Deterministic Polynomial Identity Tests for Multilinear Bounded-Read Formulae

Matthew Anderson Dieter van Melkebeek UW - Madison

UW - Madison

Ilya Volkovich Technion

January 27th, 2012

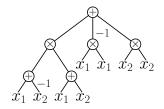
Arithmetic Formula Identity Testing

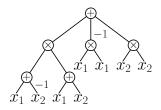
Problem (AFIT)

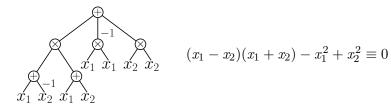
Input: $F \in \mathbb{F}[x_1, ..., x_n]$

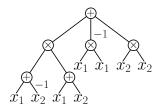
Input: $F \in \mathbb{F}[x_1, ..., x_n]$, given as an arithmetic formula.

Input: $F \in \mathbb{F}[x_1, ..., x_n]$, given as an arithmetic formula.

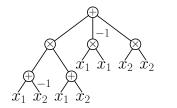








$$(x_1 - x_2)(x_1 + x_2) - x_1^2 + x_2^2 \equiv 0$$



$$(x_1 - x_2)(x_1 + x_2) - x_1^2 + x_2^2 \equiv 0$$

 $x_1^2 + x_1 \not\equiv 0$

An Algorithm for AFIT

Randomized algorithm:

Pick $a_i \in U S \subseteq \mathbb{F}$ uniformly, ACCEPT iff $P(a_1, \ldots, a_n) = 0$.

An Algorithm for AFIT

Randomized algorithm:

Pick $a_i \in_U S \subseteq \mathbb{F}$ uniformly, ACCEPT iff $P(a_1, \ldots, a_n) = 0$.

Correctness:

Schwartz-Zippel Lemma

For
$$d := \deg(P)$$
,

$$\Pr_{a_i \in US}[P(a_1, \dots, a_n) = 0 \mid P \neq 0] \le \frac{d}{|S|}$$

An Algorithm for AFIT

Randomized algorithm:

Pick $a_i \in_U S \subseteq \mathbb{F}$ uniformly, ACCEPT iff $P(a_1, \ldots, a_n) = 0$.

Correctness:

Schwartz-Zippel Lemma

For
$$d := \deg(P)$$
,

$$\Pr_{a_i \in US}[P(a_1, \dots, a_n) = 0 \mid P \neq 0] \le \frac{d}{|S|}$$

Proof.

An Algorithm for AFIT

Randomized algorithm:

Pick $a_i \in_U S \subseteq \mathbb{F}$ uniformly, ACCEPT iff $P(a_1, \ldots, a_n) = 0$.

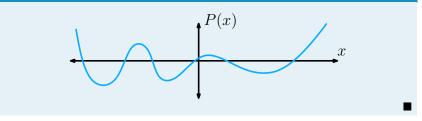
Correctness:

Schwartz-Zippel Lemma

For
$$d := \deg(P)$$
,

$$\Pr_{a_i \in US}[P(a_1, \dots, a_n) = 0 \mid P \neq 0] \le \frac{d}{|S|}$$

Proof.



Open Problem

Is there an efficient deterministic identity test?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes \Rightarrow formula lower bounds.

Open Problem

Is there an efficient deterministic identity test?

Motivation:

- Yes \Rightarrow formula lower bounds.
- It is a subroutine in other results:
 - primality testing,
 - bipartite perfect matching,
 - PCP theorem,
 - ...

Open Problem

Is there an efficient deterministic identity test?

Motivation:

- Yes \Rightarrow formula lower bounds.
- It is a subroutine in other results:
 - primality testing,
 - bipartite perfect matching,
 - PCP theorem,

• ...

• It is a next natural candidate problem to derandomize.

If $AFIT \in NSUBEXP$, then either

If $AFIT \in NSUBEXP$, then either

1 NEXP does not have poly-size Boolean circuits, or

If $AFIT \in NSUBEXP$, then either

- **1** NEXP does not have poly-size Boolean circuits, or
- **2** Perm does not have poly-size arithmetic formulae.

If $AFIT \in NSUBEXP$, then either

- **1** NEXP does not have poly-size Boolean circuits, or
- **2** Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies a subexponential-time identity test for arithmetic formula.

If $AFIT \in NSUBEXP$, then either

- **1** NEXP does not have poly-size Boolean circuits, or
- **2** Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

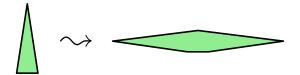
A polynomial-time identity test for depth-4 formula implies a subexponential-time identity test for arithmetic formula.

If $AFIT \in NSUBEXP$, then either

- **1** NEXP does not have poly-size Boolean circuits, or
- **2** Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies a subexponential-time identity test for arithmetic formula.



Deterministic algorithms for bounded-depth formulae:

Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

- Read-Once
- \sum^{k} -Read-Once [SV08,SV09]

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

- Read-Once
- \sum^{k} -Read-Once [SV08,SV09]
- Multilinear Read-k [we]

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

- Read-Once
- \sum^{k} -Read-Once [SV08,SV09]
- Multilinear Read-k [we]

Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic identity test for size-s *n*-variable multilinear read-*k* formulae.

