
Maximum Matching and Linear Programming
in Fixed-Point Logic with Counting

Matthew Anderson, Anuj Dawar, and Bjarki Holm

University of Cambridge Computer Laboratory
firstname.lastname@cl.cam.ac.uk

Abstract—We establish the expressibility in fixed-point logic
with counting (FPC) of a number of natural polynomial-time
problems. In particular, we show that the size of a maximum
matching in a graph is definable in FPC. This settles an open
problem first posed by Blass, Gurevich and Shelah [1], who asked
whether the existence of perfect matchings in general graphs
could be determined in the more powerful formalism of choiceless
polynomial time with counting. Our result is established by
noting that the ellipsoid method for solving linear programs of
full dimension can be implemented in FPC. This allows us to
prove that linear programs of full dimension can be optimised
in FPC if the corresponding separation oracle problem can be
defined in FPC. On the way to defining a suitable separation
oracle for the maximum matching problem, we provide FPC
formulas defining maximum flows and canonical minimum cuts
in capacitated graphs.

I. INTRODUCTION

The question of whether there is a logical characterisation
of the class P of problems solvable in polynomial time, first
posed by Chandra and Harel [2], has been a central research
question in descriptive complexity for three decades. At one
time it was conjectured that FPC, the extension of inflationary
fixed-point logic by counting terms, would suffice to express
all polynomial-time properties, but this was refuted by Cai,
Fürer and Immerman [3]. Since then, a number of logics have
been proposed whose expressive power is strictly greater than
that of FPC but still contained within P. Among these are
FPR, fixed-point logic with rank operators [4], and C̃PT(Card),
choiceless polynomial time with counting [1], [5]. For both of
these it remains open whether their expressive power is strictly
weaker than P.

Although it is known that FPC does not express all
polynomial-time computable properties, the descriptive power
of FPC still forms a natural class within P. For instance, it has
been shown that FPC can express all polynomial-time proper-
ties on many natural graph classes, such as any class of proper
minor-closed graphs [6]. Delimiting the expressive power of
FPC therefore remains an interesting challenge. In particular,
it is of interest to establish what non-trivial polynomial-time
algorithmic techniques can be expressed in this logic. The
conjecture that FPC captures P was based on the intuition that
the logic can define all “obvious” polynomial-time algorithms.
The result of Cai et al. and the subsequent work of Atserias et
al. [7] showed that one important technique—that of Gaussian
elimination for matrices over finite fields—is not captured

by FPC. The question remains what other natural problems
for which membership in P is established by non-trivial
algorithmic methods might be expressible in FPC.

For instance, it was shown by Blass et al. [5] that there
is a sentence of FPC that is true in a bipartite graph G if,
and only if, G contains a perfect matching. They posed as
an open question whether the existence of a perfect matching
on general graphs can be defined in C̃PT(Card) (see also [8],
[9] for more on this open question). Indeed, this question first
appears in [1] where it is stated that it seems “unlikely” that
this problem can be decided in C̃PT(Card). One of our main
contributions in this paper is to settle this question by showing
that the size of a maximum matching in a general graph can
be defined in FPC (and therefore also in C̃PT(Card)).

On the way to establishing this result, we show that a
number of other interesting problems can be defined in FPC.
We begin by showing that FPC can define feasible points in
full-dimensional polyhedra. That is, there is an FPC formula
which, for a full-dimensional compact convex set in Euclidean
space given by finite intersections of linear inequalities called
constraints (suitably represented as a relational structure, with-
out an ordering on the set of variables or constraints), defines
a point inside the set if one exists.

