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Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F € Flx1,...,x,), given as an arithmetic formula.
Question: Is F =07
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Correctness:
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Is Randomness Essential?

Open Problem

Is there an efficient deterministic identity test?

Motivation:

e Yes = formula lower bounds.

e |t is a subroutine in other results:
primality testing,

bipartite perfect matching,
PCP theorem,

e It is a next natural candidate problem to derandomize.
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¢ Depth-2 [several]

o Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]

o Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]
Deterministic algorithms for bounded-read formulae:

¢ Read-Once

 S"*_Read-Once [SV08,5V09)

e Multilinear Read-£ [we]

There is a sOW . nk°Y time deterministic identity test for size-s

n-variable multilinear read-k formulae.
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Fragmenting Read-(k + 1) Formulae

A read-2 formula:

1 L2 1 T3
Pick largest child which contains k + 1 occurrences of some variable.

“largest” = most variables.



The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.




The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.



The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.



The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.




The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.




The Fragmentation Lemma

Fragmentation Lemma

Let F' be a nonzero read-(k + 1) formula.




The First Reduction

Read-(k + 1) < S %-Read-k




The First Reduction

Read-(k + 1) < > ?-Read-k
While F' has variables:



The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:

e Select z which fragments F'.



The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:

e Select z which fragments F'.

A

< %n variable:

read-k



The First Reduction

Read-(k + 1) < > ?-Read-k
While F' has variables:

e Select z which fragments F'.

o Test the factors of 0, F recursively.

et
< gn variable




The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
o Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.

A

< %n variable:

read-k




The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
o Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.
e Set F' = F|;—p.

A

< %n variable:

read-k




The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
e Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.
e Set F' = F|;—p.
ACCEPT iff F = 0.

A

< %n variable:

read-k




The First Reduction

Read-(k + 1) < > ?-Read-k

While F' has variables:
e Select z which fragments F'.
e Test the factors of 0, F recursively.
o If all factors of 0, F are nonzero, REJECT.
e Set F' = F|;—p.
ACCEPT iff F = 0.

A

< %n variable:
read-k

Makes n90°€") calls to the Zz—read—k identity test.
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Fact (SV Hitting Set, implicit in [SV09])

The set of binary strings H,, with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d > w.

Let F' = I + F5 be a nonzero multilinear ZQ—read-k formula.
o Let F consist of F'(Z 4+ &) and all its zero-substitutions.
e Some simple conditions on & give property 2 for F.
e For such a &, Hy, + & hits F.
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Let F' = Z;’;l F; be a multilinear formula on n-variables, where

1. no variable divides any F;,

2. the factors of each F; depend on at most -5 variables:

s variables

then F does not compute a monomial of degree n.
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Shattering Lemma

For any nonzero multilinear Zz—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 5

such that g—g depends on at least the variables in V', and can be
written as

(PH+— < 2k branches

=< % variables from V'

where each small subformula is the partial derivative of some
subformula of F'.
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Theorem (Efficiency)

0 Is easy to compute.

Proof.

Pick & to be a common nonzero of partial derivatives of order up
to |P| of all subformulae of F'.

o Each such formula is read-k, since F is 3.*-read-k.
o There are O(kn!PI*1) such formulae.

Determine & using trial substitution and read-k identity test. ]

Overall reduction:

o Makes nP¥(¥) calls to the read-k identity test.

| O(k)

e Does n work evaluating the formula on H,, + &.
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> 1n variables
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N< % variables from V read-k;  read-ko

At most k iterations are required to successfully shatter a read-%
formula.



The Shattering Lemma

Shattering Lemma

For any nonzero multilinear Zz—read—k formula F' on n variables,
there exist sets of variables

e P, with |P| = poly(k), and
o V., with |V] = 5

such that g—g depends on at least the variables in V', and can be
written as

(PH=+— < 2k branches

=< % variables from V'

where each small subformula is the partial derivative of some
subformula of F'.
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Extension: Blackbox

e Our algorithm uses the structure of the formula.

e A blackbox algorithm may only evaluate the formula.

