
Derandomizing Polynomial Identity Testing for Multilinear Constant-Read

Formulae

Matthew Anderson

Computer Sciences Dept.

University of Wisconsin

Madison, USA

Email: mwa@cs.wisc.edu

Dieter van Melkebeek

Computer Sciences Dept.

University of Wisconsin

Madison, USA

Email: dieter@cs.wisc.edu

Ilya Volkovich

Computer Science Dept.

Technion

Haifa, Israel

Email: ilyav@cs.technion.ac.il

Abstract—We present a polynomial-time deterministic
algorithm for testing whether constant-read multilinear
arithmetic formulae are identically zero. In such a formula
each variable occurs only a constant number of times
and each subformula computes a multilinear polynomial.
Before our work no subexponential-time deterministic
algorithm was known for this class of formulae. We also
present a deterministic algorithm that works in a blackbox
fashion and runs in quasi-polynomial time in general, and
polynomial time for constant depth. Finally, we extend our
results and allow the inputs to be replaced with sparse
polynomials. Our results encompass recent deterministic
identity tests for sums of a constant number of read-once
formulae, and for multilinear depth-four circuits.

Keywords-arithmetic circuit; bounded-depth circuit; de-
randomization; polynomial identity testing;

I. INTRODUCTION

Polynomial identity testing (PIT) denotes the funda-

mental problem of deciding whether a given polynomial

identity holds. More precisely, we are given an arith-

metic circuit or formula F on n inputs over a given
field F, and wish to know whether all the coefficients

of the formal polynomial P computed by F vanish. Due
to its basic nature, PIT shows up in many constructions

in theory of computing. Particular problems that reduce

to PIT include integer primality testing [1] and finding

perfect matchings in graphs [2].

PIT has a very natural randomized algorithm – pick

the values of the variables uniformly at random from a

small set S, and accept iff P evaluates to zero on that
input. If P ≡ 0 then the algorithm never errs; if P 6≡ 0
then by Schwartz-Zippel [3], [4], [5] the probability of

error is at most d/|S|, where d denotes the total degree
of P . This results in an efficient randomized algorithm
for PIT. This algorithm works in a blackbox fashion in

the sense that it does not access the representation of

the polynomial P , rather it only examines the value of
P at certain points (from F or an extension field of F).

Despite the simplicity of the above randomized al-

gorithm, no efficient deterministic algorithm for PIT

is known. In fact, the development of a deterministic

subexponential-time algorithm for PIT would imply

Boolean or arithmetic circuit / formula lower bounds

that have been a central elusive goal in theory of

computing for a very long time [6], [7], [8], [9].

Recent years have seen considerable progress on

deterministic PIT algorithms for restricted classes of

arithmetic formulae, in particular for constant-depth for-

mulae. For depth two several deterministic polynomial-

time blackbox algorithms are known [10], [11], [12],

[13], [14]. For depth three the state-of-the-art is a

deterministic polynomial-time blackbox algorithm when

the fanin of the top gate is fixed to any constant [15].

The same is known for depth four but only when the

formulae are multilinear, i.e., when every gate in the

formula computes a polynomial of degree at most one

in each variable [16]. There are also a few incomparable

results for rather specialized classes of depth-four for-

mulae [17], [13], [18]. We refer to the excellent survey

paper [19] for more information.

Another natural restriction are arithmetic formulae in

which each variable appears only a limited number of

times. We call such formulae read-k , where k denotes
the limit. PIT for read-once formulae is trivial in the

non-blackbox setting as there can be no cancellation of

monomials. Shpilka and Volkovich considered a special

type of bounded-read formulae, namely formulae that

are the sum of k read-once formulae. For such for-
mulae and constant k they established a deterministic
polynomial-time non-blackbox algorithm as well as a

deterministic blackbox algorithm that runs in quasi-

polynomial time, i.e., in time nO(k+log n) on formulae

with n variables [20], [18].



A. Results

As our main result we present a deterministic

polynomial-time PIT algorithm for multilinear constant-

read formulae, as well as a deterministic quasi-

polynomial-time blackbox algorithm.

Theorem 1. (PIT for Multilinear Bounded-Read

Formulae). There exists a deterministic polynomial

identity testing algorithm for multilinear formulae that

runs in time sO(1)·nkO(k)

, where s denotes the size of the
formula, n the number of variables, and k the maximum
number of times a variable appears in the formula.

There also exists a deterministic blackbox algorithm

that runs in time nkO(k)+O(k log n) and queries points

from an extension field of size O(n2).

Note that Theorem 1 extends the class of formulae

which Shpilka and Volkovich could handle since a sum

of read-once formulae is always multilinear. This is a

strict extension – in the full version of this paper [21]

we exhibit an explicit read-2 formula with n variables
that requires Ω(n) terms when written as a sum of read-
once formulae. The separating example also shows that

the efficiency of the PIT algorithm in Theorem 1 cannot

be obtained by first expressing the given formula as a

sum of read-once formulae and then applying the known

PIT tests [18] for sums of read-once formulae to it.

Shpilka and Volkovich actually proved their result for

sums of a somewhat more general type of formulae

than read-once, namely read-once formulae in which

each leaf variable is replaced by a low-degree univariate

polynomial in that variable. We can handle an extension

in which the leaf variables are replaced by sparse multi-

variate polynomials. We use the term sparse-substituted

formula for a formula along with substitutions for the

leaf variables by multivariate polynomials that are each

given as a list of terms (monomials). We call a sparse-

substituted formula read-k if each variable appears in
at most k of those multivariate polynomials.