Our FPC-definable point is obtained by encoding a version
of Khachiyan’s ellipsoid method [10]. It is not difficult to
see that the numerical calculations required in that method
can all be expressed in FPC, since this logic can express
all polynomial-time properties of ordered structures. The key
stumbling block is that the ellipsoid method requires us, at
each iteration, to choose a constraint that is violated by the
centre of the current ellipsoid containing the polytope (if there
is no such constraint, then the centre provides us with our
feasible point). This chosen constraint is then used to reduce
the volume of the ellipsoid and a new centre is calculated.
In order to obtain a choiceless version of this algorithm,
we note that the ellipsoid method is robust under which
violated constraint is used. Indeed, a linear combination of
violated constraints suffices. With this in mind, we take, at
each iteration, the sum of all violated constraints. This yields
an implementation of the ellipsoid method in FPC, which gives
us our first result.

In many applications, the set of constraints is not given
explicitly (indeed, it may be exponentially large) but is de-
termined instead by a separation oracle. This is a procedure

which, given a candidate point x, determines whether x is
feasible and, if it is not, returns a constraint that is violated
by x. We show that as long as a separation oracle for
a full-dimensional polyhedron is itself expressible in FPC,
then the linear optimisation problem on the polyhedron is
expressible in FPC (that is, there is an FPC interpretation
defining a point in the polyhedron which maximises a given
linear function). This parallels the classical polynomial-time
reduction from optimisation to separation (c.f., [11]). These
results are presented in more detail in Section III.

As a first application of the FPC-definability of explicitly-
given linear programs, we show that a maximum flow in a
capacitated graph is definable in FPC. Indeed, this follows
rather directly from the first result, since the flow polytope
is of size polynomial in G and explicitly given, and hence a
separation oracle can be easily defined from G in FPC. These
results are presented in Section IV.

Next, we use the definability of maximum flows to show
that minimum cuts are also definable in FPC. That is, in the
vocabulary of capacitated graphs, there is a formula which
defines a set of vertices C corresponding to a minimum value
cut separating s from t. The cut C defined in this way is
canonical in a strong sense, in that we show that it is the
smallest (under set-inclusion) minimum cut separating s from
t. These results are discussed in Section V.

Finally, we turn to the maximum matching problem. For a
graph G = (V,E), the matching polytope is given by a set of
constraints of size exponential in the size of G. We show that
there is a separation oracle for this set definable from G in
FPC, using the definability of minimum cuts. To be precise, we
use the fact that a separation oracle for the matching polytope
can be obtained from a computation of minimum odd-size
cuts in a graph [12]. In Section VI we prove that there is
always a pair of vertices s, t such that a canonical minimum
(s, t)-cut is a minimum odd-size cut. This, combined with the
definability of canonical minimum cuts gives us the separation
oracle for matching that we seek. Note that it is not possible in
general to actually define a canonical maximum matching. To
see this, consider Kn, the complete graph on n vertices. This
graph contains an exponential number of maximum matchings
and for any two of these matchings, there is an automorphism
of the graph taking one to the other. Thus, it is not possible
for any formula of FPC (which is necessarily invariant under
isomorphisms) to pick out a particular matching. What we can
do, however, is to define a formula that gives the size of the
maximum matching in a graph. This, in turn, enables us to
write a sentence of FPC that is true in a graph G if, and only
if, it contains a perfect matching. Our results on matchings are
presented in Section VII.

For brevity, we defer most proofs to the complete version
of this paper [13]. The complete version also contains a
generalisation of our linear-programming results, for polytopes
which may not have full dimension.

II. BACKGROUND

We write [n] to denote the set of positive integers
{0, . . . , n − 1}. Given sets I and A, a column vector u over
A indexed by I is a function u : I → A, and we write AI for
the set of all such vectors. Similarly, an I, J-matrix over A is
a function M : I ×J → A and we write Mij for M(i, j) and
Mi for the row (vector) of M indexed by i. For an integer
z, |z| denotes its absolute value. For a vector v ∈ QI , ‖v‖
denotes its Euclidean norm and ‖v‖∞ := maxi∈I |vi| denotes
its infinity norm.

