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Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn ], given as an arithmetic formula.
Question: Is F ≡ 0?
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An Algorithm for AFIT
Randomized algorithm:

Pick ai ∈U S ⊆ F uniformly, ACCEPT iff P(a1, . . . , an) = 0.

Correctness:

Schwartz-Zippel Lemma

For d := deg(P),

Pr
ai∈US

[P(a1, . . . , an) = 0 | P 6≡ 0] ≤ d
|S |

.

Proof.

P (x)
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Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

• Yes ⇒ formula lower bounds.

• It is a subroutine in other results:
• primality testing,
• bipartite perfect matching,
• PCP theorem,
• ...

• It is a next natural candidate problem to derandomize.
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Deterministic Algorithms for AFIT

Deterministic algorithms for bounded-depth formulae:

• Depth-2 [several]

• Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

• Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

• Read-Once

•
∑k -Read-Once [SV08,SV09]

• Multilinear Read-k [we]

Main Theorem

There is a sO(1) · nkO(k)
time deterministic identity test for size-s

n-variable multilinear read-k formulae.
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Weakened Main Theorem

There is a sO(1) · nkO(k)+O(k log n) time deterministic identity test
for size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �
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The First Reduction

Read-(k + 1) ≤
∑2-Read-k

While F has variables:

• Select x which fragments F .

• Test the factors of ∂xF recursively.

• If all factors of ∂xF are nonzero, REJECT.

• Set F = F |x←0.

ACCEPT iff F = 0.

×

≤
1

2
n variables

read-k

+
;

∂

∂x

Makes nO(log n) calls to the
∑2-read-k identity test.
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• Some simple conditions on σ̄ give property 2 for F .
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Let F =
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i=1 Fi be a multilinear formula on n-variables,

where
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2. the factors of each Fi depend on at most n
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m
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then F does not compute a monomial of degree n.
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Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V , and can be

written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches
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· · ·

where each small subformula is the partial derivative of some
subformula of F .
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Theorem (Correctness)

F (x̄ + σ̄) is not a monomial.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡ Mn−|P |⇒
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Pick σ̄ to be a common nonzero of
∂’s to order |P | of the subformulae of F .
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Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Theorem (Efficiency)

σ̄ is easy to compute.

Proof.

Pick σ̄ to be a common nonzero of partial derivatives of order up
to |P | of all subformulae of F .

• Each such formula is read-k , since F is
∑2-read-k .

• There are O(kn |P |+1) such formulae.

Determine σ̄ using trial substitution and read-k identity test. �

Overall reduction:

• Makes npoly(k) calls to the read-k identity test.

• Does nkO(k)
work evaluating the formula on Hw + σ̄.



Main Theorem

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

T (k + 1) = n log nT2(k)

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

T2(k) = npoly(k)T (k) + nkO(k)

Corollary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.
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The Shattering Lemma

Shattering Lemma

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist sets of variables

• P , with |P | = poly(k), and

• V , with |V | = n
kO(k)

such that ∂F
∂P depends on at least the variables in V , and can be

written as

+

· · · ≤
|V |
4k2 variables from V

≤ 2k branches

×

· · ·

×

· · ·

×

· · ·

where each small subformula is the partial derivative of some
subformula of F .



Extension: Blackbox

• Our algorithm uses the structure of the formula.

• A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)
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a blackbox subexp-time identity test for arithmetic formula.
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Extension: Blackbox - Outline

• Hitting Set Generators

• SV Generator

• Making our algorithm blackbox



Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G ,

G : Fm → Fn , G = (G1, . . . ,Gn), Gi ∈ F[y1, . . . , ym ]

is a hitting set generator (HSG) for a set of formulae F , if

∀F ∈ F , F ◦G 6≡ 0 iff F 6≡ 0.

HSGs induce blackbox identity tests:

• Apply the Schwartz-Zippel Lemma to F ◦G .

• The test queries O((dF · dG)m) inputs.

Efficient HSGs: low degree dG and seed length m.
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Extension: Blackbox - SV Generator

We will use the generator GSV from [SV09]:

• H1 is in the image of GSV .

• GSV has degree n + 1 and seed length 2.

• Let Gw
SV be the sum of w copies of GSV over new variables.

• Hw is in the image of Gw
SV .

Lemma

If G is a HSG for ∂xF , then G + GSV is a HSG for F .

Fact

If G is a HSG for F , then G is a HSG for products over F .
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∑2-Read-k

Lemma

If G is a HSG for
∑2-read-k formulae, then G + G log n

SV is a HSG
read-(k + 1) formulae.

Proof.

By induction on n.

• Suppose x fragments F .
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• By IH, G + G(log n)−1
SV is a HSG for ∂xF .

• Therefore, G + G log n
SV is a HSG for F . �
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Extension: Blackbox - The Final HSG

Theorem

GkO(k)+O(k log n)
SV is a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.
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Extension: Sparse-Substituted

Read-3 depth-4

(and read-2 depth-2 sparse-substituted)
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• Our tests extend to this model at quasi-polynomial cost.

Idea: Fragment sparse polys by also using substitutions.

• Encompasses tests for
• Multilinear Constant-Top-Fanin Depth-4 [KMSV10],

• A generalized version of
∑k -Read-Once [SV09].
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Open Questions

• Is there a poly-time blackbox test for multilinear constant-read
formulae?

• Can we drop the multilinearity requirement?

• For these types of formulae can we get
• interesting lower bounds?
• reconstruction algorithms?

• Is AFIT in P?

• Can any randomized algorithm be efficiently derandomized?



Questions?

Thanks!
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