Theorem 2. (Extension to Sparse-Substituted For-

mulae). There exists a deterministic polynomial identity

testing algorithm for multilinear sparse-substituted for-

mulae that runs in time sO(1) · nkO(k)(log(t)+1), where

s denotes the size of the formula, n the number of
variables, k the maximum number of substitutions in
which a variable appears, and t the maximum number
of terms a substitution consists of.

There also exists a deterministic blackbox algorithm

for multilinear sparse-substituted formulae that runs in

time nkO(k)(log(t)+1)+O(k log n) and queries points from

an extension field of size O(n2).

Note Theorem 1 is a specialization of Theorem 2

obtained by setting t = 1.

We can further extend our non-blackbox identity test

by introducing a relaxed notion of multilinearity for

sparse-substituted formulae which requires only that for

every multiplication gate of the original formula the

different input branches of the gate are variable disjoint.

We call such sparse-substituted formulae structurally-

multilinear. Note that this definition allows the substi-

tuted polynomials to be non-multilinear.

Theorem 3. (Extension to Structurally-Multilinear

Formulae). There exists a deterministic polynomial

identity testing algorithm for structurally-multilinear

sparse-substituted formulae that runs in time sO(1) ·
(n log t)kO(k)(log(t)+1), where s denotes the size of the
formula, n the number of variables, k the maximum
number of substitutions in which a variable appears,

and t the maximum number of terms a substitution
consists of.

We observe that any multilinear depth-four alter-

nating formula with an addition gate of fanin k as
the output can be written as the sum of k sparse-
substituted read-once formulae, where the read-once

formulae are single monomials and the substitutions

correspond to multilinear depth-two formulae. This im-

plies that our blackbox algorithm also extends the work

by Karnin et al. [22], who established a deterministic

quasi-polynomial-time blackbox algorithm for multi-

linear formulae of depth four. Thus, our results can

be seen as unifying identity tests for sums of read-

once formulae [18] with identity tests for depth-four

multilinear formulae [22] while achieving comparable

running times in each of those restricted settings.

We can improve the running time of our blackbox

algorithm in the case where the formulae have small

depth.

Theorem 4. (Improvement for Bounded-Depth For-

mulae). There exists a deterministic blackbox polyno-

mial identity testing algorithm for multilinear sparse-

substituted formulae with unbounded fanin that uses

nkO(k2)(log(t)+1)+O(kd) time and queries points from

an extension field of size O(n2), where n denotes
the number of variables, d the depth of the formula,
k the maximum number of substitutions in which a
variable appears, and t the maximum number of terms
a substitution consists of.

In particular, we obtain a polynomial-time blackbox

algorithm for constant-read constant-depth formulae.

2



For completeness we mention a couple of related re-

sults regarding depth-three constant-read formulae that

do not require multilinearity. In particular, [23] gives

a n2O(k2)

blackbox identity testing algorithm for read-

k depth-three formulae. Later work in [24] implies an

improved running time of n2O(k)

for this algorithm.

B. Techniques

As we have mentioned earlier, polynomial identity

testing is trivial for read-once formulae. Our overall

approach for multilinear constant-read formulae is a

recursive one in which we reduce to instances with

smaller read-value and/or fewer variables until we reach

a trivial case. Our reduction alternates between two

steps and uses as an intermediate stage formulae that are

the sum of two multilinear read-k formulae. We refer
to such formulae as multilinear

∑2
-read-k formulae.

Step 1. Reduce PIT for multilinear read-(k + 1)
formulae to PIT for multilinear

∑2
-read-k

formulae.

Step 2. Reduce PIT for multilinear
∑2
-read-k for-

mulae to PIT for multilinear read-k formulae.

We unify techniques developed for sums of read-once

formulae (the SV-generator from [18]) and techniques

developed for multilinear depth-four formulae (the rank

bound for depth-three formulae [25], [26], as seen

through [22]) with a novel technique for exploring the

structure of formulae. We refer to our technique as

“shattering”. It allows us to bring the rank bound for

depth-three formulae to bear on multilinear
∑2
-read-

k formulae, and enables us to realize Step 2 in both
the blackbox and non-blackbox settings. The technique

builds on a simpler technique of “fragmentation”, which

generalizes an idea of [22] and which we also use to

realize Step 1 in the blackbox setting. The key technical

difficulty lies in showing how fragmentation enables

shattering.

Because of space limitations, we focus only on the

blackbox result without sparse substitutions in the body

of this extended abstract.

In general, a blackbox PIT algorithm for a class F
of formulae is equivalent to the construction of a low-

degree polynomial mapping G on few variables such
that F ◦ G is nonzero for every nonzero F ∈ F . We
refer to such a mapping as a hitting set generator for

F , and say that G hits every F ∈ F . Testing F on all
elements in the image of G when the input variables to
G range over some small set produces an identity test.
The converse is also true – identity tests imply hitting

set generators (see e.g. [18]).

C. Organization

In Section II we develop our ideas and present an

overview of the proof. We briefly discuss the techniques

that we use and their context within the overall argu-

ment. Section III delves more deeply into our fragmen-

tation and shattering technique for multilinear read-k
formulae. Section IV discusses how these methods are

combined to prove the key technical lemma and the

main blackbox result.