A. Logics and Structures

A relational vocabulary τ is a finite sequence of relation
and constant symbols (R1, . . . , Rk, c1, . . . , c`), where every
relation symbol Ri has a fixed arity ai ∈ N. A structure A =
(dom(A), RA

1 , . . . , R
A
k , c

A
1 , . . . , c

A
`) over the vocabulary τ (or

a τ -structure) consists of a non-empty set dom(A), called the
universe of A, together with relations RA

i ⊆ dom(A)ai and
constants cAj ∈ dom(A) for each 1 ≤ i ≤ k and 1 ≤ j ≤ `.
Members of the set dom(A) are called the elements of A and
we define the size of A to be the cardinality of its universe. In
what follows, we often consider multi-sorted structures. That
is, dom(A) is given as the disjoint union of a number of
different sorts. In this paper we consider only structures over
a finite universe and for a particular vocabulary τ we use fin[τ]
to denote the set of all finite τ -structures.

a) Fixed-point logic with counting: Fixed-point logic
with counting (FPC) is an extension of inflationary fixed-point
logic with the ability to express the cardinality of definable
sets. The logic has two types of first-order variable: element
variables, which range over elements of the structure on
which a formula is interpreted in the usual way, and number
variables, which range over some initial segment of the natural
numbers.

The atomic formulas of FPC[τ] are all formulas of the form:
µ = η or µ ≤ η, where µ, η are number variables; s = t
where s, t are element variables or constant symbols from τ ;
and R(t1, . . . , tm), where each ti is either an element variable
or a constant symbol and R is a relation symbol of arity m.
The set FPC[τ] of FPC formulas over τ is built up from
the atomic formulas by applying an inflationary fixed-point
operator [ifpR,~xφ](~t); forming counting terms #xφ, where φ
is a formula and x an element variable; forming formulas of
the kind s = t and s ≤ t where s, t are number variables or
counting terms; as well as the standard first-order operations
of negation, conjunction, disjunction, universal and existential
quantification. Collectively, we refer to element variables and
constant symbols as element terms, and to number variables
and counting terms as number terms.

For the semantics, number terms take values in [n+ 1] and
element terms take values in dom(A) where n := |dom(A)|.
The semantics of atomic formulas, fixed-points and first-order
operations are defined as usual (c.f., e.g., [14] for details), with
comparison of number terms µ ≤ η interpreted by comparing
the corresponding integers in [n + 1]. Finally, consider a
counting term of the form #xφ, where φ is a formula and x

an element variable. Here the intended semantics is that #xφ
denotes the number (i.e., the element of [n+ 1]) of elements
that satisfy the formula φ.

In general, a formula φ(~x, ~µ) of FPC defines a relation over
dom(A)] [n + 1] that is invariant under automorphisms of
A. For a more detailed definition of FPC, we refer the reader
to [14], [15].

b) Logical interpretations: We frequently consider ways
of defining one structure within another in some logic L,
such as first-order logic or fixed-point logic with counting.
Consider two vocabularies σ and τ and a logic L. An m-ary
L-interpretation of τ in σ is a sequence of formulae of L in
vocabulary σ consisting of: (i) a formula δ(~x); (ii) a formula
ε(~x, ~y); (iii) for each relation symbol R ∈ τ of arity k, a
formula φR(~x1, . . . , ~xk); and (iv) for each constant symbol
c ∈ τ , a formula γc(~x), where each ~x, ~y or ~xi is an m-tuple
of free variables. We call m the width of the interpretation.
We say that an interpretation Θ associates a τ -structure B to a
σ-structure A if there is a surjective map h from the m-tuples
{~a ∈ (dom(A)] [n+ 1])m | A |= δ[~a]} to B such that:
• h(~a1) = h(~a2) if, and only if, A |= ε[~a1,~a2];
• RB(h(~a1), . . . , h(~ak)) if, and only if, A |=
φR[~a1, . . . ,~ak];

• h(~a) = cB if, and only if, A |= γc[~a].
Note that an interpretation Θ associates a τ -structure with
A only if ε defines an equivalence relation on (dom(A)]
[n+ 1])m which is a congruence with respect to the relations
defined by the formulae φR and γc. In such cases, however,
B is uniquely defined up to isomorphism and we write
Θ(A) := B.