Outline

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Outline

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Techniques:

Outline

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-*k* formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

Outline

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

Outline

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)}+O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-*k* formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

Proof.

Combine and iterate the reductions.

Outline

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)}+O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-*k* formulae.

Techniques:

1. Fragmenting

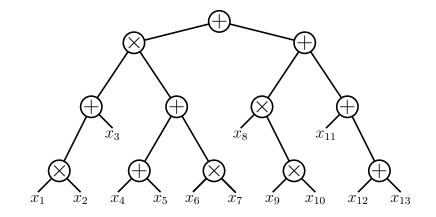
Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

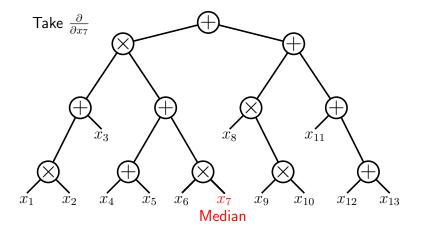
2. Shattering

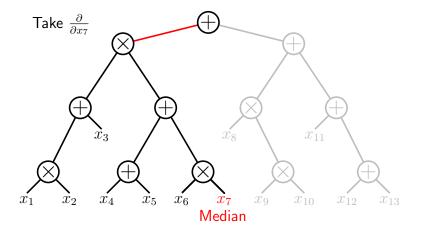
Reduces multilinear \sum^2 -read-k to multilinear read-k.

Proof.

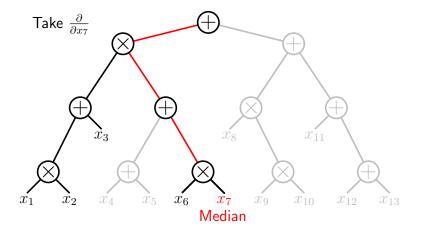
Combine and iterate the reductions.

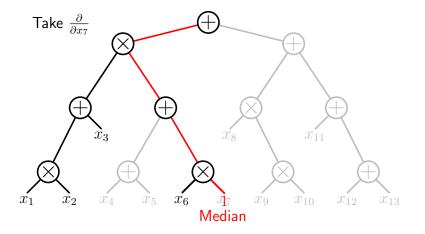








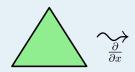




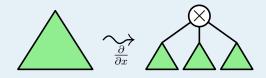
Lemma

Lemma

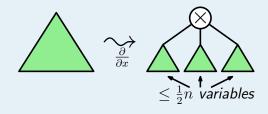
Lemma



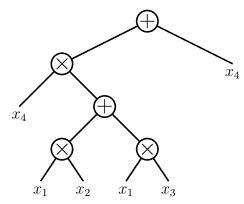
Lemma



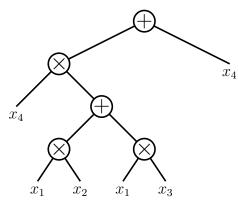
Lemma



A read-2 formula:

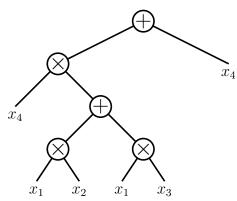


A read-2 formula:

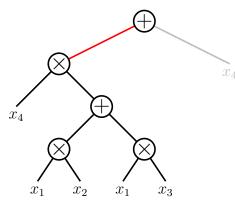


Pick largest child which contains k + 1 occurrences of some variable.

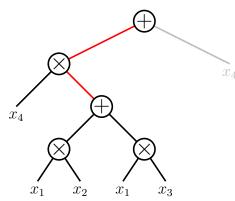
A read-2 formula:



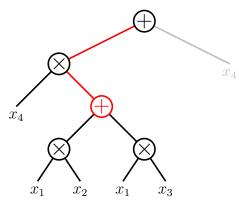
A read-2 formula:



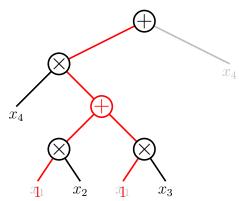
A read-2 formula:



A read-2 formula:



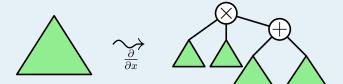
A read-2 formula:



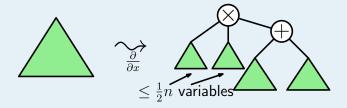
Fragmentation Lemma

Fragmentation Lemma

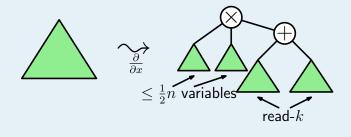
Fragmentation Lemma



Fragmentation Lemma



Fragmentation Lemma



 $\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-}\mathsf{Read-}k$

 $\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

$\mathsf{Read}(k+1) \leq \sum^2 -\mathsf{Read}(k)$

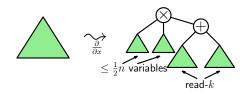
While F has variables:

• Select x which fragments F.