The non-blackbox result, the constant depth result,

and further extensions as well as all formal proofs are

in the full version of the paper, which is available on

ECCC [21].

II. PROOF OVERVIEW

We now discuss the two steps in our construction and

their key ingredients in more detail, with a focus on the

role of fragmentation and shattering.

A. Fragmenting Multilinear Formulae

Our fragmentation technique for multilinear formulae

involves partial derivatives with respect to well-chosen

variables. We discuss the technique in detail in Section

3. For now, the statement of the following lemma

suffices. For technical reasons, we generalize the notion

of read-k to restrict only the occurrences of variables
from some subset V . We refer to the generalization as
readV -k.

Lemma 5 (Fragmentation Lemma). Let ∅ ( V ⊆
[n], k ≥ 0, and let F be an n-variate multilinear readV -
(k + 1) formula that depends on at least one variable
in V . There exists a variable x ∈ V such that ∂xF is
nonzero and is the product of

1) subformulae of F each depending on at most |V |
2

variables from V (and possibly more variables

outside of V ), and
2) when k ≥ 1, at most one

∑2
-readV -k formula,

which is the derivative with respect to x of some
subformula of F .

The lemma helps us in realizing the blackbox version

of Step 1 as follows. A hitting set generator for a class

F of formulae also hits products of formulae from
F . Thus, by the Fragmentation Lemma, a hitting set
generator that hits multilinear

∑2
-read-k formulae on

n variables as well as multilinear read-(k+1) formulae
that depend on at most n/2 of the n variables, also
hits some nonzero partial derivative of any nonzero

multilinear read-(k+1) formula on n variables. Adding
an independent random field element turns such a hitting

set generator into one that hits every multilinear read-

(k+1) formula on n variables. A logarithmic number of

3



applications of this transformation then turns a hitting

set generator for n-variate
∑2
-read-k formulae into

one for n-variate read-(k + 1) formulae. These ideas
are formalized in the following reduction (Step 1), the

proof of which can be found in the full version of this

paper [21]. We use the notation var(F ) to denote the
set of variables that a formula F depends on, and for
two polynomial maps G1, G2 with the same range the

notation G1+G2 denotes their component-wise addition.

Lemma 6 (Read-(k + 1) PIT ≤
∑

2
-Read-k PIT).

For an integer k ≥ 1, let G be a generator for n-
variate multilinear

∑2
-read-k formulae, and let F

be a nonzero n-variate multilinear read-(k + 1)
formula. Then, there is a polynomial-time computable

polynomial map Gw : FO(w) → Fn with total degree n
such that G + Glog |var(F )| hits F .

We also use the Fragmentation Lemma as a building

block to establish our Shattering Lemma. This is the

most involved step in our construction. Once we have

our Shattering Lemma, we employ two more ingredi-

ents: the SV-generator and the rank bound for depth-

three formulae. At a high level, the Shattering Lemma

allows us to transform multilinear read-k formulae into
depth-three formulae to which the rank bound applies,

and the latter enables us to apply the SV-generator

and realize Step 2. We first introduce these additional

ingredients, then explain how they combine with the

Shattering Lemma, and finally sketch how to obtain

shattering from fragmentation.

B. The Key Lemma

A polynomial map Gw : F2w → Fn sufficient for

Lemma 6 was introduced by Shpilka and Volkovich in

[18]. It interpolates all 0-1-vectors of weight at most w
and has the following critical property, where Td denotes

the set of all terms of degree exactly d.

Fact 7 ([18]). Gw is a hitting set generator for any

class F of multilinear polynomials that is closed under
zero-substitutions and is disjoint from Td for every

d > w.

The approach in [18] for sums of a constant number

of read-once formulae is based on Fact 7 and the

following fact.

Fact 8 ([18]). 1 Let F =
∑k

i=1 Fi be a nonzero for-

mula with each Fi read-once. Let σ̄ be a point where
none of the nonzero first-order partial derivatives of the

Fi’s vanish. Then F (x̄ + σ̄) 6∈ Td for any d ≥ 3k.

1Shpilka and Volkovich refer to this fact as a hardness of represen-
tation result and use the term “justifying assignment” for σ̄.

For a formula F as in Fact 8, consider applying Fact
7 to the class F consisting of F (x̄ + σ̄) and all its
zero-substitutions, for some fixed σ̄. The first condition
of Fact 7, the closure under zero-substitutions of F ,
holds by construction. As for the second condition,

consider a formula F ′ obtained by substituting into F
the components of σ̄ for some subset X of the variables.
For any variable x 6∈ X , we have that ∂F ′

∂x
(σ̄) = ∂F

∂x
(σ̄).

Thus, if σ̄ satisfies the hypothesis of Fact 8 for F ,
then it also satisfies that hypothesis for any substitution

F ′ of the above type. By Fact 8, this shows that

F ′(x̄ + σ̄) 6∈ Td for d ≥ 3k. Noting that F ′(x̄ + σ̄)
coincides with F (x̄ + σ̄) where all variables in X have
been substituted by zero, this means that F satisfies the
second condition of Fact 7. We conclude that for any σ̄
satisfying the condition of Fact 8, G3k + σ̄ hits F .