It is not difficult to show that formulas of FPC compose
with reductions in the sense that, given an interpretation Θ of
σ in τ and a σ-formula φ, we can define a τ -formula φ′ such
that A |= φ′ if, and only if, Θ(A) |= φ (see [16, Sec. 3.2]).

B. Numbers, Vectors and Matrices

Let z be an integer, b ≥ dlog2(|z|)e, B = [b] and write
bit(x, k) to denote the k-th least-significant bit in the binary
expansion of x ∈ N. We view the integer z = s · x as a
product of a sign s ∈ {−1, 1} and a natural number x. We
can represent z as a single-sorted structure B on a domain
of bits B over the vocabulary τZ := {X,S,≤B}. Here ≤B

is interpreted as a linear ordering of B, the unary relation
S indicates that the sign s of the integer is 1 if SB = ∅
and −1 otherwise, and the unary relation X is interpreted as
XB = {k ∈ B | bit(x, k) = 1}. That is k ∈ XB when the
“the k-th bit in the binary expansion of x is 1.” Similarly we
consider a rational number q = s · xd as a structure on the
domain of bits B over τQ := {X,D, S,≤B}, where X and S
are as before and D is interpreted as the binary encoding of
the denominator d when DB 6= ∅.

We now generalise these notions and consider unordered
tensors over the rationals (the case of integers is completely
analogous). Let J1, . . . , Jr be a family of finite non-empty
sets. An unordered tensor T over Q is a function T : J1 ×
· · · × Jr → Q. We write tj1...jr = sj1...jr

xj1...jr

dj1...jr
to denote

the element of T indexed by (j1, . . . , jr) ∈ J1 × · · · × Jr.
Writing m ∈ N for the the maximum absolute value of integers
appearing as either numerators or denominators of elements
in the range of T , let b ≥ dlog2(|m|)e and B = [b]. The
tensor T is then an (r + 1)-sorted structure T with r index
sorts J1, . . . , Jr and a bit sort B over the vocabulary σten,r :=
{X,D, S,≤B}. Here ≤B is interpreted as before, the (r+1)-
ary relation S is interpreted as indicating the value of the sign
sj1...jr ∈ {−1, 1} as before, the (r + 1)-ary relation X is
interpreted as

{(j1, . . . , jr, k) ∈ J1 × · · · × Jr ×B | bit(xj1...jr , k) = 1},

and the (r + 1)-ary relation D is similarly interpreted as the
binary representation of the denominators of T . We are only
interested in the case of rational vectors and matrices and so
define the vocabularies τvec := σten,1 and τmat := σten,2.

In [17] it is shown that a variety of basic linear-algebraic
operations on rational vectors and matrices described in this
way can be expressed in fixed-point logic with counting.
These include computing equality, norms, dot product, matrix
product, determinant and inverse.

C. Linear Programming

We recall some basic definitions from polyhedral combina-
torics and linear optimisation. For further background, see, for
example, the textbook by Grötschel et al. [11].

1) Geometry: Consider the rational Euclidean space QV

indexed by a set V . For a point x ∈ QV and ε ∈ Q≥0
let S(x, ε) := {y ∈ QV | ||x− y|| ≤ ε} denote the sphere of
radius ε about x. This notion intuitively extends to S(K, ε) :=⋃

x∈K S(x, ε) for any set K ⊆ QV . A positive definite matrix
E ∈ QV×V , i.e., E is symmetric and has only positive
eigenvalues, and point x ∈ QV specify an ellipsoid

Ell(E, x) := {y ∈ QV | (y − x)>E−1(y − x) ≤ 1}.

Because E is positive definite, Ell(E, x) has full dimension in
QV , i.e., it contains a sphere of non-zero volume.

a) Polytopes: The solutions to a system of linear equali-
ties and inequalities over QV is the intersection of some num-
ber of half-spaces of the kind {x ∈ QV | a>x ≤ b} specified
by the constraint a>x ≤ b, where a ∈ QV and b ∈ Q. A
(rational) polytope is a convex set P ⊆ QV which is the inter-
section of a finite number of half-spaces. That is to say, there
are a set of constraints C, a constraint matrix A ∈ QC×V and
vector b ∈ QC , such that P = PA,b := {x ∈ QV | Ax ≤ b}.
A polytope which is also compact is called a polyhedron.

The size, or bit complexity, of rational vector c (denoted 〈c〉)
is the number of bits required to encode c in some standard
encoding. Note that 〈c〉 is at least the dimension of c. The size
of a constraint a>x ≤ b is then 〈

(
a
b

)
〉. If Ax ≤ b is a system

of linear inequalities, its size is the maximum over the sizes of
its individual constraints. Note that this measure is explicitly
independent of the number of constraints in the system. The
size of a polytope P is the minimum over the sizes of the
systems Ax ≤ b such that P = PA,b.

A polyhedron P is said to be R-circumscribed when there is
an R ∈ Q≥0 such that P ⊆ S(0V , R). A polytope is bounded
if it has full dimension and is circumscribed.

2) Problems on Polytopes: We are interested in two main
combinatorial problems on polytopes: linear optimisation and
separation.

Problem 1 (Linear Optimisation). Let V be a set, P ⊆ QV be
a polytope and c ∈ QV . The linear optimisation problem on
P is the problem of determining either (i) an element y ∈ P
such that c>y = max{c>x | x ∈ P}, (ii) that P = ∅, or (iii)
that P is unbounded in the direction of c.

An instance of the linear optimisation problem is called a
linear program and the linear function x 7→ c>x is called the
objective function.

Problem 2 (Separation). Let V be a set, P ⊆ QV be a
polytope and y ∈ QV . The separation problem on P is the
problem of determining either (i) that y ∈ P or (ii) a vector
c ∈ QV with c>y > max{c>x | x ∈ P} and ‖c‖∞ = 1.

Over families of rational polytopes, the optimisation and
separation problems are polynomial-time equivalent (c.f., e.g.,
[11, Theorem 6.4.9]). Here the time bound is measured in the
size of the polytope and all other parameters of the problem.

D. Representation

When we deal with polytopes as objects in a computation,
we need to choose a representation which gives a finite
description of a polytope. In particular, in dealing with logical
definability of problems on polytopes, we need to choose a
representation of polytopes by relational structures.

Definition 3. A representation of a class P of polytopes is
a relational vocabulary τ along with an onto function ν :
fin[τ] → P which is isomorphism invariant, that is, A ∼= B
implies ν(A) ∼= ν(B).

For concreteness, consider the vocabulary τ := τmat] τvec
obtained by taking the disjoint union of the vocabularies for
rational matrices and vectors. A τ -structure over a universe
consisting of a set V of variables and a set C of constraints
describes a constraint matrix A ∈ QC×V and bound vector b ∈
QC . Thus, the function taking such a structure to the polytope
PA,b is a representation of the class of rational polytopes. We
call this the explicit representation.

Note that the explicit representation of polytopes has the
property that both the size of the polytope (i.e., the maximum
size of any constraint) and the number of constraints of ν(A)
are polynomially bounded in the size of A. We will also be
interested in representations ν where the number of constraints
in ν(A) is exponential in |A|, but we always confine ourselves
to representations where the size of the constraints is bounded
by a polynomial in A. We formalise this by saying that a
representation ν is well described if there is a polynomial
p such that 〈ν(A)〉 = p(|A|), for all τ -structures A. In
particular, in all representations we consider the dimension
of the polytope ν(A) is bounded by a polynomial in |A|.

We are now define what it means to express the linear
optimisation, separation and circumscription problems in FPC.