$\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

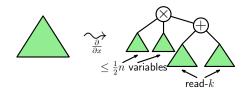
While F has variables:

• Select x which fragments F.



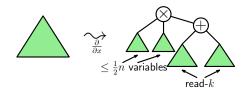
$\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

- Select x which fragments F.
- Test the factors of $\partial_x F$ recursively.



$\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

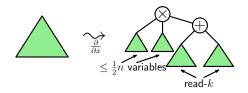
- Select x which fragments F.
- Test the factors of $\partial_x F$ recursively.
- If all factors of $\partial_x F$ are nonzero, REJECT.



$\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

- Select x which fragments F.
- Test the factors of $\partial_x F$ recursively.
- If all factors of $\partial_x F$ are nonzero, REJECT.

• Set
$$F = F|_{x \leftarrow 0}$$
.

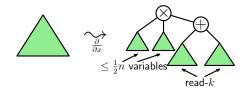


$\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

While F has variables:

- Select x which fragments F.
- Test the factors of $\partial_x F$ recursively.
- If all factors of $\partial_x F$ are nonzero, REJECT.
- Set $F = F|_{x \leftarrow 0}$.

ACCEPT iff F = 0.



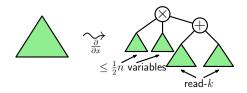
$\mathsf{Read-}(k+1) \leq \sum^2 \mathsf{-Read-}k$

While F has variables:

- Select x which fragments F.
- Test the factors of $\partial_x F$ recursively.
- If all factors of $\partial_x F$ are nonzero, REJECT.

• Set
$$F = F|_{x \leftarrow 0}$$
.

ACCEPT iff F = 0.



Makes $n^{O(\log n)}$ calls to the \sum^2 -read-k identity test.

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

2. Shattering

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

2. Shattering

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

2. Shattering

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for size-s *n*-variable multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

2. Shattering

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \ge w$.

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \ge w$.

Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \ge w$.

Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.

• Let $\mathcal F$ consist of $F(\bar x + \bar \sigma)$ and all its zero-substitutions.

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \ge w$.

Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.

- Let $\mathcal F$ consist of $F(\bar x + \bar \sigma)$ and all its zero-substitutions.
- Some simple conditions on $\bar{\sigma}$ give property 2 for \mathcal{F} .

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \ge w$.

Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.

- Let \mathcal{F} consist of $F(\bar{x} + \bar{\sigma})$ and all its zero-substitutions.
- Some simple conditions on $\bar{\sigma}$ give property 2 for \mathcal{F} .
- For such a $\bar{\sigma}$, $H_w + \bar{\sigma}$ hits F.

A Structural Witness Lemma

Witness Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on *n*-variables,

A Structural Witness Lemma

Witness Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on *n*-variables, where 1. no variable divides any F_i ,

Witness Lemma

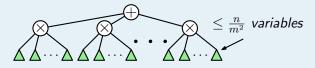
Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on *n*-variables, where 1. no variable divides any F_i ,

2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:

Witness Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on *n*-variables, where 1. no variable divides any F_i ,

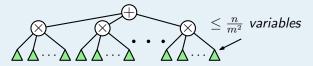
2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:



Witness Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on *n*-variables, where 1. no variable divides any F_i ,

2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:



then F does not compute a monomial of degree n.

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear \sum^2 -read-k formula F on n variables, there exist sets of variables

• P, with |P| = poly(k), and

•
$$V$$
, with $|V| = \frac{n}{k^{O(k)}}$

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear \sum^2 -read-k formula F on n variables, there exist sets of variables

• P, with |P| = poly(k), and

• V, with
$$|V| = \frac{n}{k^{O(k)}}$$

such that $\frac{\partial F}{\partial P}$ depends on at least the variables in V,

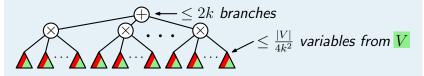
Shattering Lemma

For any nonzero multilinear \sum^2 -read-k formula F on n variables, there exist sets of variables

• P, with |P| = poly(k), and

•
$$V$$
, with $|V| = \frac{n}{k^{O(k)}}$

such that $\frac{\partial F}{\partial P}$ depends on at least the variables in V, and can be written as



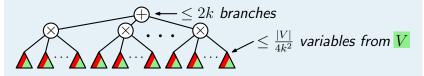
Shattering Lemma

For any nonzero multilinear \sum^2 -read-k formula F on n variables, there exist sets of variables

• P, with |P| = poly(k), and

•
$$V$$
, with $|V| = \frac{n}{k^{O(k)}}$

such that $\frac{\partial F}{\partial P}$ depends on at least the variables in V, and can be written as



where each small subformula is the partial derivative of some subformula of F.

 $F(\bar{x}+\bar{\sigma})$ is not a monomial.

 $F(\bar{x} + \bar{\sigma})$ is not a monomial.

Proof.

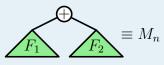
 $F(\bar{x} + \bar{\sigma})$ is not a monomial.

Proof.

 $F(\bar{x} + \bar{\sigma})$ is not a monomial.