Moreover, since the partial derivatives ∂xFi are read-

once formulae and PIT for read-once formulae is trivial,

we can efficiently find a shift σ̄ satisfying the conditions
of Fact 8 when given access to the formula F – select
values for the components of σ̄ one by one so as to
maintain nonzeroness of the nonzero partial derivatives

under that setting. One can also use a hitting set

generator G for read-once formulae to generate a shift
σ̄ satisfying the conditions of Fact 8. Fact 7 then shows
that G + G3k is a hitting set generator for sums of k
read-once formulae. This is how Shpilka and Volkovich

obtained their quasi-polynomial-time blackbox test [18].

We follow the same strategy for Step 2 of our

approach, i.e., to reduce PIT for multilinear
∑2
-read-

k formulae to PIT for multilinear read-k formulae. We
use Fact 7 as is, and develop the following equivalent

of Fact 8 for sums of (two) multilinear read-k formulae.
We use the notation ∂P to denote the partial derivative

with respect to the set of variables P .

Lemma 9 (Key Lemma). The following holds for

some monotone function R(m) = O(m3 log m). Let
F =

∑m
i=1 Fi, where each Fi is a non-constant multi-

linear read-ki formula. If σ̄ is a common nonzero of the
nonzero formulae of the form ∂P f where f is a subfor-
mula of the Fi’s and |P | ≤ b

.
= (k−m+1)·4k·R(k+1),

then F (x̄+σ̄) 6∈ Tn for n > w
.
= (8k ·R(k+1))k−m+1,

where k
.
=

∑m
i=1 ki.

We sketch the proof idea for the Key Lemma in

Section 4. Note that the condition of the Key Lemma in-

volves higher-order derivatives, whereas the correspond-

ing condition in Fact 8 only uses first-order derivatives.

Nevertheless, the important properties are preserved:

(i) the condition implies that the conclusion holds for

F (x̄ + σ̄) as well as for all its zero-substitutions, and

4



(ii) the condition states that σ̄ is a common nonzero
of some nonzero multilinear read-k formulae which we
can easily compute from F .
Thus, given access to F and to an oracle to a

polynomial identity test for multilinear read-k formulae,
we can efficiently construct a shift σ̄ such that Gw hits

F (x̄+ σ̄) for w sufficiently large with respect to k. We
can generate the shift σ̄ we need, by using a hitting set
generator G for multilinear read-k formulae, resulting
in G + Gw as a hitting set generator for multilinear
∑2
-read-k formulae. These ideas are formalized in the

following reduction (Step 2) and worked out in the full

version of this paper [21].

Lemma 10 (
∑

m

-Read-k PIT ≤ Read-k PIT).

The following holds for some monotone function

R(m) = O(m3 log m) and any integer k ≥ 1. Let
G be a generator for n-variate multilinear read-
k formulae. Then G + Gwm,k

is a generator for

n-variate multilinear
∑m
-read-k formulae, where

wm,k
.
= (8km · R(km + 1))(k−1)m+1.

Shpilka and Volkovich show Fact 8 by arguing that

applying a sequence of partial derivatives and nonzero

substitutions F reduces the degree of the terms in

Td and zeroes some of the Fi’s. If Td remains non-

trivial after all Fi’s are zeroed, the fact is proved. The

bound they derive on d depends on how quickly the
fanin k is reduced relative to the number of operations
performed by the argument. Strong structural properties

of read-once formulae make it relatively easy to argue

that few partial derivatives and substitutions suffice to

zero any particular read-once formula. For formulae of

arbitrary read these properties are not readily present.

In order to prove the Key Lemma, we employ our

fragmentation technique to bring the rank bound for

depth-three formulae to bear on multilinear constant-

read formulae.

C. The Rank Bound

For constant-depth formulae the difficult cases of

PIT are those where the top gate is an addition. In

particular, for depth-three these are ΣΠΣ-formulae –
sums of products of linear functions. A relevant struc-

tural property of such formulae F is their rank, which
Dvir and Shpilka [25] defined as the dimension of

the span of the linear functions at the bottom level

of F . One way to think about the rank is as the
true number r of independent variables of F – we
can efficiently transform F into a ΣΠΣ-formula F̃
on r variables such that F is identically zero iff F̃
is. In recent years much progress has been made on

upper bounds for the rank of ΣΠΣ-formulae that are

identically zero, where the upper bounds are expressed

as a function of the fanin m of the top addition gate.
In particular, Saxena and Seshadhri [26] showed that a

zero ΣΠΣ-formula of syntactic degree d that satisfies
some relatively minor conditions can have rank at most

O(m2 log d) in general, and O(m2 log m) if the formula
is multilinear. We refer to this structural property as

the rank bound. The “relatively minor” conditions are

(i) that the multiplication gates at the bottom have no

non-trivial factor that is common to all of them, and

(ii) that no non-trivial subset of the m branches of F
sums to zero. A formula is called simple when satisfying

condition (i) and, minimal when satisfying condition

(ii).

The rank bound has been frequently used to wit-

ness the nonzeroness of depth-three formulae for the

purposes of identity testing. For their application to

multilinear depth-four formulae, [22] consider multi-

linear formulae of the form F =
∑m

i=1 Fi where the

Fi’s factor into subformulae each depending only on a

fraction α of the variables. In such a case we call the
formula F α-split.

Definition 11 (α-split). Let F =
∑m

i=1 Fi ∈
F[x1, . . . , xn], α ∈ [0, 1], and V ⊆ [n]. We say that
F is α-split if each Fi is of the form

∏

j Fi,j where

|var(Fi,j)| ≤ αn. F is α-split with respect to V (in
shorthand, α-splitV ) if |var(Fi,j) ∩ V | ≤ α|V | for all
i, j.

