver for applying 
pulses.   

 
B. Related Work 
 

There are relatively few examples of similar 
attempts to implement a nuclear magnetic 
resonance quantum computer simulator.  One 
such example is the Quantum Computer 
Emulator (QCE) by a group at the University of 
Groningen, Demark [Mich03].  Their approach 
is at a much lower level, by allowing the user to 
choose all the pulses and the parameters of the 
pulses.  They make this slightly more tractable 
to a novice by constructing instruction sets of 
basic useful pulses with pre-set parameters.  
Their implementation, however, seems to focus 
on being an ideal quantum computer simulator 
as opposed to a NMR based simulator.  They to 
not seem to provide the automatic construction 
of the necessary refocusing pulse for the user; it 
is up to the user to implement them however 
they choose.  This method is allows the user 
more control over how their abstract quantum 
circuit is implemented in NMR hardware, 
though at the cost of considerably more time to 
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implement with the QCE system.  QCNMR 
provides a quick way for user to test and 
examine the basic properties of circuits that will 
be on simulated NMR system at the loss of user 
control of the pulse sequencing.  
 
C. Future Work 
 

We would like to have spent more time 
testing some example circuits to examine the 
effectiveness of QCNMR, but backlogs in the 
development schedule hindered the process.  
We did not spend much time trying to optimize 
the pulse sequences beyond applying multiple 
pulses at the same time.  Future work could 
address optimizing pulse sequences both on a 
per-operation basis and on a global scale using 
some linear programming techniques.  There 
was not enough time to compare the results of 
the simulated computation and the generated 
pulse sequences to the physical implementations 
and actual pulse used sequences.  There is one 
thing that remains to be implemented, however, 
at the time of publishing this paper, 
simultaneous homonuclear soft pulses are not 
yet implemented due to complexity issues and 
time constraints.  We also look to further 
iterations on the development of the GUI, in 
order to add make it a more powerful tool that 
allows it to exercise more features of the 
QCNMR library. The issue of swapping qubits 
(and optimizing the swapping of qubits) for 
performing information exchange on qubits that 

have zero or very small J-coupling interaction 
strength was not even discussed.  There are a 
number of simple optimizations that come to 
our minds as this paper was being written; 
mostly optimizations in the maximum time 
duration of a refocusing sequences and the 
organization of pulses within each refocusing 
pulse interval.   
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