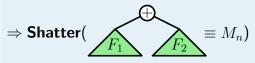
Proof.

 \Rightarrow



 $F(\bar{x} + \bar{\sigma})$ is not a monomial.

Proof.



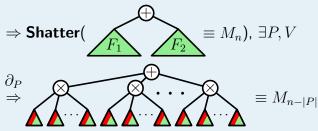
 $F(\bar{x} + \bar{\sigma})$ is not a monomial.

Proof.

$$\Rightarrow \mathbf{Shatter}(\underbrace{F_1}_{F_2} \equiv M_n), \exists P, V$$

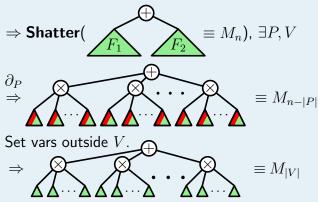
 $F(\bar{x}+\bar{\sigma})$ is not a monomial.

Proof.



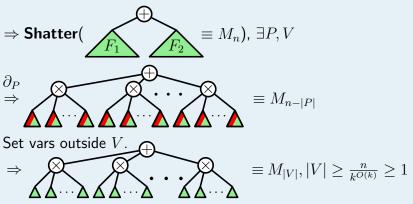
 $F(\bar{x}+\bar{\sigma})$ is not a monomial.

Proof.



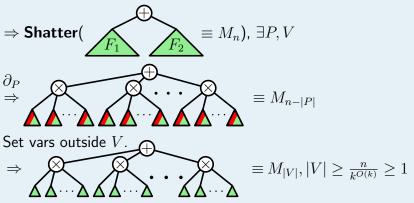
 $F(\bar{x}+\bar{\sigma})$ is not a monomial.

Proof.



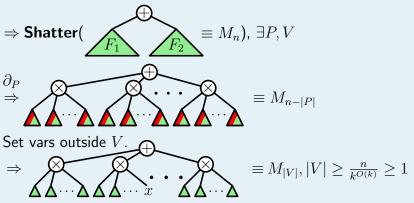
 $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \ge k^{O(k)}$.

Proof.



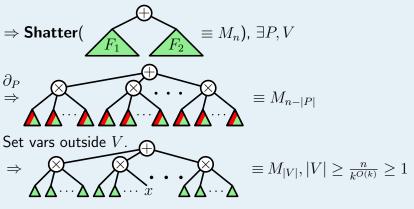
 $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \ge k^{O(k)}$.

Proof.



$$F(\bar{x}+\bar{\sigma})$$
 is not a monomial of degree $n\geq k^{O(k)}$

Proof.

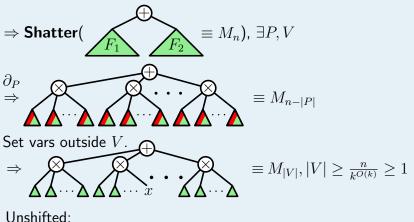


$$\Rightarrow \mathbf{\Delta}|_{x \leftarrow 0} = 0$$

$$F(\bar{x}+\bar{\sigma})$$
 is not a monomial of degree $n\geq k^{O(k)}$

Proof.

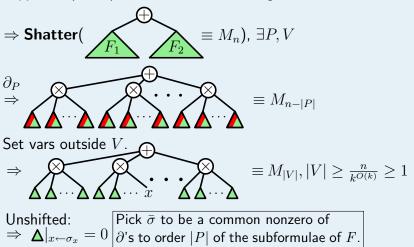
Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.



 $\Rightarrow \mathbf{\Delta}|_{x \leftarrow \sigma_x} = 0$

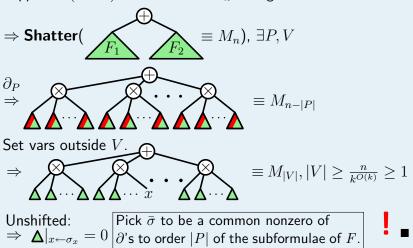
 $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \ge k^{O(k)}$.

Proof.



 $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \ge k^{O(k)}$.

Proof.



Theorem (Efficiency)

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

Theorem (Efficiency)

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

• Each such formula is read-k, since F is \sum^2 -read-k.

Theorem (Efficiency)

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

- Each such formula is read-k, since F is \sum^2 -read-k.
- There are $O(kn^{|P|+1})$ such formulae.

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

- Each such formula is read-k, since F is \sum^2 -read-k.
- There are $O(kn^{|P|+1})$ such formulae.

Determine $\bar{\sigma}$ using trial substitution and read-k identity test.

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

- Each such formula is read-k, since F is \sum^2 -read-k.
- There are $O(kn^{|P|+1})$ such formulae.

Determine $\bar{\sigma}$ using trial substitution and read-k identity test.

Overall reduction:

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

- Each such formula is read-k, since F is \sum^2 -read-k.
- There are $O(kn^{|P|+1})$ such formulae.

Determine $\bar{\sigma}$ using trial substitution and read-k identity test.

Overall reduction:

• Makes $n^{\text{poly}(k)}$ calls to the read-k identity test.