[22] lifts the depth-three rank bound to achieve a

similar implication for split multilinear depth-four for-

mulae.

Lemma 12. (Rank Bound for Split Multilinear For-

mulae [22, Lemma 4.5]) For some monotone function

R(m) = O(m3 log m) the following holds for any
multilinear formula F =

∑m
i=1 Fi on n ≥ 1 variables

with ∪i∈[m]var(Fi) = [n]. If F is simple, minimal, and
α-split for α = (R(m))−1, then F 6≡ 0.

We use the rank bound via Lemma 12, not to directly

construct our PIT algorithm, but to establish the Key

Lemma (Lemma 9). The connection between the two is

as follows. Let F ′ be a sum of a constant number of

multilinear formulae. Note that F ′ ∈ Td′ iff there exists

a nonzero scalar a and an index set I of size d′ such that
F ′ − a ·

∏

i∈I xi ≡ 0. Lemma 12 shows that the latter
cannot happen for d′ > 0 if each of the summands
of F ′ is (i) sufficiently split and (ii) not divisible by

any variable. For a shifted formula F ′(x̄ + σ̄) the latter
condition is met if the summands do not vanish at σ̄.
Thus, in order to establish the Key Lemma, all that

5



remains is to transform a multilinear
∑2
-read-k formula

F for which F (x̄+ σ̄) ∈ Td into a sum F ′ of a constant

number of sufficiently split multilinear formulae such

that F ′(x̄ + σ̄) ∈ Td′ for some d′ > 0. Moreover,
the transformation should be sufficiently simple such

that the condition that none of the summands of F ′

vanish at σ̄ translates into a simple condition about σ̄
and the original formula F . Repeated applications of
the Fragmentation Lemma allow us to do so (for d
sufficiently large compared to k) in a process we refer
to as “shattering”.

D. Shattering Multilinear Formulae

For the purpose of exposition, let us consider the

case k = 1, i.e., let F = F1 + F2 be the sum of

two read-once formulae. The Fragmentation Lemma

applied to Fi gives a formula ∂xFi that is a product

of subformulae on at most half of the variables each.

When we greedily apply the Fragmentation lemma to

a factor which depends on the most variables, O(1/α)
applications suffice to ensure that each of the remaining

factors depend on at most a fraction α of the variables.
If we denote by P the set of variables we used for the
partial derivatives, multilinearity implies that the prod-

uct of all those factors equals ∂P Fi. Thus, the formula

F ′ .
= ∂P F is the sum of two split multilinear formulae.

Moreover, if F (x̄ + σ̄) ∈ Td then F ′(x̄ + σ̄) ∈ Td′ for

d′ = d−|P |, which is positive as long as d is sufficiently
large compared to 1/α. Let F ′

i coincide with ∂P Fi, so

the condition that F ′
i does not vanish at σ̄ is equivalent

to ∂P Fi not vanishing at σ̄. This is how higher-order
derivatives enter the conditions of the Key Lemma.

In the cases where k ≥ 2 the shattering process
becomes more complicated as it no longer holds that

all the factors produced by the Fragmentation Lemma

depend on at most half the number of variables – the one
∑2
-read-(k−1) factor may depend on more. In Section

3.2 we sketch how we can handle the general situation.

The following is the resulting statement, which for

generality is given for sums of an arbitrary number of

bounded-read formulae.

Lemma 13 (Shattering Lemma). Let α : N → (0, 1]
be a non-increasing function. Let F ∈ F[x1, . . . , xn]
be a formula of the form F =

∑m
i=1 Fi, where each

Fi is a non-constant multilinear read-ki formula. There

exist disjoint subsets P, V ⊆ [n] such that ∂P F can be

written as
∑m′

i=1 F ′
i , where m′ ≤ k

.
=

∑m
i=1 ki, each

F ′
i is multilinear and α(m′ + 1)-splitV , the factors of
each of the F ′

i ’s are of the form ∂P̃ f where f is some

subformula of some Fj and P̃ ⊆ P . In addition,

|P | ≤ (k − m + 1) ·
4k

α(k + 1)
,

and

|V | ≥

(

α(k + 1)

8k

)k−m

· n −
8k

α(k + 1)
.

Note that the formula F ′ given by the Shattering

Lemma may depend on variables outside of V , and
that the F ′

j’s are only split with respect to V , i.e., they
are the products of factors that each only depend on a

fraction of the variables of V but may depend on many
variables outside of V . The formula to which we apply
Lemma 12 is obtained from F ′ by setting the variables

outside of V appropriately. If neither the projections
nor any of the Fj vanish at σ̄, we can conclude that
F (x̄ + σ̄) 6∈ Td for any d larger than the number of
partial derivatives we needed. Since the variables always

appear as subformulae, the condition in the statement of

the Key Lemma suffices.

E. Extension to Sparse-Substituted Formulae

The above arguments require the formulae to be

multilinear for two reasons. First, they make heavy

use of partial derivatives, and multilinear formulae are

closed under the partial derivative operation. Second,

factors of multilinear formulae are variable disjoint.

We can relax the multilinearity condition somewhat.

Few modifications are needed in order to extend our

results to multilinear sparse-substituted formulae, i.e.,

multilinear formulae in which each leaf variable is

replaced by a sparse multilinear polynomial such that

all multiplication gates of the original formula remain

variable disjoint. The main extension happens in the

Fragmentation Lemma. A combination of partial deriva-

tives and zero-substitutions similar to one used in [22]

allows us to fragment the sparse substitutions. For

substitutions that consist of at most t terms, this results
in an overall multiplicative increase in the number of

such operations by log t. This factor propagates to the
exponent of the running time of our algorithms.

