
Derandomizing Polynomial Identity Testing for
Multilinear Constant-Read Formulae

Matthew Anderson Dieter van Melkebeek
UW - Madison UW - Madison

Ilya Volkovich
Technion

June 10th , 2011

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn]

, given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.

Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn], given as an arithmetic formula.
Question: Is F ≡ 0?

−1

−1

x1 x1

x1 x1

x2 x2

x2 x2

×

+ +

× ×

+

(x1 − x2)(x1 + x2)− x 2
1 + x 2

2 ≡ 0

Motivation: primality testing, circuit lower bounds, ...

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0

Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d
|S |

Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |

Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once

∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Main)

There is a sO(1) · nkO(k)
time deterministic algorithm for identity

testing size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

+

+

+

+

+ ×

××

×

×+

+

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

+

+

+

+

+ ×

××

×

×+

+

Median

Take
∂

∂x7

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-1 Formulae

x3

x4 x5 x7x6

x8

x1 x2 x9 x10

x11

x12 x13

Median

Take
∂

∂x7

+

+

+

×

×× ×+

+

+

+

×

1

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

;
∂

∂x

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

;

×

∂

∂x

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.

;

×

∂

∂x

≤
1

2
n variables

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

Pick largest child which contains k + 1 occurrences of some variable.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Fragmenting Read-(k + 1) Formulae

A read-2 formula:

+

+

×

× ×

x1 x2 x1 x3

x4

x4

1 1

Pick largest child which contains k + 1 occurrences of some variable.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

;
∂

∂x

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

×

;
∂

∂x

≤
1

2
n variables

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

×

×

OR

+

;
∂

∂x

≤
1

2
n variables

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

×

≤
1

2
n variables

×

OR

+

;
∂

∂x

≤
1

2
n variables

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

×

≤
1

2
n variables

>
1

2
n variables

×

OR

+

;
∂

∂x

≤
1

2
n variables

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-(k + 1) formula.

×

≤
1

2
n variables

read-k

>
1

2
n variables

×

OR

+

;
∂

∂x

≤
1

2
n variables

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

≤
1

2
n variables read-k

>
1

2
n variables

OR;
∂

∂x

+
×

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

≤
1

2
n variables read-k

>
1

2
n variables

OR;
∂

∂x

+
×

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

≤
1

2
n variables read-k

>
1

2
n variables

OR;
∂

∂x

+
×

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

≤
1

2
n variables read-k

>
1

2
n variables

OR;
∂

∂x

+
×

×

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

Some simple conditions on σ̄ give property 2 for F .

For such a σ̄, Hw + σ̄ hits F .

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

Some simple conditions on σ̄ give property 2 for F .

For such a σ̄, Hw + σ̄ hits F .

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

Some simple conditions on σ̄ give property 2 for F .

For such a σ̄, Hw + σ̄ hits F .

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

Some simple conditions on σ̄ give property 2 for F .

For such a σ̄, Hw + σ̄ hits F .

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

Some simple conditions on σ̄ give property 2 for F .

For such a σ̄, Hw + σ̄ hits F .

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Structural Witness Lemma

Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

⇒ F does not compute a monomial of degree n.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Structural Witness Lemma

Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

⇒ F does not compute a monomial of degree n.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Structural Witness Lemma

Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

⇒ F does not compute a monomial of degree n.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Structural Witness Lemma

Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

⇒ F does not compute a monomial of degree n.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

A Structural Witness Lemma

Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

⇒ F does not compute a monomial of degree n.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

The Shattering Lemma

Lemma (Shattering Lemma)

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist disjoint sets of variables P and V , with |P | = poly(k)
and |V | = n

kO(k) such that ∂F
∂P is nonzero and can be written as

· · ·

≤ 2k branches

· · ·
≤

|V |
4k2 variables in V

· · · · · ·

× × ×

+

where each small subformula is the partial derivative of some
subformula of F .

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

⇒ If n ′ ≥ 1

, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒

+

F1 F2

⇒ If n ′ ≥ 1

, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡Mn
⇒ Shatter()

+

F1 F2

⇒ If n ′ ≥ 1

, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1

, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1

, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1

, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi . Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi . Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi . Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Theorem

1. F (x̄ + σ̄) is not a monomial of degree n ≥ kO(k).

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

≡⇒

+

· · ·
×

· · ·

×

· · ·

×

· · ·

Mn
′

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi . Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Theorem ()

Corollary

There is a polynomial-time deterministic algorithm for identity
testing multilinear constant-read formulae.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Theorem ()

Corollary

There is a polynomial-time deterministic algorithm for identity
testing multilinear constant-read formulae.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Theorem (Weakened Main)

There is a sO(1) · nkO(k)+O(k log n) time deterministic algorithm for
identity testing n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic algorithm for identity
testing multilinear constant-read formulae.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Theorem (Main)

There is a sO(1) · nkO(k)
time deterministic algorithm for identity

testing n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic algorithm for identity
testing multilinear constant-read formulae.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Theorem (Main)

There is a sO(1) · nkO(k)
time deterministic algorithm for identity

testing n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic algorithm for identity
testing multilinear constant-read formulae.

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Conclusion

Extensions

1. Blackbox: quasi-poly-time.

Constant-depth formulae: poly-time.

2. Sparse substituted: quasi-poly-time.

Encompasses depth-four multilinear formulae [KMSV10], and

pre-processed
∑k -read-once formulae [SV09].

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Conclusion

Extensions

1. Blackbox: quasi-poly-time.

Constant-depth formulae: poly-time.

2. Sparse substituted: quasi-poly-time.

Encompasses depth-four multilinear formulae [KMSV10], and

pre-processed
∑k -read-once formulae [SV09].

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Conclusion

Extensions

1. Blackbox: quasi-poly-time.

Constant-depth formulae: poly-time.

2. Sparse substituted: quasi-poly-time.

Encompasses depth-four multilinear formulae [KMSV10], and

pre-processed
∑k -read-once formulae [SV09].

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Conclusion

Extensions

1. Blackbox: quasi-poly-time.

Constant-depth formulae: poly-time.

2. Sparse substituted: quasi-poly-time.

Encompasses depth-four multilinear formulae [KMSV10], and

pre-processed
∑k -read-once formulae [SV09].

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Conclusion

Extensions

1. Blackbox: quasi-poly-time.

Constant-depth formulae: poly-time.

2. Sparse substituted: quasi-poly-time.

Encompasses depth-four multilinear formulae [KMSV10], and

pre-processed
∑k -read-once formulae [SV09].

Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Questions?

Thanks!

The full version of our paper may be found on ECCC.

	Introduction
	Read-(k+1) 2-Read-k
	2-Read-k Read-k
	Conclusion