 $\bar{\sigma}$ is easy to compute.

Proof.

Pick $\bar{\sigma}$ to be a common nonzero of partial derivatives of order up to |P| of all subformulae of F.

- Each such formula is read-k, since F is \sum^2 -read-k.
- There are $O(kn^{|P|+1})$ such formulae.

Determine $\bar{\sigma}$ using trial substitution and read-k identity test.

Overall reduction:

- Makes $n^{\text{poly}(k)}$ calls to the read-k identity test.
- Does $n^{k^{O(k)}}$ work evaluating the formula on $H_w + \bar{\sigma}$.

Main Theorem

1. Fragmenting

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

$$T(k+1) = n^{\log n} T_2(k)$$

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

$$T_2(k) = n^{\text{poly}(k)} T(k) + n^{k^{O(k)}}$$

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

$$T(k+1) = n^{\log n} T_2(k)$$

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

$$T_2(k) = n^{\text{poly}(k)} T(k) + n^{k^{O(k)}}$$

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for *n*-variable size-*s* multilinear read-*k* formulae.

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

$$T(k+1) = n^{\log n} T_2(k)$$

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

$$T_2(k) = n^{\text{poly}(k)} T(k) + n^{k^{O(k)}}$$

Weakened Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic identity test for *n*-variable size-s multilinear read-k formulae.

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

$$T(k+1) = n^{\log n} T_2(k)$$

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

$$T_2(k) = n^{\text{poly}(k)} T(k) + n^{k^{O(k)}}$$

Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic identity test for *n*-variable size-*s* multilinear read-*k* formulae.

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

$$T(k+1) = n^{\log n} T_2(k)$$

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

$$T_2(k) = n^{\text{poly}(k)} T(k) + n^{k^{O(k)}}$$

Main Theorem

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic identity test for *n*-variable size-*s* multilinear read-*k* formulae.

Corollary

There is a polynomial-time deterministic identity test for multilinear constant-read formulae.

Reduces multilinear read-(k + 1) to multilinear \sum^2 -read-k.

$$T(k+1) = n^{\log n} T_2(k)$$

2. Shattering

Reduces multilinear \sum^2 -read-k to multilinear read-k.

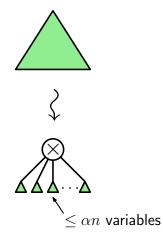
$$T_2(k) = n^{\text{poly}(k)} T(k) + n^{k^{O(k)}}$$

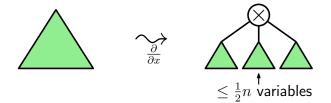
Main Theorem

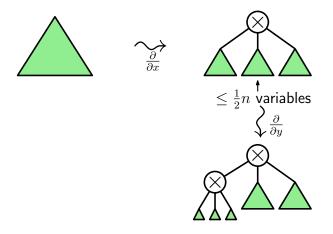
There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic identity test for *n*-variable size-*s* multilinear read-*k* formulae.

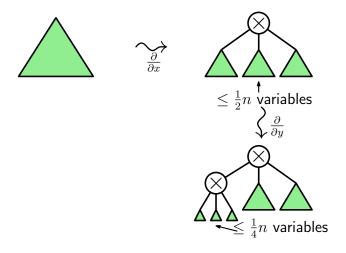
Corollary

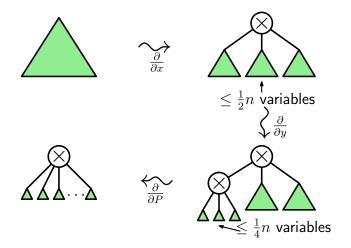
There is a polynomial-time deterministic identity test for multilinear constant-read formulae.











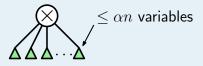


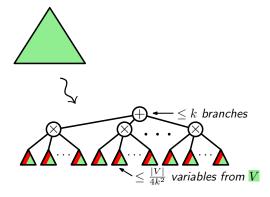
Lemma

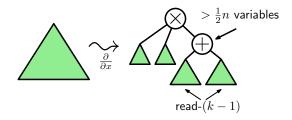
For any read-once formula F on n variables and $\alpha \in [0, 1]$ there exists a sets of variables P, with $|P| = O(\frac{1}{\alpha})$, such that $\frac{\partial F}{\partial P}$ can be written as

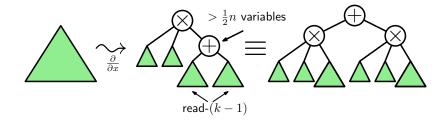
Lemma

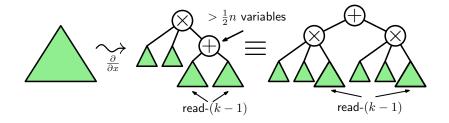
For any read-once formula F on n variables and $\alpha \in [0, 1]$ there exists a sets of variables P, with $|P| = O(\frac{1}{\alpha})$, such that $\frac{\partial F}{\partial P}$ can be written as

