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Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Arithmetic Formula Identity Testing

Problem (AFIT)

Input: F ∈ F[x1, ..., xn ], given as an arithmetic formula.
Question: Is F ≡ 0?
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Motivation: primality testing, circuit lower bounds, ...
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Introduction Read-(k + 1) ≤
P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

Pick ai ∈ S uniformly, accept iff P(a1, ..., an) = 0
Correctness: Prai∈uS [P(a1, ..., an) = 0|P 6≡ 0] ≤ d

|S |
Deterministic algorithms for bounded-depth formulae:

Depth-2 [several]

Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]

Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

Read-Once∑k -Read-Once [SV08,SV09]

Multilinear Read-k [we]
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P2-Read-k

P2-Read-k ≤ Read-k Conclusion

Outline

Theorem (Main)

There is a sO(1) · nkO(k)
time deterministic algorithm for identity

testing size-s n-variable multilinear read-k formulae.

Techniques:

1. Fragmenting
Reduces multilinear read-(k + 1) to multilinear

∑2-read-k .

2. Shattering
Reduces multilinear

∑2-read-k to multilinear read-k .

Proof.

Combine and iterate the reductions. �
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Testing
∑2-read-k ≤ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings Hw with Hamming weight at most w hits
any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and

2. does not contain any monomial of degree d ≥ w .

Let F = F1 + F2 be a nonzero multilinear
∑2-read-k formula.

Let F consist of F (x̄ + σ̄) and all its zero-substitutions.

Some simple conditions on σ̄ give property 2 for F .

For such a σ̄, Hw + σ̄ hits F .
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A Structural Witness Lemma

Lemma

Let F =
∑m

i=1 Fi be a multilinear formula on n-variables, where

1. no variable divides any Fi ,

2. the factors of each Fi depend on at most n
m2 variables:

+

· · ·
×

· · ·

×

· · ·

×

· · ·

≤
n

m
2 variables

⇒ F does not compute a monomial of degree n.
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The Shattering Lemma

Lemma (Shattering Lemma)

For any nonzero multilinear
∑2-read-k formula F on n variables,

there exist disjoint sets of variables P and V , with |P | = poly(k)
and |V | = n

kO(k) such that ∂F
∂P is nonzero and can be written as

· · ·

≤ 2k branches

· · ·
≤

|V |
4k2 variables in V

· · · · · ·

× × ×

+

where each small subformula is the partial derivative of some
subformula of F .



Theorem

1. F (x̄ + σ̄) is not a monomial.

2. σ̄ is easy to compute.

Proof.

Suppose F (x̄ + σ̄) is a monomial Mn of degree n.

⇒ If n ′ ≥ 1, by Lemma, some branch is divisible by a variable xj .

⇒ xj = 0 is a root of that branch.

Pick σ̄ to be a common nonzero of nonzero partial derivatives of
all subformulae of the Fi .

Contradiction!

F is
∑2-read-k , so σ̄ can be computed efficiently using a read-k

identity test. �
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Questions?

Thanks!

The full version of our paper may be found on ECCC.
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