

Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae Matthew Anderson Dieter van Melkebeek IIya Volkovich

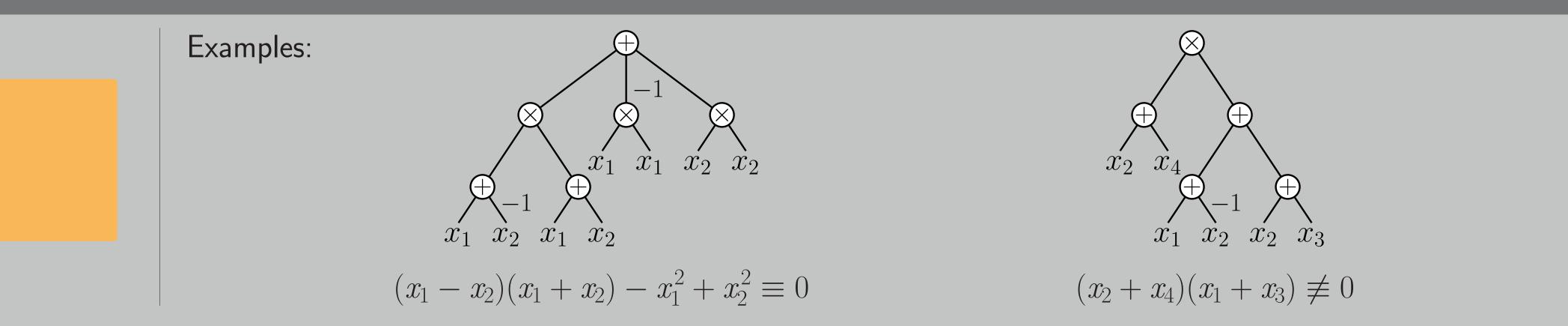
UW-Madison

UW-Madison

Polynomial Identity Testing

Input: $F \in \mathbb{F}[x_1, ..., x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?



Technion

Deterministic Polynomial-Time Algorithms

- Bounded-depth setting
- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11] Constant-Top-Fanin Multilinear Depth-4 [KMSV10,SV11]
- Bounded-read setting
- Sums of a Constant Number of Read-Once [SV08,SV09]
- Multilinear Constant-Read [we]

"Multilinear" means each subformula is of degree at most 1 in each variable.

"Read-k" means the formula contains at most k occurrences of each variable.

Results

Main Result:

There is a deterministic algorithm for identity testing *n*-variable size-s multilinear read-k formulae that runs in time $s^{O(1)} \cdot n^{k^{O(k)}}$.

This poster shows the weaker bound of $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$.

Proof Outline

Combine and iterate the following two steps.

Step 1 – Reduce testing multilinear read-(k+1) to testing multilinear \sum^2 -read-k. **Step 2** – Reduce testing multilinear \sum^2 -read-k to testing multilinear read-k.

Step 1

Fragmentation Lemma

Let F be a nonzero multilinear read-(k+1) formula. There exists a variable x such that $\frac{\partial F}{\partial x}$ is nonzero and well-structured, that is:

Extensions:

. Blackbox: quasi-poly-time in general, and poly-time for constant depth. 2. Structurally-Multilinear Sparse-Substituted Formulae: quasi-poly-time.

• Encompasses depth-four multilinear formulae [KMSV10], and pre-processed \sum^{k} -read-once formulae [SV09].

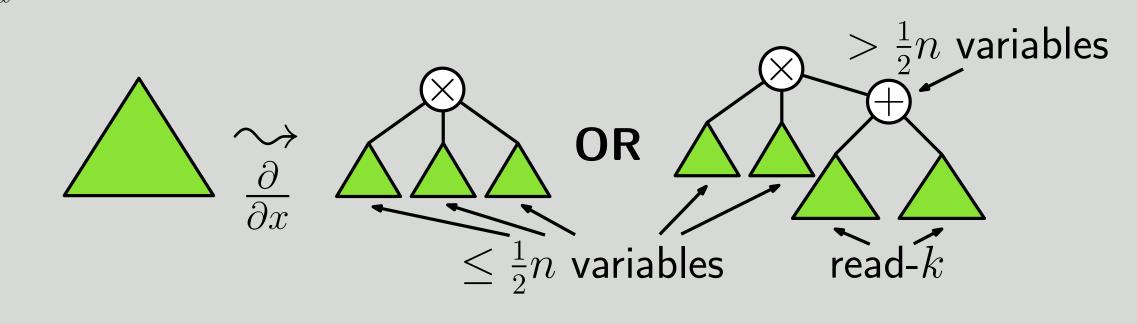
Step 2

Shattering Lemma

For any nonzero multilinear \sum^2 -read-k formula F on n variables, there exist disjoint sets of variables P and V, with |P| = poly(k) and $|V| = \frac{n}{k^{O(k)}}$ such that $\frac{\partial F}{\partial P}$ is nonzero and can be written as

$\leq 2k$ branches $\bigotimes_{k \in \mathbb{N}} \frac{|V|}{\operatorname{poly}(k)} \text{ variables in } V$