Definition 4. We say that the linear optimisation problem for
a class of polytopes P is expressible in FPC with respect
to a representation ν : fin[τ] → P if there is an FPC
interpretation of τQ] τvec in τ] τvec which takes a structure
coding a τ -structure A and a vector c to a number f and
a vector y such that either (i) f = 0, y ∈ ν(A) and
c>y = max{c>x | x ∈ ν(A)}, (ii) f = 1, y = 0 and
ν(A) = ∅, or (iii) f = 1, y = 1 and ν(A) is unbounded
in the direction of c.

Definition 5. The separation problem for a class of polytopes
P is expressible in FPC with respect to a representation ν :
fin[τ]→ P if there is an FPC interpretation of τvec in τ] τvec

which takes a structure coding a τ -structure A and a vector
y to a vector c such that either (i) y ∈ ν(A) and c = 0, or (ii)
c ∈ QV with c>y > max{c>x | x ∈ ν(A)} and ‖c‖∞ = 1.

Definition 6. The circumscription problem for a class of
polytopes P is expressible in FPC with respect to a repre-
sentation ν : fin[τ] → P if there is an FPC interpretation of
τQ in τ which takes a τ -structure to a rational R such that
ν(A) ⊆ S(0, R).

III. LINEAR PROGRAMS AND SEPARATION ORACLES

Linear programming has a rich history in complexity theory.
Early work by Dantzig [18] gave a combinatorial algorithm—
the simplex method—for solving linear programs. The algo-
rithm traverses the vertices of the polytope favouring vertices
that improve the objective value. Although the simplex method
has been useful in practice, it tends to be less useful in
theory because strong worst-case performance guarantees are
not known (stronger guarantees are known for its average-
case and smoothed complexity [19]). The 1970s saw a series
of works studying linear programming from a geometric
perspective (e.g., [20]). This line culminated in the break-
through of Khachiyan [10] which established a polynomial-
time algorithm—the ellipsoid method—for solving linear pro-
grams. Subsequent work (e.g., [21]) showed that the ellipsoid
method is quite robust and can in fact be used to solve
more general optimisation problems over convex sets, provided
there is a means of solving the separation problem for those
sets (briefly, if there exists a separation oracle). Indeed,
even optimisation problems with an exponential number of
constraints may be solved provided a separation oracle.

Section III-A discusses a simplified version of the ellipsoid
method. Section III-B shows how to express the simplified
ellipsoid method in FPC and, in doing so, gives a separation
oracle for polytopes represented explicitly by an input matrix
and vector. Section III-C discusses how the classic polynomial-
time reduction from optimisation to separation on rational
bounded polytopes can be expressed in FPC.

A. Overview of the Ellipsoid Method

The most basic version of the ellipsoid method takes as
input an explicit description of a full-dimension rational poly-

Fig. 1. A simplified Ellipsoid Method.

SEM(A, b,R)

Input: A ∈ QC×V , b ∈ QC , R ∈ Q such that PA,b is in
S(0, R) and has full dimension.

Output: y ∈ PA,b.

1: Set starting ellipsoid Ell(E0, y0) to sphere of radius R
around the origin: E0 ← R2 · IV and y0 ← 0V .

2: for i ∈ {0, 1, 2, . . .} do
3: if Ayi ≤ b then return yi.
4: Select k ∈ C such that Aky

i > bk.
5: c← Ak.
6: yi+1 ← yi − 1

|V |+1
Eic√
c>Eic

.

7: Ei+1 ← 2|V |2+3
2|V |2

(
Ei − 2

|V |+1
Eicc>Ei

c>Eic

)
.

tope PA,b, which is contained in a sphere of radius R about the
origin, and outputs a point y ∈ PA,b. Intuitively, the ellipsoid
method is a geometric version of binary search. Start with an
ellipsoid (the sphere S(0, R)) containing the entire polytope.
If, at any step, the centre of the current ellipsoid is contained
within the polytope, then the search is done. Otherwise, there
is a violated constraint by the ellipsoid centre and hence there
is a hyperplane through the ellipsoid centre which divides
the ellipsoid in half without intersecting the polytope. In this
case, we select a new ellipsoid which contains the half of the
current ellipsoid that contains the polytope, and the procedure
is repeated. This algorithm (SEM) is described in Figure 1.