A further extension to structurally-multilinear sparse-

substituted formulae follows by a simple reduction

from general sparse substitutions to multilinear sparse

substitutions.

III. FRAGMENTING AND SHATTERING

MULTILINEAR FORMULAE

In this section we expand on two critical ingredients

for our arguments – fragmenting and shattering.

6



A. Fragmenting

We first describe a means of splitting up or frag-

menting multilinear formulae using partial derivatives.

We build up towards this goal by describing how partial

derivatives act on multilinear read-(k+1) formulae. We
then explain how to fragment such formulae.

Partial derivatives of polynomials can be defined

formally over any field F by stipulating the partial

derivative of monomials consistent with standard calcu-

lus, and imposing linearity. The well-known sum, prod-

uct, and chain rules then carry over. For a multilinear

polynomial P ∈ F[x1, ..., xn] and a variable x = xi

with i ∈ [n], we can write P as P = Q · x + R, where
Q,R ∈ F[x1, x2, . . . , xi−1, xi+1, . . . , xn]. In this case
the partial derivative of P with respect to x is ∂xP = Q.

For a multilinear read-(k + 1) formula F , ∂xF is
easily obtained from F and results in a formula with
the same or a simpler structure than F . Start from the
output gate and recurse through the formula, applying

at each gate the sum or product rule as appropriate. In

the case of an addition gate g =
∑

i gi, we have that

∂xg =
∑

i ∂xgi. In the case of a multiplication gate

g =
∏

i gi, the derivative ∂xg is a sum of products,
namely ∂xg =

∑

i(
∏

j 6=i gj)·∂xgi. By the multilinearity

at most one of the terms in the sum is nonzero because

at most one gi can depend on x. Thus, we leave the
branches gj for j 6= i untouched and recursively replace
gi by its partial derivative. Overall, the resulting formula

∂xF is multilinear and read-(k + 1).

For a read-once formula F , fragmenting boils down
to the following observation: Taking the partial deriva-

tive with respect to the median variable x on which F
depends in leaf order, yields a nonzero formula ∂xF that
is the product of subformulae each of which depends on

at most half the variables. See Fig. 1 for an example. A

key reason this argument goes through is that in read-

once formulae every addition gate has children that are

variable disjoint. This property implies that at most one

branch of an addition gate is nonzero after a partial

derivative.

In read-(k + 1) formulae with k ≥ 1, this property
no longer holds. We overcome this hurdle by selecting

a variable x after repeatedly recursing into the largest
branch that depends on a variable that is only present

within that branch. This mimics the behavior of the

partial derivative of a read-once formula as long as

such a branch exists. Once no such branch exists,

each child of the current gate cannot contain all the

occurrences of any variable. Therefore, these children

are read-k formulae. Taking a partial derivative with
respect to a variable that only occurs within the current

x8

+

∂x5

x9×

+ +

x4 ×× x3

x1 x2 x5 +

x6 x7

×

+

x4× x3

x1 x2

+

x6 x7

Figure 1. A partial derivative of a read-once formula.

gate eliminates all diverging addition branches above

the gate. The resulting formula is a product of all

the unvisited (and small) multiplication branches and

possibly one (large)
∑2
-read-k formulae. This intuition

is formalized in the proof of the Fragmentation Lemma

(see the full version [21]).

B. Shattering

As mentioned at the beginning of Section 2.4, a
∑2
-

read-once formula can be shattered by greedily applying

the Fragmentation Lemma. In the case of arbitrary

read-value k > 1, the Fragmentation Lemma is not
immediately sufficient for shattering. As in the read-

once case, we can apply the lemma greedily to a largest

factor of a read-k branch to α-split the branch within
at most O( 1

α
) applications. However, this assumes that

case 1 of the Fragmentation Lemma always occurs.

Otherwise, the greedy process fails to split the formula.

To resolve this issue, we leverage the fact that the

blocking factor is both large and a
∑2
-read-(k − 1)

formula.

Consider a read-k formula F on n variables. Apply
the Fragmentation Lemma to F . Suppose that case
2 of the lemma occurs, producing a variable x, and
that the corresponding

∑2
-read-(k − 1) factor of ∂xF

depends on more than n
2 of the variables. Without

loss of generality, ∂xF = H · (H1 + H2), where H
is a product of read-k formulae each depending on
at most n

2 variables, and both H1 and H2 are read-

(k − 1) formulae. Rewrite F by distributing the top
level multiplication over addition:

F ′ .
= (H · H1) + (H · H2) ≡ H · (H1 + H2) = ∂xF.

Let V
.
= var(H1 + H2). F

′ is explicitly a
∑2
-readV -

(k − 1) formula and a readV -k formula. By further
restricting to the largest set of variables that appear the

exact same number of times in the larger of the two

subformulae H1 and H2, we can argue the existence of

a subset V ′ ⊆ V that contains at least a 1
2k
fraction

7



of the variables in V such that the read of H1 and

H2 with respect to V ′ sum to at most k. This action
effectively breaks up the original formula F into two
branches without increasing the sum of the read values

of the branches. Since |V | ≥ n
2 , the set V

′ is at most a

factor 4k smaller than n, and the number of branches
increased by one.