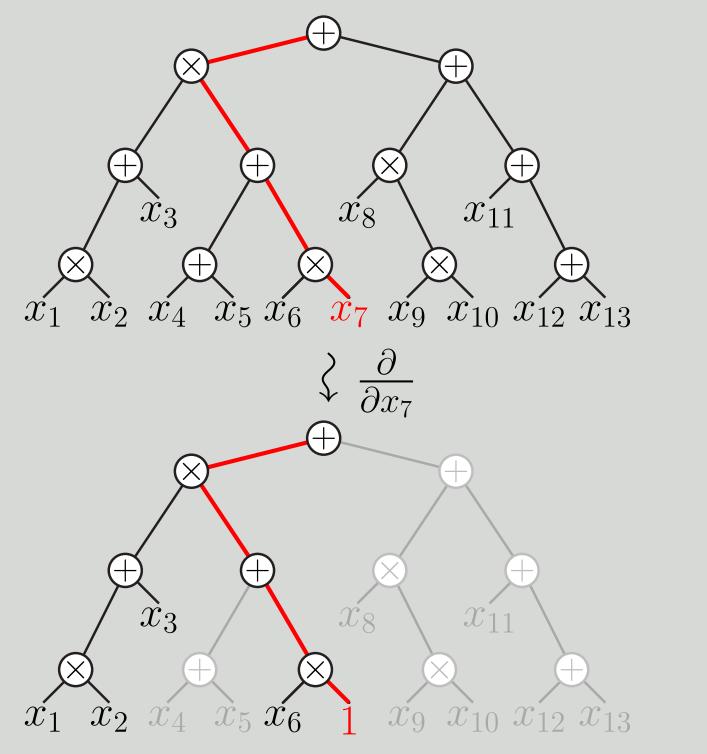
where each small subformula is the partial derivative of some subformula of F.



- Let F be a nonzero multilinear read-(k + 1) formula.
- By the **Fragmentation Lemma**, there is a variable x s.t. $\frac{\partial F}{\partial x}$ is nonzero and well-structured.
- $\rightarrow \frac{\partial F}{\partial x}$ can be hit by a tester for formulae that are on $\frac{n}{2}$ variables or are \sum^2 -read-k. Iterating reduces to testing \sum^2 -read-k formulae. This step contributes a factor of $n^{O(k \log n)}$ to the running time.

Proof of the Fragmentation Lemma.

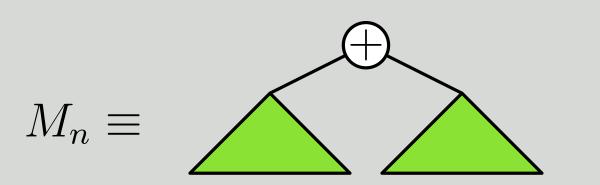
If F is read-once, pick the median variable:



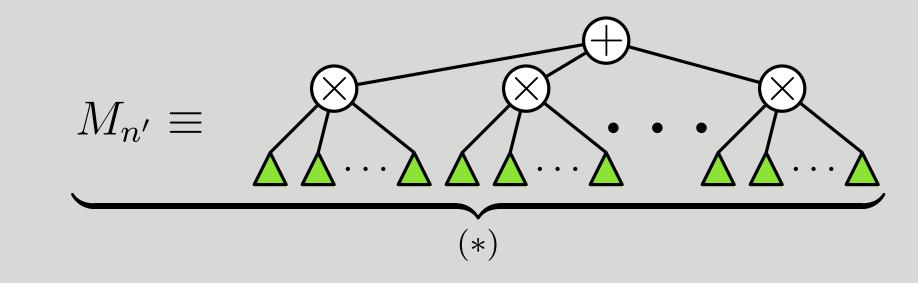
- ▶ Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2 -read-k formula.
- The set of binary strings H_w with Hamming weight at most w hits any class of multilinear polynomials that: 1. is closed under zero-substitutions, and
- 2. does not contain any monomial of degree $d \geq w$.
- Let \mathcal{F} consist of $F(\bar{x} + \bar{\sigma})$ and all its zero-substitutions.
- Claim: It is easy to a compute a "good" $\bar{\sigma}$, i.e., such that $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \ge k^{O(k)}$. For such a $\bar{\sigma}$, $H_{k^{O(k)}} + \bar{\sigma}$ hits F.
- This step contributes a factor of $n^{k^{O(k)}}$ to the running time.

Proof of Claim.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial, M_n ,



By the **Shattering Lemma** there is some $n' \ge 1$ s.t.:



A structural witness theorem for identities of type (*) shows that for some variable x_i , some branch has a root at $x_i = 0$.

Pick "good" to mean that $\bar{\sigma}$ is a common nonzero of the partial derivatives of all subformulae of F.

Then $x_i = 0$ cannot be a root of any branch. **Contradiction**!

Since F is \sum^2 -read-k, a good $\overline{\sigma}$ can be efficiently computed using a read-k identity test.

If F is read-(k + 1), recurse to largest child containing k + 1 occurrences of a variable; otherwise pick a variable that occurs k + 1 times in the subformula:

