Deterministic Polynomial Identity Tests for

Multilinear Bounded-Read Formulae

Matthew Anderson Dieter van Melkebeek
UW - Madison UW - Madison

llya Volkovich

Technion

January 27, 2012

Arithmetic Formula Identity Testing

Problem (AFIT)

Arithmetic Formula Identity Testing

Problem (AFIT)
Input: F € Flay, ..., x,]

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flxy, ..., z,], given as an arithmetic formula.

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flxy, ..., z,], given as an arithmetic formula.

XT1 T T1 T2

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flxy, ..., z,], given as an arithmetic formula.
Question: Is F =07

XT1 T T1 T2

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flxy, ..., z,], given as an arithmetic formula.
Question: Is F =07

- — 22 7=0
NS (:(31 1‘2)(331 + 562) r + x5

XT1 T T1 T2

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flxy, ..., z,], given as an arithmetic formula.
Question: Is F =07

- — 22 7=0
NS (:(31 1‘2)(331 + 562) r + x5

XT1 T T1 T2

X

T X

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flx1,...,x,), given as an arithmetic formula.
Question: Is F =07

- — 22 7=0
L3 b (1 —) (11 + 22) — 2{ + 25

XT1 T T1 T2

1 $12+$1§_£0

T X

An Algorithm for AFIT

Randomized algorithm:
Pick a; €y S C T uniformly, ACCEPT iff P(ay,...,a,) =0.

An Algorithm for AFIT
Randomized algorithm:
Pick a; €y S C F uniformly, ACCEPT iff P(ay,...,a,) =0.
Correctness:
For d := deg(P),
PrS[P(al,...,an) =0|P#0 < 4

;€U ‘ |

An Algorithm for AFIT

Randomized algorithm:
Pick a; €y S C F uniformly, ACCEPT iff P(ay,...,a,) =0.

Correctness:

Schwartz-Zippel Lemma

For d := deg(P),
d
PrS[P(al,...,an)=O\P;7é0] < —

;€U ‘ |

An Algorithm for AFIT

Randomized algorithm:
Pick a; €y S C F uniformly, ACCEPT iff P(ay,...,a,) =0.
Correctness:
Schwartz-Zippel Lemma
For d := deg(P),
d
PrS[P(ala"'aan) :O‘Pio] € —

ey ‘ |

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

e Yes = formula lower bounds.

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

e Yes = formula lower bounds.
e |t is a subroutine in other results:
e primality testing,
o bipartite perfect matching,
e PCP theorem,
[]

Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

e Yes = formula lower bounds.

e |t is a subroutine in other results:
primality testing,

bipartite perfect matching,
PCP theorem,

e It is a next natural candidate problem to derandomize.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT € NSUBEXP, then either

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT € NSUBEXP, then either

NEXP does not have poly-size Boolean circuits, or

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT € NSUBEXP, then either

NEXP does not have poly-size Boolean circuits, or

Perm does not have poly-size arithmetic formulae.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT € NSUBEXP, then either

NEXP does not have poly-size Boolean circuits, or

Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies
a subexponential-time identity test for arithmetic formula.

Connections with Lower Bounds

Theorem (Kabanets-Impagliazzo)

If AFIT € NSUBEXP, then either

NEXP does not have poly-size Boolean circuits, or

Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies
a subexponential-time identity test for arithmetic formula.

Connections with Lower Bounds
Theorem (Kabanets-Impagliazzo)

If AFIT € NSUBEXP, then either

NEXP does not have poly-size Boolean circuits, or

Perm does not have poly-size arithmetic formulae.

Theorem (Agrawal-Vinay)

A polynomial-time identity test for depth-4 formula implies
a subexponential-time identity test for arithmetic formula.

Ny =

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

¢ Depth-2 [several]

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:
¢ Depth-2 [several]
o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:
¢ Depth-2 [several]
o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]
e Multilinear Constant-Top-Fanin Depth-4 [KMSV10,5V11]

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:
¢ Depth-2 [several]
o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]
e Multilinear Constant-Top-Fanin Depth-4 [KMSV10,5V11]

Deterministic algorithms for bounded-read formulae:

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:
¢ Depth-2 [several]
o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]
o Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]
Deterministic algorithms for bounded-read formulae:
¢ Read-Once

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:
¢ Depth-2 [several]
o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]
o Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]
Deterministic algorithms for bounded-read formulae:
¢ Read-Once
 S"*_Read-Once [SV08,5V09)

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

¢ Depth-2 [several]

o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]

o Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]
Deterministic algorithms for bounded-read formulae:

¢ Read-Once

 S"*_Read-Once [SV08,5V09)

e Multilinear Read-£ [we]

Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

¢ Depth-2 [several]

o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]

o Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]
Deterministic algorithms for bounded-read formulae:

¢ Read-Once

 S"*_Read-Once [SV08,5V09)

e Multilinear Read-£ [we]

There is a sOW . nk°Y time deterministic identity test for size-s

n-variable multilinear read-k formulae.

Outline

0(1) . pk?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Outline

Weakened Main Theorem

0(1) . pk?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

Outline

Weakened Main Theorem

0(1) . pk?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

Outline

Weakened Main Theorem

0(1) . pk?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-k.

Weakened Main Theorem

0(1) . pk?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-k.

Combine and iterate the reductions. m

Weakened Main Theorem

0(1) . pk?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-k.

Combine and iterate the reductions. m

Fragmenting Read-1 Formulae

T X2 Ty Ts5 T T X9 Z10 T12 x13

Fragmenting Read-1 Formulae

T X2 Ty Ts5 T X7 X9 Z10 X112 x13
Median

Fragmenting Read-1 Formulae

T) Ty Ts Tg XT7
Median

Fragmenting Read-1 Formulae

T) Ty Ts Tg XT7
Median

Fragmenting Read-1 Formulae

T1 X2 Te X7
Median

Fragmenting Read-1 Formulae

1A T2 Te 1
Median

A Fragmentation Lemma

Lemma

Let F' be a nonzero read-once formula.

A Fragmentation Lemma

Lemma

Let F' be a nonzero read-once formula.

A Fragmentation Lemma

Lemma

Let F' be a nonzero read-once formula.

5

dz

A Fragmentation Lemma

Lemma

Let F' be a nonzero read-once formula.

5

ox

A Fragmentation Lemma

Lemma

Let F' be a nonzero read-once formula.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

I To T T3

Pick largest child which contains k + 1 occurrences of some variable.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

I To T T3

Pick largest child which contains k + 1 occurrences of some variable.

“largest” = most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

I To T T3

Pick largest child which contains k + 1 occurrences of some variable.

“largest” = most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

I To T T3

Pick largest child which contains k + 1 occurrences of some variable.

“largest” = most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

I To T T3

Pick largest child which contains k + 1 occurrences of some variable.

“largest” = most variables.

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

1 L2 1 T3
Pick largest child which contains k + 1 occurrences of some variable.

“largest” = most variables.

The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.

The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.

The First Reduction

Read-(k + 1) < S %-Read-k

The First Reduction

Read-(k + 1) < > ?-Read-k
While F' has variables:

The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:

e Select z which fragments F'.

The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:

e Select z which fragments F'.

A

< %n variable:

read-k

The First Reduction

Read-(k + 1) < > ?-Read-k
While F' has variables:

e Select z which fragments F'.

o Test the factors of 0, F recursively.

et
< gn variable

The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
o Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.

A

< %n variable:

read-k

The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
o Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.
e Set F' = F|;—p.

A

< %n variable:

read-k

The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
e Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.
e Set F' = F|;—p.
ACCEPT iff F = 0.

A

< %n variable:

read-k

The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
e Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.
e Set F' = F|;—p.
ACCEPT iff F = 0.

A

< %n variable:
read-k

Makes n90°€") calls to the Zz—read—k identity test.

Outline

Weakened Main Theorem

0(1) . p,k?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-k.

Outline

Weakened Main Theorem

0(1) . p,k?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 22—read—k.

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-k.

Outline

Weakened Main Theorem

0(1) . p,k?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 22—read—k.

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-k.

Outline

Weakened Main Theorem

0(1) . p,k?®+0(klogn)

There is a s time deterministic identity test
for size-s m-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

2. Shattering
Reduces multilinear Zz—read—k to multilinear read-k.

Testing ’_read-k < Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings H,, with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d > w.

Testing ’_read-k < Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings H,, with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d > w.

Let F' = I + F5 be a nonzero multilinear ZQ—read-k formula.

Testing ’_read-k < Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings H,, with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d > w.

Let F' = I + F5 be a nonzero multilinear ZQ—read-k formula.

o Let F consist of F'(Z 4+ &) and all its zero-substitutions.

Testing ’_read-k < Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings H,, with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d > w.

Let F' = I + F5 be a nonzero multilinear ZQ—read-k formula.
o Let F consist of F'(Z 4+ &) and all its zero-substitutions.

e Some simple conditions on & give property 2 for F.

Testing ’_read-k < Testing read-k

Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings H,, with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d > w.

Let F' = I + F5 be a nonzero multilinear ZQ—read-k formula.
o Let F consist of F'(Z 4+ &) and all its zero-substitutions.
e Some simple conditions on & give property 2 for F.
e For such a &, Hy, + & hits F.

A Structural Witness Lemma

Let F =", F; be a multilinear formula on n-variables,

A Structural Witness Lemma

Let F' = Z:n=1 F; be a multilinear formula on n-variables, where

1. no variable divides any Fj;,

A Structural Witness Lemma

Let F' = Z:n=1 F; be a multilinear formula on n-variables, where

1. no variable divides any Fj;,

2. the factors of each F; depend on at most -5 variables:

A Structural Witness Lemma

Let F' = Z;’;l F; be a multilinear formula on n-variables, where

1. no variable divides any F;,

2. the factors of each F; depend on at most -5 variables:

variables

A Structural Witness Lemma

Let F' = Z;’;l F; be a multilinear formula on n-variables, where

1. no variable divides any F;,

2. the factors of each F; depend on at most -5 variables:

s variables

then F does not compute a monomial of degree n.

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear 22—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 55

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear 22—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 5

such that g—g depends on at least the variables in 'V,

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear 22—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 5

such that g—g depends on at least the variables in V', and can be
written as

(PH+— < 2k branches

=< % variables from V'

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear Zz—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 5

such that g—g depends on at least the variables in V', and can be
written as

(PH+— < 2k branches

=< % variables from V'

where each small subformula is the partial derivative of some
subformula of F'.

Theorem (Correctness)

F(z + o) is not a monomial.

Theorem (Correctness)

F(z + o) is not a monomial.

Theorem (Correctness)

F(z + o) is not a monomial.

Suppose F(Z + &) is a monomial M, of degree n.

Theorem (Correctness)

F(z + o) is not a monomial.

Suppose F(Z + &) is a monomial M, of degree n.

= =M,
F Fy

Theorem (Correctness)

F(z + o) is not a monomial.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,)
Fy F,

Theorem (Correctness)

F(z + o) is not a monomial.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(=M,), 3PV
F Fy

Theorem (Correctness)

F(z + o) is not a monomial.

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(=M,), 3PV
F Fy

Theorem (Correctness)

F(z + o) is not a monomial.

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), AP,V
F Fy

Theorem (Correctness)

F(z + o) is not a monomial.

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), AP,V
F Fy

Theorem (Correctness)

F(Z + &) is not a monomial of degree n > k9%,

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), 3P,V
B Fy

= My, |V| > & > 1

Theorem (Correctness)

F(Z + &) is not a monomial of degree n > kO").

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), 3P,V
B Fy

= My, |V| > & > 1

Theorem (Correctness)

F(Z + &) is not a monomial of degree n > kO").

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), 3P,V
B Fy

= My, |V| > & > 1

Theorem (Correctness)

F(Z + &) is not a monomial of degree n > kO").

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), 3P,V
B Fy

= My, |V| > & > 1

Unshifted:
= A|z<—am =0

Theorem (Correctness)

F(Z + &) is not a monomial of degree n > kO").

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), 3P,V
B Fy

Unshifted: Pick & to be a common nonzero of
= Als—o, = 0]9's to order | P| of the subformulae of F'.

Theorem (Correctness)

F(Z + &) is not a monomial of degree n > kO").

Proof.

Suppose F(Z + &) is a monomial M, of degree n.

= Shatter(= M,), 3P,V
B Fy

Unshifted: Pick & to be a common nonzero of
= Als—o, = 0]9's to order | P| of the subformulae of F'.