This operation can be performed at most k− 1 times
on a read-k formula before either: (i) the attempted
greedy splitting is successful, or (ii) the formula be-

comes the sum of k readV -once formulae, for some non-
trivial V ⊆ [n]. In the latter case all subsequent split-
tings will succeed because case 2 of the Fragmentation

Lemma cannot occur for read-once formulae. Thus, in

either case we obtain a formula with at most k branches
that is shattered with respect to a subset V , where |V |
is at most a factor kO(k) smaller than n.

Finally, notice that each of the branches in the shat-

tered formula are present in the original input formula,

either as such or after taking some partial derivatives.

This technical property follows from the properties

of the Fragmentation Lemma, and is critical for the

application in the Key Lemma. This is the idea behind

the Shattering Lemma (see the full version for the

formal proof [21]).

IV. PROOF OF THE KEY LEMMA AND MAIN RESULT

In order to prove Lemma 9, we first establish a similar

lemma for split multilinear formulae, and then apply the

Shattering Lemma to lift the result to the constant-read

setting.

Let F =
∑m

i=1 Fi be a sufficiently split multilinear

formula on n variables. By applying the rank bound for
split formulae (Lemma 12) we can argue that if no Fi

is divisible by any variable then F cannot compute a
term of the form a ·Mn, where a is a nonzero constant
and Mn denotes the monomial

∏n
i=1 xi. The idea is to

consider the formula F − a · Mn and apply the rank

bound to it in order to show that it is nonzero. The

non-divisibility condition and the natural properties of

Mn give simplicity. Minimality effectively comes for

free because we are working in the blackbox setting.

The splitting required by the rank bound immediately

follows from the splitting of F . The property that the
branches Fi are not divisible by any variable can be

easily established by shifting the formula by a point σ̄
that is a common nonzero of all the branches Fi. Indeed,

if we pick σ̄ such that Fi(σ̄) 6= 0 then no variable
can divide Fi(x̄ + σ̄). Formalizing this idea yields the
following lemma.

Lemma 14. Let F =
∑m

i=1 Fi be a multilinear α(m+
1)-split formula on n ≥ 1 variables, where α

.
= 1

R
and

R is the function given by Lemma 12. If no Fi vanishes

at σ̄, then F (x̄ + σ̄) 6≡ a ·
∏n

i=1 xi for any nonzero

constant a.

We now show how to lift Lemma 14 from split

multilinear formulae to sums of multilinear constant-

read formulae. This yields our key lemma – that for

such formulae F and a “good” shift σ̄, F (x̄+ σ̄) cannot
compute a term of large degree.

For the sake of contradiction suppose the opposite,

i.e., that F (x̄ + σ̄) ≡ a ·Mn for some nonzero constant

a and large n. Shatter F into F ′ = ∂P F using the
Shattering Lemma (Lemma 13), and apply the same

operations that shatter F to Mn. ∂P Mn is a nonzero

term of degree n−|P | provided that no component of σ̄
vanishes. After an appropriate substitution for variables

outside of the set V from the Shattering Lemma, we
obtain that F ′(x̄ + σ̄) ≡ a′ · MV for some nonzero

constant a′ and V ⊆ [n], whereMV denotes the product

of the variables in V .

At this point we would like to apply Lemma 14 to

derive a contradiction. However, we need to have that

|V | > 0 and that σ̄ is a common nonzero of all the
branches of F ′. The former follows from the bounds in

the Shattering Lemma provided n is sufficiently large.
To achieve the latter condition we impose a stronger

requirement on the shift σ̄ prior to shattering so that
afterward σ̄ is a common nonzero of the shattered
branches. The Shattering Lemma tells us that the factors

of the branches of the shattered formula are of the

form ∂P̃ f where f is some subformula of the Fi’s and

P̃ ⊆ P . Therefore, we require that σ̄ is a common
nonzero for all such subformulae that are nonzero. This

is what we mean by a “good” shift.

One additional technical detail is that we must apply a

substitution to the variables outside of V that preserves
the properties of σ̄ and does not zero Mn; a typical

assignment suffices.

This is the idea behind the Key Lemma.

Combining the Key Lemma with Fact 7 yields

Lemma 10, which represents Step 2 of our overall

approach as described in Section 1.2 from the Intro-

duction. Lemma 6 represents Step 1. Combining these

two steps provides a means of constructing a hitting set

generator for multilinear read-(k + 1) formulae from
a hitting set generator for multilinear read-k formulae.
[18] showed that G⌈log n⌉+1 is a hitting set gener-

ator for read-once formulae. Iteratively applying the

combined reduction and some simple properties of the

SV-generator, shows that Gw with seed length w =

8



kO(k) +k log n, is a hitting set generator for multilinear
read-k formulae. This implies a blackbox identity test
for an n-variate multilinear read-k formula F that runs
in time nkO(k)+O(k log n) and queries elements from field

of size O(n2), as the total degree of F ◦Gw is at most

O(n2). This argues the blackbox part of Theorem 1.
The formal proof may be found in the full version of

this paper [21].

ACKNOWLEDGMENT

The authors would like to thank Amir Shpilka for

bringing them into touch. This research was partially

supported by NSF grants 0728809 and 1017597 (M.A.

and D.v.M.) and by the European Community’s Seventh

Framework Programme (FP7/2007-2013) under grant

agreement number 257575 (I.V.).