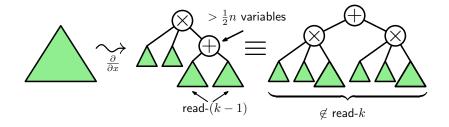


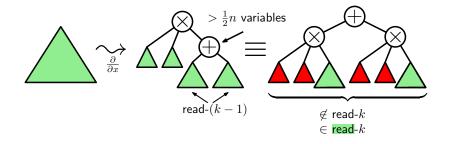


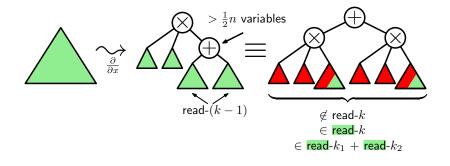


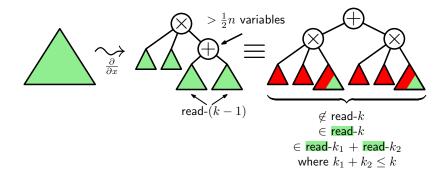


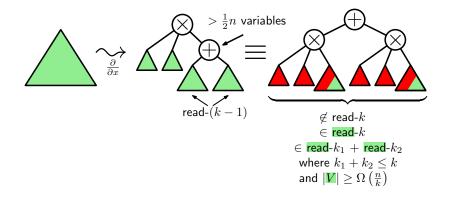


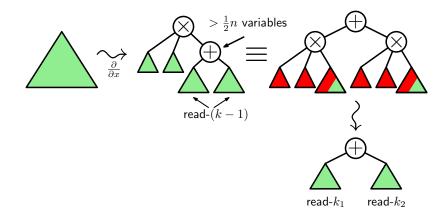


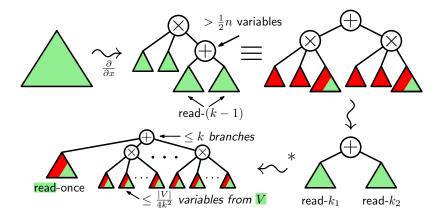


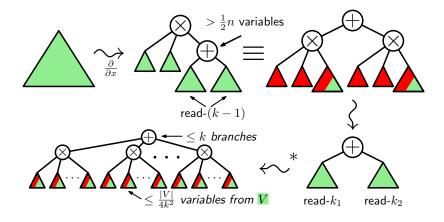


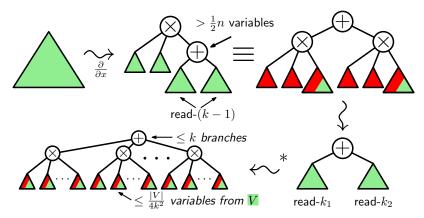












At most k iterations are required to successfully shatter a read-k formula.

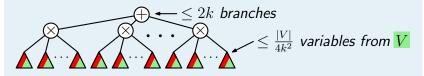
Shattering Lemma

For any nonzero multilinear \sum^2 -read-k formula F on n variables, there exist sets of variables

• P, with |P| = poly(k), and

•
$$V$$
, with $|V| = \frac{n}{k^{O(k)}}$

such that $\frac{\partial F}{\partial P}$ depends on at least the variables in V, and can be written as



where each small subformula is the partial derivative of some subformula of F.

Extension: Blackbox

• Our algorithm uses the structure of the formula.

Extension: Blackbox

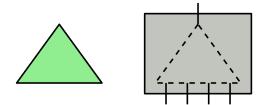
- Our algorithm uses the structure of the formula.
- A **blackbox** algorithm may only evaluate the formula.

Extension: Blackbox

- Our algorithm uses the structure of the formula.
- A **blackbox** algorithm may only evaluate the formula.

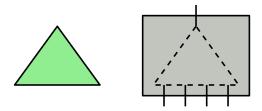
Extension: Blackbox

- Our algorithm uses the structure of the formula.
- A blackbox algorithm may only evaluate the formula.



Extension: Blackbox

- Our algorithm uses the structure of the formula.
- A blackbox algorithm may only evaluate the formula.



Theorem (Agrawal-Vinay)

A **blackbox** poly-time identity test for depth-4 formula implies a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox - Outline

- Hitting Set Generators
- SV Generator
- Making our algorithm blackbox

Definition (Hitting Set Generator)

A polynomial map G,

Definition (Hitting Set Generator)

A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

Definition (Hitting Set Generator)

A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

is a hitting set generator (HSG) for a set of formulae ${\mathcal F},$ if

$$\forall F \in \mathcal{F}, F \circ G \not\equiv 0 \text{ iff } F \not\equiv 0.$$

Definition (Hitting Set Generator)

A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

is a hitting set generator (HSG) for a set of formulae ${\mathcal F},$ if

$$\forall F \in \mathcal{F}, F \circ G \not\equiv 0 \text{ iff } F \not\equiv 0.$$

Definition (Hitting Set Generator)

A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

is a hitting set generator (HSG) for a set of formulae ${\mathcal F},$ if

$$\forall F \in \mathcal{F}, F \circ G \not\equiv 0 \text{ iff } F \not\equiv 0.$$

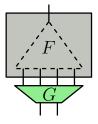
Definition (Hitting Set Generator)

A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

is a hitting set generator (HSG) for a set of formulae ${\mathcal F},$ if

$$\forall F \in \mathcal{F}, F \circ G \neq 0 \text{ iff } F \neq 0.$$



Definition (Hitting Set Generator)

A polynomial map G,

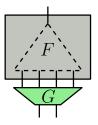
$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

is a hitting set generator (HSG) for a set of formulae $\mathcal F,$ if

$$\forall F \in \mathcal{F}, F \circ G \not\equiv 0 \text{ iff } F \not\equiv 0.$$

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to $F \circ G$.



