
Deterministic Polynomial Identity Tests for
Multilinear Bounded-Read Formulae

Matthew Anderson Dieter van Melkebeek
UW - Madison UW - Madison

Ilya Volkovich
Technion

January 27th , 2012

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn]

, given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.

Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.

Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

x1

x1 x1

+×

×+

x 2
1 + x1 6≡ 0

An Algorithm for AFIT
Randomized algorithm:

Pick ai ∈U S ⊆ F uniformly, ACCEPT iff P(a1, . . . , an) = 0.

Correctness:

Schwartz-Zippel Lemma

For d := deg(P),

Pr
ai∈US

[P(a1, . . . , an) = 0 | P 6≡ 0] ≤ d
|S |

.

Proof.

P (x)

x

�

An Algorithm for AFIT
Randomized algorithm:

Pick ai ∈U S ⊆ F uniformly, ACCEPT iff P(a1, . . . , an) = 0.

Correctness:

Schwartz-Zippel Lemma

For d := deg(P),

Pr
ai∈US

[P(a1, . . . , an) = 0 | P 6≡ 0] ≤ d
|S |

.

Proof.

P (x)

x

�

An Algorithm for AFIT
Randomized algorithm:

Pick ai ∈U S ⊆ F uniformly, ACCEPT iff P(a1, . . . , an) = 0.

Correctness:

Schwartz-Zippel Lemma

For d := deg(P),

Pr
ai∈US

[P(a1, . . . , an) = 0 | P 6≡ 0] ≤ d
|S |

.

Proof.

P (x)

x

�

An Algorithm for AFIT
Randomized algorithm:

Pick ai ∈U S ⊆ F uniformly, ACCEPT iff P(a1, . . . , an) = 0.

Correctness:

Schwartz-Zippel Lemma

For d := deg(P),

Pr
ai∈US

[P(a1, . . . , an) = 0 | P 6≡ 0] ≤ d
|S |

.

Proof.

P (x)

x

�

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes ⇒ formula lower bounds.

• It is a subroutine in other results:
• primality testing,
• bipartite perfect matching,
• PCP theorem,
• ...

• It is a next natural candidate problem to derandomize.

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes ⇒ formula lower bounds.

• It is a subroutine in other results:
• primality testing,
• bipartite perfect matching,
• PCP theorem,
• ...

• It is a next natural candidate problem to derandomize.

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes ⇒ formula lower bounds.

• It is a subroutine in other results:
• primality testing,
• bipartite perfect matching,
• PCP theorem,
• ...

• It is a next natural candidate problem to derandomize.

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes ⇒ formula lower bounds.

• It is a subroutine in other results:
• primality testing,
• bipartite perfect matching,
• PCP theorem,
• ...

• It is a next natural candidate problem to derandomize.

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes ⇒ formula lower bounds.

• It is a subroutine in other results:
• primality testing,
• bipartite perfect matching,
• PCP theorem,
• ...

• It is a next natural candidate problem to derandomize.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT ∈ NSUBEXP, then either

1 NEXP does not have poly-size Boolean circuits, or

2 Perm does not have poly-size arithmetic formulae.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT ∈ NSUBEXP, then either

1 NEXP does not have poly-size Boolean circuits, or

2 Perm does not have poly-size arithmetic formulae.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT ∈ NSUBEXP, then either

1 NEXP does not have poly-size Boolean circuits, or

2 Perm does not have poly-size arithmetic formulae.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT ∈ NSUBEXP, then either

1 NEXP does not have poly-size Boolean circuits, or

2 Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies
a subexponential-time identity test for arithmetic formula.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT ∈ NSUBEXP, then either

1 NEXP does not have poly-size Boolean circuits, or

2 Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies
a subexponential-time identity test for arithmetic formula.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT ∈ NSUBEXP, then either

1 NEXP does not have poly-size Boolean circuits, or

2 Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies
a subexponential-time identity test for arithmetic formula.

;

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

+

+

+

+

+ ×

××

×

×+

+

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

+

+

+

+

+ ×

××

×

×+

+

Median

Take
∂

∂x7

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

1

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

;
∂

∂x

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

;

×

∂

∂x

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

;

×

∂

∂x

≤
1

2
n variables

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

1 1

Pick largest child which contains k + 1 occurrences of some variable.

“largest”= most variables.

The Fragmentation Lemma

Fragmentation Lemma

Let F be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F be a nonzero read-(k + 1) formula.

;
∂

∂x

The Fragmentation Lemma

Fragmentation Lemma

Let F be a nonzero read-(k + 1) formula.

×

+
;

∂

∂x

The Fragmentation Lemma

Fragmentation Lemma

Let F be a nonzero read-(k + 1) formula.

×

≤
1

2
n variables

+
;

∂

∂x

The Fragmentation Lemma

Fragmentation Lemma

Let F be a nonzero read-(k + 1) formula.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Outline

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

• Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

• Some simple conditions on σ̄ give property 2 for F .

• For such a σ̄, Hw + σ̄ hits F .

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

• Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

• Some simple conditions on σ̄ give property 2 for F .

• For such a σ̄, Hw + σ̄ hits F .

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

• Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

• Some simple conditions on σ̄ give property 2 for F .

• For such a σ̄, Hw + σ̄ hits F .

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

• Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

• Some simple conditions on σ̄ give property 2 for F .

• For such a σ̄, Hw + σ̄ hits F .

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

• Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

• Some simple conditions on σ̄ give property 2 for F .

• For such a σ̄, Hw + σ̄ hits F .

A Structural Witness Lemma

Witness Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables,

where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

then F does not compute a monomial of degree n.

A Structural Witness Lemma

Witness Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

then F does not compute a monomial of degree n.

A Structural Witness Lemma

Witness Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

then F does not compute a monomial of degree n.

A Structural Witness Lemma

Witness Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

then F does not compute a monomial of degree n.

A Structural Witness Lemma

Witness Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

then F does not compute a monomial of degree n.

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V , and can be

written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches

×

· · ·

×

· · ·

×

· · ·

where each small subformula is the partial derivative of some
subformula of F .

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V ,

and can be
written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches

×

· · ·

×

· · ·

×

· · ·

where each small subformula is the partial derivative of some
subformula of F .

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V , and can be

written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches

×

· · ·

×

· · ·

×

· · ·

where each small subformula is the partial derivative of some
subformula of F .

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V , and can be

written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches

×

· · ·

×

· · ·

×

· · ·

where each small subformula is the partial derivative of some
subformula of F .

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter()

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

M|V |

Set vars outside V .

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

×

· · · x

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

×

· · · x

⇒ |x←0 = 0

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

×

· · · x

⇒ |x←σx
= 0

Unshifted:

Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

×

· · · x

⇒ |x←σx
= 0

Unshifted: Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Correctness)

F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter(), ∃P, V

+

F1 F2

≡ Mn−|P |⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

∂P

≡⇒

+

· · ·
×

· · ·

×

· · ·

M|V |, |V | ≥
n

kO(k) ≥ 1

Set vars outside V .

×

· · · x

⇒ |x←σx
= 0

Unshifted: Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .

! �

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for

n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for

n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for

n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Shattering Read-once Formulae

;

×

· · ·

≤ αn variables

Shattering Read-once Formulae

Shattering Read-once Formulae

×

≤
1

2
n variables

;
∂

∂x

Shattering Read-once Formulae

×

≤
1

2
n variables

×

×

;
∂
∂y

;∂
∂x

Shattering Read-once Formulae

×

≤
1

2
n variables

×

×

;
∂
∂y

≤
1

4
n variables

;∂
∂x

Shattering Read-once Formulae

×

≤
1

2
n variables

×

×

;
∂
∂y

≤
1

4
n variables

;

∂
∂P

×

· · ·

;∂
∂x

Shattering Read-once Formulae

×

≤
1

2
n variables

×

×

;
∂
∂y

≤
1

4
n variables

;

∂
∂P

×

· · ·

≤ αn variables

;∂
∂x

A Shattering Lemma

Lemma

For any read-once formula F on n variables and α ∈ [0, 1] there
exists a sets of variables P , with |P | = O(1

α), such that ∂F
∂P can be

written as

×

· · ·

≤ αn variables

A Shattering Lemma

Lemma

For any read-once formula F on n variables and α ∈ [0, 1] there
exists a sets of variables P , with |P | = O(1

α), such that ∂F
∂P can be

written as

×

· · ·

≤ αn variables

Shattering Read-k Formulae

;

+

· · ·

≤
|V |
4k2 variables from V

≤ k branches

×

· · ·

×

· · ·

×

· · ·

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡
× ×

;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡

read-(k − 1)

× ×

;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡

︸ ︷︷ ︸

6∈ read-k

× ×
;

∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡

︸ ︷︷ ︸

6∈ read-k

× ×

∈ read-k

;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡

︸ ︷︷ ︸

6∈ read-k

× ×

∈ read-k

∈ read-k1 + read-k2

;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡

︸ ︷︷ ︸

6∈ read-k

× ×

∈ read-k

∈ read-k1 + read-k2

where k1 + k2 ≤ k

;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡

︸ ︷︷ ︸

6∈ read-k

× ×

∈ read-k

∈ read-k1 + read-k2

where k1 + k2 ≤ k

and |V | ≥ Ω
(

n

k

)

;
∂

∂x

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡
× ×

;
∂

∂x

;

+

read-k1 read-k2

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡
× ×

;
∂

∂x

;

+

read-k1 read-k2

;∗

+

· · ·

≤
|V |
4k2 variables from V

≤ k branches

×

· · ·

×

· · ·
read-once

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡
× ×

;
∂

∂x

;

+

read-k1 read-k2

;∗

+

· · ·

≤
|V |
4k2 variables from V

≤ k branches

×

· · ·

×

· · ·

×

· · ·

At most k iterations are required to successfully shatter a read-k
formula.

Shattering Read-k Formulae

×

read-(k − 1)

>
1

2
n variables

+

+

≡
× ×

;
∂

∂x

;

+

read-k1 read-k2

;∗

+

· · ·

≤
|V |
4k2 variables from V

≤ k branches

×

· · ·

×

· · ·

×

· · ·

At most k iterations are required to successfully shatter a read-k
formula.

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V , and can be

written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches

×

· · ·

×

· · ·

×

· · ·

where each small subformula is the partial derivative of some
subformula of F .

Extension: Blackbox

• Our algorithm uses the structure of the formula.

• A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox

• Our algorithm uses the structure of the formula.

• A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox

• Our algorithm uses the structure of the formula.

• A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox

• Our algorithm uses the structure of the formula.

• A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox

• Our algorithm uses the structure of the formula.

• A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox - Outline

• Hitting Set Generators

• SV Generator

• Making our algorithm blackbox

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

F

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

F

G

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

F

G

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

F

G

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.

F

G

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .

Extension: Blackbox - Read-(k + 1) ≤
∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .

×

≤
1

2
n variables

read-k

+
;

∂

∂x

• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �

Extension: Blackbox - Read-(k + 1) ≤
∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .

×

≤
1

2
n variables

read-k

+
;

∂

∂x

• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �

Extension: Blackbox - Read-(k + 1) ≤
∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .

×

≤
1

2
n variables

read-k

+
;

∂

∂x

• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �

Extension: Blackbox - Read-(k + 1) ≤
∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .

×

≤
1

2
n variables

read-k

+
;

∂

∂x

• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �

Extension: Blackbox - Read-(k + 1) ≤
∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .

×

≤
1

2
n variables

read-k

+
;

∂

∂x

• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �

Extension: Blackbox - Read-(k + 1) ≤
∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .

×

≤
1

2
n variables

read-k

+
;

∂

∂x

• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox -
∑2-Read-k ≤ Read-k

Lemma

If G is a HSG for read-k formulae, then G + GkO(k)

SV is a HSG for∑2-read-k formulae.

Proof.

• Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on σ̄.

• Select an appropriate point in the image of G to be σ̄.

• HkO(k) is in the image of GkO(k)

SV .

• σ̄ + HkO(k) is in the image of G + GkO(k)

SV .

• Apply the non-blackbox analysis. �

Extension: Blackbox - The Final HSG

Theorem

GkO(k)+O(k log n)
SV is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.

Extension: Blackbox - The Final HSG

Theorem

GkO(k)+O(k log n)
SV is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.

Extension: Blackbox - The Final HSG

Theorem

GkO(k)+O(k log n)
SV is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.

Extension: Blackbox - The Final HSG

Theorem

GkO(k)+O(k log n)
SV is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.

Extension: Sparse-Substituted

Read-3 depth-4

(and read-2 depth-2 sparse-substituted)

+

× ××

+ + ++

×

x3

x2 x4 x6

x3

x7x1

x5

x1x5x7x1

x2

x8x2x4

×××

• Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

• Encompasses tests for
• Multilinear Constant-Top-Fanin Depth-4 [KMSV10],

• A generalized version of
∑k -Read-Once [SV09].

Extension: Sparse-Substituted

Read-3 depth-4

(and read-2 depth-2 sparse-substituted)

+

× ××

+ + ++

×

x3

x2 x4 x6

x3

x7x1

x5

x1x5x7x1

x2

x8x2x4

×××

• Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

• Encompasses tests for
• Multilinear Constant-Top-Fanin Depth-4 [KMSV10],

• A generalized version of
∑k -Read-Once [SV09].

Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

+

x7x1

××

x2x4x8 + x2

x1x7 + x1x5

x3 + x5 x2x4x6 + x3

×

• Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

• Encompasses tests for
• Multilinear Constant-Top-Fanin Depth-4 [KMSV10],

• A generalized version of
∑k -Read-Once [SV09].

Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

+

x7x1

××

x2x4x8 + x2

x1x7 + x1x5

x3 + x5 x2x4x6 + x3

×

• Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

• Encompasses tests for
• Multilinear Constant-Top-Fanin Depth-4 [KMSV10],

• A generalized version of
∑k -Read-Once [SV09].

Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

+

x7x1

××

x2x4x8 + x2

x1x7 + x1x5

x3 + x5 x2x4x6 + x3

×

• Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

• Encompasses tests for
• Multilinear Constant-Top-Fanin Depth-4 [KMSV10],

• A generalized version of
∑k -Read-Once [SV09].

Summary

Main Theorem

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Extensions:

1. Blackbox: quasi-poly-time.

2. Sparse substituted: quasi-poly-time.

Summary

Main Theorem

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Extensions:

1. Blackbox: quasi-poly-time.

2. Sparse substituted: quasi-poly-time.

Open Questions

• Is there a poly-time blackbox test for multilinear constant-read
formulae?

• Can we drop the multilinearity requirement?

• For these types of formulae can we get
• interesting lower bounds?
• reconstruction algorithms?

• Is AFIT in P?

• Can any randomized algorithm be efficiently derandomized?

Questions?

Thanks!

	Introduction
	Read-(k+1) 2-Read-k
	2-Read-k Read-k
	Conclusion

