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Motivation: primality testing, circuit lower bounds, ...
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o Correctness: Pryc,s[P(a1,..., a,) = 0[P # 0] < I%‘\
Deterministic algorithms for bounded-depth formulae:

@ Depth-2 [several]

e Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,5511]

e Multilinear Constant-Top-Fanin Depth-4 [KMSV10,5V11]
Deterministic algorithms for bounded-read formulae:

@ Read-Once

o > ¥-Read-Once [SV08,5V09]

e Multilinear Read-k [we]
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@ Let F' = Fy + F5 be a nonzero multilinear ZQ—read—k formula.
@ Let F consist of F(Z + &) and all its zero-substitutions.

@ Some simple conditions on & give property 2 for F.

@ For such a ¢, H, + & hits F.
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Lemma (Shattering Lemma)

For any nonzero multilinear ZQ—read—k formula F' on n variables,
there exist disjoint sets of variables P and V', with |P| = poly(k)
and | V| = .5 such that g—f; is nonzero and can be written as

D < 2k branches
Q) 14

/g % variables in V/
oo A

where each small subformula is the partial derivative of some
subformula of F'.
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1. F(Z + &) is not a monomial of degree n > kO®).
2. 7 Is easy to compute.

Proof.

Suppose F(Z + o) is a monomial M, of degree n.

= n/

= If n’ > 1, by Lemma, some branch is divisible by a variable z;.
= z; = 0 is a root of that branch.

Pick ¢ to be a common nonzero of nonzero partial derivatives of
all subformulae of the F;. Contradiction!

Fis ZQ-read-k, so ¢ can be computed efficiently using a read-k
identity test. ]
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Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear 3" *-read-*k.

2. Shattering
Reduces multilinear ZQ—read—k to multilinear read-%.

Theorem (Main)

There is a sOW) . nk°"Y time deterministic algorithm for identity
testing n-variable size-s multilinear read-k formulae.

| A\

Corollary
There is a polynomial-time deterministic algorithm for identity
testing multilinear constant-read formulae.

A\
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Conclusion

Extensions
1. Blackbox: quasi-poly-time.
o Constant-depth formulae: poly-time.
2. Sparse substituted: quasi-poly-time.
o Encompasses depth-four multilinear formulae [KMSV10], and
pre-processed S "-read-once formulae [SV09].
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Questions?

Thanks!

The full version of our paper may be found on ECCC.
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