Theorem (Efficiency)

0 Is easy to compute.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

Theorem (Efficiency)

0 Is easy to compute.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.

Theorem (Efficiency)

0 Is easy to compute.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.
o There are O(kn!PI*1) such formulae.

Theorem (Efficiency)

0 Is easy to compute.

Proof.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.
o There are O(kn!PI*1) such formulae.

Determine & using trial substitution and read-% identity test.]

Theorem (Efficiency)

0 Is easy to compute.

Proof.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.
o There are O(kn!PI*1) such formulae.

Determine & using trial substitution and read-% identity test.]

Overall reduction:

Theorem (Efficiency)

0 Is easy to compute.

Proof.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.
o There are O(kn!PI*1) such formulae.

Determine & using trial substitution and read-% identity test.]

Overall reduction:

o Makes nP¥(¥) calls to the read-k identity test.

Theorem (Efficiency)

0 Is easy to compute.

Proof.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.
o There are O(kn!PI*1) such formulae.

Determine & using trial substitution and read-k identity test.]

Overall reduction:

o Makes nP¥(¥) calls to the read-k identity test.

| O(k)

e Does n work evaluating the formula on H,, + &.

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3"*-read-.

T(k+1) = n'8" Ty(k)

2. Shattering
Reduces multilinear Zz—read—k to multilinear read-%.

To(k) = nPYE) (k) + k"

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 22—read—k.

T(k+1) = n'8" Ty(k)

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-%.

To(k) = nPYE) (k) + k"

Weakened Main Theorem

0(1) . ,k?®+0(klogn)

There is a s time deterministic identity test
for n-variable size-s multilinear read-k formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 22—read—k.

T(k+1) = n'8" Ty(k)

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-%.

To(k) = nPYE) (k) + k"

Weakened Main Theorem

0(1) . k%M +0(klogn)

There is a s time deterministic identity test
for n-variable size-s multilinear read-k formulae.

Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 22—read—k.

T(k+1) = n'8" Ty(k)

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-%.

To(k) = nPYE) (k) + k"

There is a sOW . nk°Y time deterministic identity test for

n-variable size-s multilinear read-k formulae.

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear ZQ—read—k.

T(k+1) = n'8" Ty(k)

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-%.

To(k) = nPYE) (k) + k"

There is a sOW . nk°Y time deterministic identity test for

n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear ZQ—read—k.

T(k+1) = n'8" Ty(k)

2. Shattering
Reduces multilinear ZZ—read—k to multilinear read-%.

To(k) = nPYE) (k) + k"

There is a sOW . nk°Y time deterministic identity test for

n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Shattering Read-once Formulae

A\
i
i

< an variables

Shattering Read-once Formulae

A\

Shattering Read-once Formulae

< =n variables

1
2

Shattering Read-once Formulae

Shattering Read-once Formulae

Khn

—< n variables

Shattering Read-once Formulae

o~
P

~< 1n variables

Shattering Read-once Formulae

Mg

0

\

< an variables ~< 1n variables

A Shattering Lemma

Lemma

For any read-once formula F' on n variables and « € [0, 1] there
exists a sets of variables P, with |P| = O(2), such that g—g can be
written as

A Shattering Lemma

Lemma

For any read-once formula F' on n variables and « € [0, 1] there
exists a sets of variables P, with |P| = O(2), such that g—g can be
written as

< an variables

Shattering Read-£ Formulae

(Hx— < k branches

™~ < % variables from V.

Shattering Read-£ Formulae

A\

Shattering Read-£ Formulae

> 1n variables

Shattering Read-£ Formulae

> 1n variables
~
N> —
2
oz
(k—1)

~ 7
read-(k

Shattering Read-£ Formulae

;;? > nvarlables fj;

‘\/'
(k —

read- read

Shattering Read-£ Formulae

;;? > nvarlables fj;

‘\/'
(k —

read-

read k

Shattering Read-£ Formulae

;;? > nvarlables fi:

‘\/'
(k —

read-

read k
6 read-k

Shattering Read-£ Formulae

?;? > nvarlables fi:

read— k— ¢ read k
€ read-k
€ read-k1 + read-ko

Shattering Read-£ Formulae

?;? > nvarlables fi:

read— k— ¢ read k
€ read-k

€ read-k1 + read-ko

where k1 + ks < k

Shattering Read-£ Formulae

?;? > nvarlables fi:

read-(k —

o4 read k
€ read-k

€ read-k1 + read-ko

where k1 + ks < k
and [V| > Q (%)

Shattering Read-£ Formulae

> 1n variables
/
/\/} —
3
oz
_ 1) i

£ A

read-(k
read-k1 read-ko

Shattering Read-£ Formulae

> 1n variables

~
N> p—
K
oz
~ 7
read-(k — 1) i

<— < k branches

read-once ~ v -
< iz variables from V. read-k; read-ko

Shattering Read-£ Formulae

> 1n variables

—
N> —

N< % variables from V read-k; read-ko

Shattering Read-£ Formulae

> 1n variables

-~

¢
I

N< % variables from V read-k; read-ko

At most k iterations are required to successfully shatter a read-%
formula.

The Shattering Lemma

Shattering Lemma

For any nonzero multilinear Zz—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 5

such that g—g depends on at least the variables in V', and can be
written as

(PH=+— < 2k branches

=< % variables from V'

where each small subformula is the partial derivative of some
subformula of F'.

Extension: Blackbox

e Our algorithm uses the structure of the formula.

Extension: Blackbox

e Our algorithm uses the structure of the formula.

e A blackbox algorithm may only evaluate the formula.

Extension: Blackbox

e Our algorithm uses the structure of the formula.

e A blackbox algorithm may only evaluate the formula.

Extension: Blackbox

e Our algorithm uses the structure of the formula.

e A blackbox algorithm may only evaluate the formula.

Extension: Blackbox

e Our algorithm uses the structure of the formula.

e A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.

Extension: Blackbox - Outline

e Hitting Set Generators
e SV Generator
e Making our algorithm blackbox

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,

G:Fm%Fn, G:(Gl,...,Gn), G,-EIF[yl,...,ym]

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _)Fn7 G = (le"'7Gn)a G’L EIF[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _)Fn7 G = (le"'7Gn)a Gl EIF[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests:

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _)]Fn7 G = (le"'an)a Gl E]F[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests: ,k\

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _)]Fn7 G = (le"'an)a Gl E]F[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests: ,k\

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _)]Fn7 G = (le"'an)a Gl E]F[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests: ,k\
e Apply the Schwartz-Zippel Lemma to F o G. A AN

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _>]Fn7 G = (le"'an)a Gl E]F[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests: ,k\
e Apply the Schwartz-Zippel Lemma to F o G. ':' F \\
o The test queries O((dp - dg)™) inputs. o it et il

Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _>]Fn7 G = (le"'an)a Gl E]F[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests: ,k\
e Apply the Schwartz-Zippel Lemma to F o G. ':' F \\
o The test queries O((dp - dg)™) inputs. o it et il

Efficient HSGs: low degree dg and seed length m. w

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.
e Ggy has degree n + 1 and seed length 2.

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.
e Gy has degree n + 1 and seed length 2.
o Let G¢&,, be the sum of w copies of Gigyy over new variables.

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.
e Gy has degree n + 1 and seed length 2.
o Let G¢&,, be the sum of w copies of Gigyy over new variables.

e H, is in the image of G, .

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.
e Gy has degree n + 1 and seed length 2.
o Let G¢&,, be the sum of w copies of Gigyy over new variables.

e H, is in the image of G, .

Lemma

If G is a HSG for O, F, then G + Ggy is a HSG for F'.

Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.
e Gy has degree n + 1 and seed length 2.
o Let G¢&,, be the sum of w copies of Gigyy over new variables.

e H, is in the image of G, .

Lemma

If G is a HSG for O, F, then G + Ggy is a HSG for F'.

If G is a HSG for F, then G is a HSG for products over F.

Extension: Blackbox - Read-(k + 1

Lemma

If G is a HSG for Y"?-read-k formulae, then G + G$E™ is a HSG
read-(k + 1) formulae.

Extension: Blackbox - Read-(k + 1) <

Lemma

If G is a HSG for Y"?-read-k formulae, then G + Gg3™ is a HSG
read-(k + 1) formulae.

By induction on n.

Extension: Blackbox - Read-(k + 1) <

Lemma

If G is a HSG for Y"?-read-k formulae, then G + Gg3™ is a HSG
read-(k + 1) formulae.

By induction on n.

e Suppose z fragments F'.

Extension: Blackbox - Read-(k + 1) <

Lemma

If G is a HSG for Y"?-read-k formulae, then G + Gg3™ is a HSG
read-(k + 1) formulae.

Proof.
By induction on n.

e Suppose z fragments F'.

< in variable

read-k

Extension: Blackbox - Read-(k + 1) <

Lemma

If G is a HSG for Y"?-read-k formulae, then G + Gg3™ is a HSG
read-(k + 1) formulae.

Proof.
By induction on n.

e Suppose z fragments F'.

< in variable

read-k

e By IH, G+ GJF™ " is a HSG for 0, F.

Extension: Blackbox - Read-(k +1) <

Lemma

If G is a HSG for Y"?-read-k formulae, then G + Gg3™ is a HSG
read-(k + 1) formulae.

Proof.
By induction on n.

e Suppose z fragments F'.

//
< =n variable:

17
2

read-k

o By IH, G+ GY%™ ' is a HSG for 0, F.
o Therefore, G + Gbg" is a HSG for F. m

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gg‘o,(k) is a HSG for
S %-read-k formulae.

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gg‘o,(k) is a HSG for
S %-read-k formulae.

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gg‘o,(k) is a HSG for
S %-read-k formulae.

e Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on &.

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gg‘o,(k) is a HSG for
S %-read-k formulae.

e Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on &.

e Select an appropriate point in the image of G to be 7.

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gko(k) is a HSG for
S %-read-k formulae.

e Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on &.

e Select an appropriate point in the image of G to be 7.
e Hiow is in the image of Gko(k).

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gko(k) is a HSG for
S %-read-k formulae.

e Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on &.

e Select an appropriate point in the image of G to be 7.

O(k
e Hiow is in the image of Gk *

® 0 + Hpow is in the image of G + Gko(lﬂ_

Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gko(k) is a HSG for
S %-read-k formulae.

e Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on &.

Select an appropriate point in the image of G to be &.

O(k
e Hiow is in the image of Gk *

® 0 + Hpow is in the image of G + Gko(lﬂ_

Apply the non-blackbox analysis.]

Extension: Blackbox - The Final HSG

Theorem

Glg‘o,(mro(klog ") s a HSG for multilinear read-k formula.

Extension: Blackbox - The Final HSG

Theorem
Gk0<k>+0(klog n)
SV

is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Extension: Blackbox - The Final HSG

Glbf‘o/(k)JrO(klog ") s a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Extension: Blackbox - The Final HSG

Cv’lbf‘o/(k)JrO(klog ") s a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.

Extension: Sparse-Substituted

Read-3 depth-4

Ty Ty Tg T1 Ty Ty Xy Ty T4 T

Extension: Sparse-Substituted

Read-3 depth-4

Ty Ty Tg Ty Ty X5 Xy Ty T4 T

Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

ToZyTg + X T1 X3+ T35 Ty XToTgTe + T3
1Ty +.’L’1£L'5

Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

ToZyTg + X T1 X3+ T35 Ty XToTgTe + T3
1Ty +.’L‘1(L’5

e Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

ToZyTg + X T1 X3+ T35 Ty XToTgTe + T3
1Ty +.’L‘1(L’5

e Our tests extend to this model at quasi-polynomial cost.
Idea: Fragment sparse polys by also using substitutions.

e Encompasses tests for
o Multilinear Constant-Top-Fanin Depth-4 [KMSV10],
o A generalized version of 3"-Read-Once [SV09].

Summary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Summary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Extensions:
1. Blackbox: quasi-poly-time.
2. Sparse substituted: quasi-poly-time.

Open Questions

Is there a poly-time blackbox test for multilinear constant-read
formulae?

Can we drop the multilinearity requirement?

For these types of formulae can we get

e interesting lower bounds?
e reconstruction algorithms?

Is AFIT in P?

e Can any randomized algorithm be efficiently derandomized?

Thanks!

	Introduction
	Read-(k+1) 2-Read-k
	2-Read-k Read-k
	Conclusion