REFERENCES

[1] M. Agrawal and S. Biswas, “Primality and identity
testing via chinese remaindering,” Journal of the ACM,
vol. 50, no. 4, pp. 429–443, 2003.

[2] L. Lovász, “On determinants, matchings and random
algorithms,” in Fundamentals of Computation Theory,
vol. 79, 1979, pp. 565–574.

[3] J. Schwartz, “Fast probabilistic algorithms for verifi-
cation of polynomial identities,” Journal of the ACM,
vol. 27, no. 4, pp. 701–717, 1980.

[4] R. Zippel, “Probabilistic algorithms for sparse polynomi-
als,” Symbolic and Algebraic Computation, pp. 216–226,
1979.

[5] R. DeMillo and R. Lipton, “A probabilistic remark
on algebraic program testing,” Information Processing
Letters, vol. 7, no. 4, pp. 193–195, 1978.

[6] V. Kabanets and R. Impagliazzo, “Derandomizing poly-
nomial identity tests means proving circuit lower
bounds,” Computational Complexity, vol. 13, no. 1, pp.
1–46, 2004.

[7] M. Agrawal, “Proving lower bounds via pseudo-random
generators,” Foundations of Software Technology and
Theoretical Computer Science, pp. 92–105, 2005.

[8] J. Kinne, D. van Melkebeek, and R. Shaltiel, “Pseudoran-
dom generators and typically-correct derandomization,”
in Proceedings of the 13th International Workshop on
Randomization and Computation, 2009, pp. 574–587.

[9] S. Aaronson and D. van Melkebeek, “A note on circuit
lower bounds from derandomization,” Electronic Collo-
quium on Computational Complexity, Tech. Rep. 105,
2010.

[10] M. Ben-Or and P. Tiwari, “A deterministic algorithm
for sparse multivariate polynomial interpolation,” in Pro-
ceedings of the 20th Annual ACM Symposium on Theory
of Computing, 1988, pp. 301–309.

[11] A. Klivans and D. Spielman, “Randomness efficient
identity testing of multivariate polynomials,” in Proceed-
ings of the 33rd Annual ACM Symposium on Theory of
Computing, 2001, pp. 216–223.

[12] M. Agrawal, “On derandomizing tests for certain poly-
nomial identities,” in Proceedings of the 18th Annual
IEEE Conference on Computational Complexity, 2003,
pp. 355–359.

[13] V. Arvind and P. Mukhopadhyay, “The ideal membership
problem and polynomial identity testing,” Information
and Computation, vol. 208, no. 4, pp. 351–363, 2010.

[14] M. Bläser, M. Hardt, R. Lipton, and N. Vishnoi, “De-
terministically testing sparse polynomial identities of
unbounded degree,” Information Processing Letters, vol.
109, no. 3, pp. 187–192, 2009.

[15] N. Saxena and C. Seshadhri, “Blackbox identity testing
for bounded top fanin depth-3 circuits: The field doesn’t
matter,” in Proceedings of the 43rd ACM Symposium on
Theory of Computing, 2011, to appear.

[16] S. Saraf and I. Volkovich, “Black-box identity testing
of depth-4 multilinear circuits,” in Proceedings of the
43rd ACM Symposium on Theory of Computing, 2011,
to appear.

[17] N. Saxena, “Diagonal circuit identity testing and lower
bounds,” in Proceedings of the 35th International Col-
loquium on Automata, Languages and Programming,
2008, pp. 60–71.

[18] A. Shpilka and I. Volkovich, “Improved polynomial
identity testing for read-once formulas,” in Proceedings
of the 13th International Workshop on Randomization
and Computation, 2009, pp. 700–713.

[19] N. Saxena, “Progress on polynomial identity testing,”
Bulletin of the EATCS, vol. 99, pp. 49–79, 2009.

[20] A. Shpilka and I. Volkovich, “Read-once polynomial
identity testing,” in Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, 2008, pp. 507–516.

[21] M. Anderson, D. van Melkebeek, and I. Volkovich,
“Derandomizing polynomial identity testing for multilin-
ear constant-read formulae,” Electronic Colloquium on
Computational Complexity, Tech. Rep. 188, 2010.

[22] Z. Karnin, P. Mukhopadhyay, A. Shpilka, and
I. Volkovich, “Deterministic identity testing of depth-
4 multilinear circuits with bounded top fan-in,” in

9



Proceedings of the 42nd ACM Symposium on Theory of
Computing, 2010, pp. 649–658.

[23] Z. Karnin and A. Shpilka, “Black box polynomial iden-
tity testing of generalized depth-3 arithmetic circuits
with bounded top fan-in,” in Proceedings of the 23rd
Annual IEEE Conference on Computational Complexity,
2008, pp. 280–291.

[24] N. Saxena and C. Seshadhri, “An almost optimal rank
bound for depth-3 identities,” in Proceedings of the 24th

Annual IEEE Conference on Computational Complexity,
2009, pp. 137–148.

[25] Z. Dvir and A. Shpilka, “Locally decodable codes with
two queries and polynomial identity testing for depth 3
circuits,” SIAM Journal on Computing, vol. 36, no. 5,
pp. 1404–1434, 2007.

[26] N. Saxena and C. Seshadhri, “From Sylvester-Gallai
configurations to rank bounds: Improved black-box iden-
tity test for depth-3 circuits,” Electronic Colloquium on
Computational Complexity, Tech. Rep. 13, 2010.

10