Theorem (Agrawal-Vinay)

A blackbox poly-time identity test for depth-4 formula implies
a blackbox subexp-time identity test for arithmetic formula.




Extension: Blackbox - Outline

e Hitting Set Generators
e SV Generator
e Making our algorithm blackbox
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Extension: Blackbox - Hitting Set Generators

Definition (Hitting Set Generator)

A polynomial map G,
G:F™ _>]Fn7 G = (le"'an)a Gl E]F[yla--"ym]
is a hitting set generator (HSG) for a set of formulae F, if

VFeF, FoG#O0iff F#0.

HSGs induce blackbox identity tests: ,k\
e Apply the Schwartz-Zippel Lemma to F o G. ':' F \\
o The test queries O((dp - dg)™) inputs. o it et il

Efficient HSGs: low degree dg and seed length m. w
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Extension: Blackbox - SV Generator

We will use the generator Ggy from [SV09]:

e Hj is in the image of Ggy.
e Gy has degree n + 1 and seed length 2.
o Let G¢&,, be the sum of w copies of Gigyy over new variables.

e H, is in the image of G, .

Lemma

If G is a HSG for O, F, then G + Ggy is a HSG for F'.

If G is a HSG for F, then G is a HSG for products over F.




Extension: Blackbox - Read-(k + 1

Lemma

If G is a HSG for Y"?-read-k formulae, then G + G$E™ is a HSG
read-(k + 1) formulae.
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Extension: Blackbox - Read-(k +1) <

Lemma

If G is a HSG for Y"?-read-k formulae, then G + Gg3™ is a HSG
read-(k + 1) formulae.

Proof.
By induction on n.

e Suppose z fragments F'.

//
< =n variable:

17
2

read-k

o By IH, G+ GY%™ ' is a HSG for 0, F.
o Therefore, G + Gbg" is a HSG for F. m
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Extension: Blackbox - S"%-Read-k < Read-k

Lemma

If G is a HSG for read-k formulae, then G + Gko(k) is a HSG for
S %-read-k formulae.

e Since G is a HSG for read-k formulae, G is a HSG for all the
formulae in the condition on &.

Select an appropriate point in the image of G to be &.

O(k
e Hiow is in the image of Gk *

® 0 + Hpow is in the image of G + Gko(lﬂ_

Apply the non-blackbox analysis. ]
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Extension: Blackbox - The Final HSG

Cv’lbf‘o/(k)JrO(klog ") s a HSG for multilinear read-k formula.

Corollary

There is a quasi-polynomial-time blackbox identity test for
multilinear constant-read formulae.

Corollary

There is a polynomial-time blackbox identity test for multilinear
constant-read constant-depth formulae.

Idea: Analyze the depth parameter in the Fragmentation Lemma.
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Extension: Sparse-Substituted

Read-3 depth-4 (and read-2 depth-2 sparse-substituted)

ToZyTg + X T1 X3+ T35 Ty XToTgTe + T3
1Ty +.’L‘1(L’5

e Our tests extend to this model at quasi-polynomial cost.
Idea: Fragment sparse polys by also using substitutions.

e Encompasses tests for
o Multilinear Constant-Top-Fanin Depth-4 [KMSV10],
o A generalized version of 3"-Read-Once [SV09].
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Summary

There is a polynomial-time deterministic identity test for
multilinear constant-read formulae.

Extensions:
1. Blackbox: quasi-poly-time.
2. Sparse substituted: quasi-poly-time.




Open Questions

Is there a poly-time blackbox test for multilinear constant-read
formulae?

Can we drop the multilinearity requirement?

For these types of formulae can we get

e interesting lower bounds?
e reconstruction algorithms?

Is AFIT in P?

e Can any randomized algorithm be efficiently derandomized?



Thanks!
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