Since PA,b has full dimension, it has nonzero volume. It can
be shown that the volume of the ellipsoids generated by SEM
decrease to less than the volume of PA,b within a polynomial
number of steps in the size of the polytope. Hence the algo-
rithm must locate a point y within the polytope in polynomial
time [10]. The ellipsoid method has the remarkable property
that its correctness is independent of the separating hyperplane
chosen; in addition the hyperplane’s bit size contributes only
polynomially to the running time [11].

B. Expressing the Simplified Ellipsoid Method in FPC

In this section we show that in fixed-point logic with count-
ing, we can define an element of any explicitly represented
bounded polytope.

Theorem 7 (Simplified Ellipsoid Method). There is an FPC-
interpretation of τvec in τmat]τvec]τQ which takes a structure
coding A ∈ QC×V , b ∈ QC and R ∈ Q, for which PA,b ⊆
S(0, R) and has full dimension, to a vector y ∈ PA,b.

To prove this theorem, it suffices to show that the SEM
algorithm can be expressed in FPC. To that end, we note
that in FPC we can express the relevant manipulations on
rational values, vectors and matrices, such as addition and
multiplication [17], even when they are indexed by unordered
sets. The potential irrationality of square-roots (line 6 of the
algorithm) can be dealt with by appropriate rounding to a
definable precision. It can also be seen that the iteration of

the algorithm can be simulated by a fixed-point computation
to a fixed polynomial degree. Overall, it is not hard to see that
all of the steps in SEM can be expressed in fixed-point logic
with counting, save one: line 4.

To explain where the problem lies, consider A ∈ QC×V

and b ∈ QC . Given a point y ∈ QV , it can be expressed in
FPC whether y satisfies Ay ≤ b and, if not, it can be seen
that there is a formula of FPC which defines a subset of C
corresponding to the violated constraints. However, the logic
is in general not able to choose a particular constraint from
the unordered set C. Our key observation here is that linearity
implies that the sum of all such violated constraints is itself
a violated constraint for non-empty polytopes and hence the
choice made by SEM is superfluous. This can be formally
stated as follows.

Proposition 8. Let A ∈ QC×V , b ∈ QC , x ∈ QV and
C ⊇ S 6= ∅. Suppose PA,b is non-empty and (Ax)s 6≤ bs
for all s ∈ S. Define aS :=

∑
s∈S As. Then a>S x >

max{a>S y | y ∈ PA,b} and aS 6= 0V .

Proof. Define bS :=
∑

s∈S bs. That a>S x > bS is immediate
from linearity. Since the polytope is non-empty pick any point
y ∈ PA,b. By definition, Ay ≤ b. Linearity implies that
a>S y ≤ bS . Thus a>S x > bS ≥ max{a>S y | y ∈ PA,b}. This
also implies that aS 6= 0V .

This observation leads to a definition in FPC of the separa-
tion problem for PA,b with respect to x. Specifically, let S ⊆ C
be the set of constraints which violate the inequality Ax ≤ b.
This set can be defined by a FPC formula using rational
arithmetic. If S is empty, expressing c = 0V correctly indicates
that x ∈ PA,b. Otherwise S is non-empty; let aS be the sum of
the constraints which x violates. Since the set S is definable
in FPC so is the sum of constraints indexed by S. If aS 6= 0V ,
Proposition 8 implies that expressing c as the division of aS
by its (non-zero) infinity norm correctly indicates a separating
hyperplane for PA,b through x; moreover, both operations are
in FPC. Otherwise, aS = 0V and Proposition 8 indicates that
PA,b is empty. This means that any non-zero vector defines
a separating hyperplane for PA,b. Thus it suffices for the
interpretation to express the vector c = 1V . Overall, the
above discussion gives an FPC interpretation expressing the
separation problem for PA,b.

