Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae

Matthew Anderson Dieter van Melkebeek

UW - Madison

UW - Madison

Ilya Volkovich

Technion

June 10th, 2011

Problem (AFIT)

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1, ..., x_n]$

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1,...,x_n]$, given as an arithmetic formula.

Problem (AFIT)

Introduction

Input: $F \in \mathbb{F}[x_1,...,x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?

Problem (AFIT)

Introduction

Input: $F \in \mathbb{F}[x_1, ..., x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1,...,x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?

Problem (AFIT)

Introduction

Input: $F \in \mathbb{F}[x_1,...,x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?

Motivation: primality testing, circuit lower bounds, ...

 $Randomized\ algorithm\ [DL78, Z79, S80, IM83]:$

Introduction

Randomized algorithm [DL78,Z79,S80,IM83]:

• Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$

Introduction

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Randomized algorithm [DL78,Z79,S80,IM83]:

- ullet Pick $a_i \in S$ uniformly, accept iff $P(a_1,...,a_n)=0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Introduction

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Introduction

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

- Read-Once
- \sum^{k} -Read-Once [SV08.SV09]

Introduction

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1,...,a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

- Read-Once
- \sum^{k} -Read-Once [SV08,SV09]
- Multilinear Read-k [we]

Introduction

Theorem (Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic algorithm for identity testing size-s n-variable multilinear read-k formulae.

Introduction

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Introduction

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

Introduction

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear \sum^2 -read-k.

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

- 1. Fragmenting
 - Reduces multilinear read-(k+1) to multilinear \sum^2 -read-k.
- 2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

- 1. Fragmenting
 - Reduces multilinear read-(k+1) to multilinear \sum^2 -read-k.
- 2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Proof.

Combine and iterate the reductions.

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

- 1. Fragmenting
 - Reduces multilinear read-(k+1) to multilinear \sum^2 -read-k.
- 2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Proof.

Combine and iterate the reductions.

Lemma

Lemma

Lemma

Lemma

Lemma

Let F be a nonzero read-once formula.

A read-2 formula:

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Lemma (Fragmentation Lemma)

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} -\text{read-}k$.

2. Shattering

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

- 1. Fragmenting
 - Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} -\text{read-}k$.
- 2. Shattering

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} 2^{-k}$ -read-k.

2. Shattering

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} -\text{read-}k$.

2. Shattering

Testing \sum^2 -read- $k \le$ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class $\mathcal F$ of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \geq w$.

Testing \sum^2 -read- $k \leq$ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class $\mathcal F$ of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \geq w$.
- Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.

Testing \sum^2 -read- $k \leq$ Testing read-k

Fact (SV Hitting Set [SV09])

Introduction

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree d > w.
- Let $F = F_1 + F_2$ be a nonzero multilinear $\sum_{k=1}^{\infty} -\text{read-}k$ formula.
- Let \mathcal{F} consist of $F(\bar{x} + \bar{\sigma})$ and all its zero-substitutions.

Testing \sum^2 -read- $k \leq$ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class $\mathcal F$ of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \geq w$.
- Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.
- Let ${\mathcal F}$ consist of $F(\bar x+\bar\sigma)$ and all its zero-substitutions.
- Some simple conditions on $\bar{\sigma}$ give property 2 for \mathcal{F} .

 \sum^{2} -Read-k < Read-k

Testing \sum^2 -read- $k \le$ Testing read-k

Fact (SV Hitting Set [SV09])

Introduction

The set of binary strings H_w with Hamming weight at most w hits any class $\mathcal F$ of multilinear polynomials that:

- 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \geq w$.
- Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.
- Let ${\mathcal F}$ consist of $F(\bar x+\bar\sigma)$ and all its zero-substitutions.
- Some simple conditions on $\bar{\sigma}$ give property 2 for \mathcal{F} .
- For such a $\bar{\sigma}$, $H_w + \bar{\sigma}$ hits F.

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

1. no variable divides any F_i ,

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

- 1. no variable divides any F_i ,
- 2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

- 1. no variable divides any F_i ,
- 2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

- 1. no variable divides any F_i ,
- 2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:

 \Rightarrow F does not compute a monomial of degree n.

Introduction

Lemma (Shattering Lemma)

For any nonzero multilinear $\sum_{i=1}^{n} -read - k$ formula F on n variables, there exist disjoint sets of variables P and V, with |P| = poly(k)and $|V| = \frac{n}{hO(k)}$ such that $\frac{\partial F}{\partial P}$ is nonzero and can be written as

where each small subformula is the partial derivative of some subformula of F.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

 $\equiv M_n$

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

$$\Rightarrow$$
 Shatter(F_1 F_2 $\equiv M_n$)

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

 \Rightarrow If $n' \ge 1$, by Lemma, some branch is divisible by a variable x_j .

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

 \Rightarrow If $n' \ge 1$, by Lemma, some branch is divisible by a variable x_j .

 $\Rightarrow x_j = 0$ is a root of that branch.

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- \Rightarrow If $n' \ge 1$, by Lemma, some branch is divisible by a variable x_j .
- $\Rightarrow x_i = 0$ is a root of that branch.

Pick $\bar{\sigma}$ to be a common nonzero of nonzero partial derivatives of all subformulae of the F_i .

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- \Rightarrow If $n' \ge 1$, by Lemma, some branch is divisible by a variable x_j .
- $\Rightarrow x_i = 0$ is a root of that branch.

Pick $\bar{\sigma}$ to be a common nonzero of nonzero partial derivatives of all subformulae of the F_i . **Contradiction!**

- 1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
- 2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

- \Rightarrow If $n' \ge 1$, by Lemma, some branch is divisible by a variable x_j .
- $\Rightarrow x_i = 0$ is a root of that branch.

Pick $\bar{\sigma}$ to be a common nonzero of nonzero partial derivatives of all subformulae of the F_i . Contradiction!

F is $\sum^2 \text{-read-}k$, so $\bar{\sigma}$ can be computed efficiently using a read-k identity test.

Techniques:

- 1. Fragmenting
 - Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} -\text{read-}k$.
- 2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} -\text{read-}k$.

2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} -\text{read-}k$.

2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=1}^{\infty} 2^{-k}$ -read-k.

2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Theorem (Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. Fragmenting

Reduces multilinear read-(k+1) to multilinear $\sum_{k=0}^{\infty} 2^{-k}$.

2. Shattering

Reduces multilinear $\sum_{k=0}^{\infty} -\text{read}(k)$ to multilinear read-k.

Theorem (Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Corollary

There is a polynomial-time deterministic algorithm for identity testing multilinear constant-read formulae.

Extensions

1. Blackbox: quasi-poly-time.

- 1. Blackbox: quasi-poly-time.
 - Constant-depth formulae: poly-time.

- 1. Blackbox: quasi-poly-time.
 - Constant-depth formulae: poly-time.
- 2. Sparse substituted: quasi-poly-time.

- 1. Blackbox: quasi-poly-time.
 - Constant-depth formulae: poly-time.
- 2. Sparse substituted: quasi-poly-time.
 - Encompasses depth-four multilinear formulae [KMSV10], and pre-processed \sum_{k}^{k} -read-once formulae [SV09].

Questions?

Thanks!

The full version of our paper may be found on ECCC.