Definition (Hitting Set Generator)

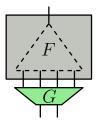
A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

is a hitting set generator (HSG) for a set of formulae $\mathcal F,$ if

$$\forall F \in \mathcal{F}, F \circ G \not\equiv 0 \text{ iff } F \not\equiv 0.$$

- Apply the Schwartz-Zippel Lemma to $F \circ G$.
- The test queries $O((d_F \cdot d_G)^m)$ inputs.



Definition (Hitting Set Generator)

A polynomial map G,

$$G: \mathbb{F}^m \to \mathbb{F}^n, \ G = (G_1, \dots, G_n), \ G_i \in \mathbb{F}[y_1, \dots, y_m]$$

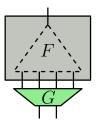
is a hitting set generator (HSG) for a set of formulae $\mathcal F,$ if

$$\forall F \in \mathcal{F}, F \circ G \not\equiv 0 \text{ iff } F \not\equiv 0.$$

HSGs induce blackbox identity tests:

- Apply the Schwartz-Zippel Lemma to $F \circ G$.
- The test queries $O((d_F \cdot d_G)^m)$ inputs.

Efficient HSGs: low degree d_G and seed length m.



We will use the generator G_{SV} from [SV09]:

• H_1 is in the image of G_{SV} .

- H_1 is in the image of G_{SV} .
- G_{SV} has degree n+1 and seed length 2.

- H_1 is in the image of G_{SV} .
- G_{SV} has degree n+1 and seed length 2.
- Let G_{SV}^w be the sum of w copies of G_{SV} over new variables.

- H_1 is in the image of G_{SV} .
- G_{SV} has degree n+1 and seed length 2.
- Let G_{SV}^w be the sum of w copies of G_{SV} over new variables.
- H_w is in the image of G_{SV}^w .

We will use the generator G_{SV} from [SV09]:

- H_1 is in the image of G_{SV} .
- G_{SV} has degree n+1 and seed length 2.
- Let G_{SV}^w be the sum of w copies of G_{SV} over new variables.
- H_w is in the image of G_{SV}^w .

Lemma

If G is a HSG for $\partial_x F$, then $G + G_{SV}$ is a HSG for F.

We will use the generator G_{SV} from [SV09]:

- H_1 is in the image of G_{SV} .
- G_{SV} has degree n+1 and seed length 2.
- Let G_{SV}^w be the sum of w copies of G_{SV} over new variables.
- H_w is in the image of G_{SV}^w .

Lemma

If G is a HSG for $\partial_x F$, then $G + G_{SV}$ is a HSG for F.

Fact

If G is a HSG for \mathcal{F} , then G is a HSG for products over \mathcal{F} .

Extension: Blackbox - Read- $(k + 1) \leq \sum^2$ -Read-k

Lemma

If G is a HSG for \sum^2 -read-k formulae, then $G + G_{SV}^{\log n}$ is a HSG read-(k + 1) formulae.

Extension: Blackbox - Read- $(k + 1) \leq \sum^2$ -Read-k

Lemma

If G is a HSG for \sum^2 -read-k formulae, then $G + G_{SV}^{\log n}$ is a HSG read-(k + 1) formulae.

Proof.

By induction on n.

Extension: Blackbox - Read- $(k+1) \leq \sum^2$ -Read-k

Lemma

If G is a HSG for \sum^2 -read-k formulae, then $G + G_{SV}^{\log n}$ is a HSG read-(k + 1) formulae.

Proof.

By induction on n.

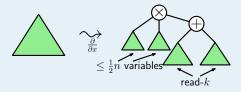
Extension: Blackbox - Read- $(k + 1) \leq \sum^2$ -Read-k

Lemma

If G is a HSG for \sum^2 -read-k formulae, then $G + G_{SV}^{\log n}$ is a HSG read-(k + 1) formulae.

Proof.

By induction on n.



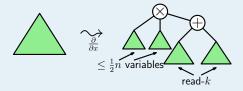
Extension: Blackbox - Read- $(k+1) \leq \sum^2$ -Read-k

Lemma

If G is a HSG for \sum^2 -read-k formulae, then $G + G_{SV}^{\log n}$ is a HSG read-(k + 1) formulae.

Proof.

By induction on n.



• By IH,
$$G + G_{SV}^{(\log n)-1}$$
 is a HSG for $\partial_x F$.

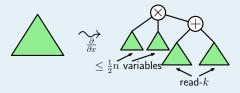
Extension: Blackbox - Read- $(k+1) \leq \sum^2$ -Read-k

Lemma

If G is a HSG for \sum^2 -read-k formulae, then $G + G_{SV}^{\log n}$ is a HSG read-(k + 1) formulae.

Proof.

By induction on n.



- By IH, $G + G_{SV}^{(\log n)-1}$ is a HSG for $\partial_x F$.
- Therefore, $G + G_{SV}^{\log n}$ is a HSG for F.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the formulae in the condition on $\bar{\sigma}$.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

- Since G is a HSG for read-k formulae, G is a HSG for all the formulae in the condition on $\bar{\sigma}$.
- Select an appropriate point in the image of G to be $\bar{\sigma}$.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

- Since G is a HSG for read-k formulae, G is a HSG for all the formulae in the condition on $\bar{\sigma}$.
- Select an appropriate point in the image of G to be $\bar{\sigma}$.
- $H_{k^{O(k)}}$ is in the image of $G_{SV}^{k^{O(k)}}$.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

- Since G is a HSG for read-k formulae, G is a HSG for all the formulae in the condition on $\bar{\sigma}$.
- Select an appropriate point in the image of G to be $\bar{\sigma}$.
- $H_{k^{O(k)}}$ is in the image of $G_{SV}^{k^{O(k)}}$.
- $\bar{\sigma} + H_{k^{O(k)}}$ is in the image of $G + G_{SV}^{k^{O(k)}}$.

Lemma

If G is a HSG for read-k formulae, then $G + G_{SV}^{k^{O(k)}}$ is a HSG for \sum^2 -read-k formulae.

- Since G is a HSG for read-k formulae, G is a HSG for all the formulae in the condition on $\bar{\sigma}$.
- Select an appropriate point in the image of G to be $\bar{\sigma}$.
- $H_{k^{O(k)}}$ is in the image of $G_{SV}^{k^{O(k)}}$.
- $\bar{\sigma} + H_{k^{O(k)}}$ is in the image of $G + G_{SV}^{k^{O(k)}}$.
- Apply the non-blackbox analysis.

Theorem

 $G_{SV}^{k^{O(k)}+O(k\log n)}$ is a HSG for multilinear read-k formula.

Theorem

 $G_{SV}^{k^{O(k)}+O(k\log n)}$ is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for multilinear constant-read formulae.

Theorem

 $G_{SV}^{k^{O(k)}+O(k\log n)}$ is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear constant-read constant-depth formulae.

Theorem

 $G_{SV}^{k^{O(k)}+O(k\log n)}$ is a HSG for multilinear read-k formula.

Corollary

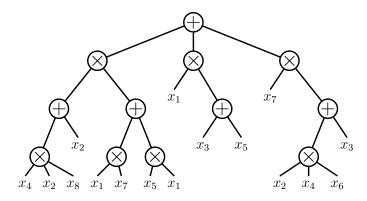
There is a quasi-polynomial-time blackbox identity test for multilinear constant-read formulae.

Corollary

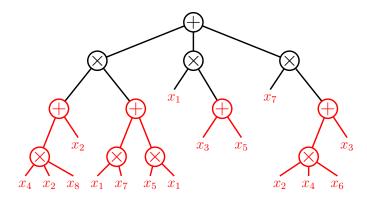
There is a polynomial-time blackbox identity test for multilinear constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.

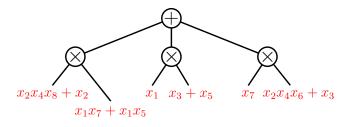
Read-3 depth-4



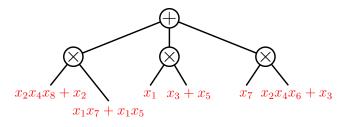
Read-3 depth-4



Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

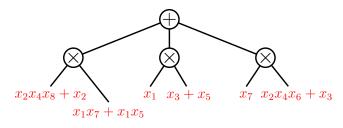


Read-3 depth-4 (and read-2 depth-2 sparse-substituted)



• Our tests extend to this model at quasi-polynomial cost. Idea: *Fragment sparse polys by also using substitutions.*

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)



- Our tests extend to this model at quasi-polynomial cost. Idea: *Fragment sparse polys by also using substitutions.*
- Encompasses tests for
 - Multilinear Constant-Top-Fanin Depth-4 [KMSV10],
 - A generalized version of \sum^{k} -Read-Once [SV09].

Main Theorem

There is a polynomial-time deterministic identity test for multilinear constant-read formulae.

Main Theorem

There is a polynomial-time deterministic identity test for multilinear constant-read formulae.

Extensions:

- 1. Blackbox: quasi-poly-time.
- 2. Sparse substituted: quasi-poly-time.

- Is there a poly-time blackbox test for multilinear constant-read formulae?
- Can we drop the multilinearity requirement?
- For these types of formulae can we get
 - interesting lower bounds?
 - reconstruction algorithms?
- Is AFIT in P?
- Can any randomized algorithm be efficiently derandomized?

Thanks!