Theorem 9. There is an FPC interpretation of τvec in τmat]
τvec] τvec expressing the separation problem for the class
of polytopes explicitly given by constraints and represented
naturally as τmat] τvec-structures.

We conclude the sketch proof of Theorem 7 by plugging
the FPC interpretation given by Theorem 9 in for lines 3–5 of
SEM. The correctness and convergence time of the algorithm
are preserved because the standard analysis of the ellipsoid
method is independent of the particular separating hyperplane.

C. Optimisation from Separation in FPC
We show the following result parallelling the established

Turing-reduction from linear optimisation to separation.

Theorem 10 (Optimisation from Separation). Let P be a class
of bounded polytopes with a well-described representation ν
over the vocabulary τ . Let there be FPC interpretations of
τvec in τ] τvec and of τQ in τ , respectively, expressing the
separation and circumscription problems for P with respect
to ν. There is an FPC interpretation of τQ] τvec in τ] τvec

expressing the optimisation problem for P with respect to ν.

Observe that this does not imply that every linear program
over bounded polytopes can be solved in FPC. Indeed, the
polynomial-time setting shares this same limitation. Rather, we
can solve particular classes of linear programming problems
where domain knowledge can be used to express the separation
and circumscription problems in FPC. We get the following
generic consequence when Theorem 10 is combined with
Theorem 9 in the case of explicitly given polytopes.

Theorem 11 (Simplified Optimisation). There is an FPC-
interpretation of τvec in τmat] τvec] τvec] τQ which takes
a structure coding A ∈ QC×V , b ∈ QC , c ∈ QV and R ∈ Q,
for which PA,b ⊆ S(0, R) and has full dimension, to a vector
y ∈ PA,b such that c>y = max{c>x | x ∈ PA,b}.

The SEM may be used as a subroutine to solve the
linear optimisation problem on bounded polytopes by binary
searching for the optimal objective value and thus prove
Theorem 10. The search tests against a possible value γ by
adding the corresponding linear constraint −c>x ≤ −γ to
the polytope and using SEM to look for an element in the
modified polytope. Simultaneously rounding the solution with
largest objective value to have a common denominator with
bit length proportional to the size of the polytope ensures an
exact rational solution to the linear program (c.f., e.g., [11,
Theorem 6.3.2.(a)]). We argue that in FPC we can simulate
the behaviour of the combined algorithm and hence much of
the analysis follows immediately from the classical argument.
This leaves our proof to focus on showing that each step of
the algorithm can be faithfully translated into FPC.

IV. APPLICATION: MAXIMUM FLOW

Let G = (V, c) be a graph with non-negative edge capaci-
ties, that is, c : V × V → Q≥0. For a pair of distinct vertices
s, t ∈ V an (s, t)-flowis a function f : V × V → Q≥0
satisfying capacity constraints 0 ≤ f(u, v) ≤ c(u, v) for
each pair of distinct u, v ∈ V and conservation constraints∑

v∈V (f(v, u) − f(u, v)) ≥ 0 for all vertices u ∈ V \{s}.
The value val(f) of the flow f is simply the difference in the
in-flow and out-flow at t:

∑
v∈V (f(v, t)−f(t, v)). A maximum

(s, t)-flow of G is a flow whose value is maximum over all
(s, t)-flows. The standard formulation of the maximum (s, t)-
flow problem as a linear program is as follows:

max
∑
v∈V

(f(v, t)− f(t, v)) subject to

∑
v∈V

(f(v, u)− f(u, v)) ≥ 0, ∀u ∈ V \{s}

0 ≤ f(u, v) ≤ c(u, v), ∀u 6= v ∈ V.

(1)

Observe that there are |V |(|V | − 1) variables in linear
program (1) corresponding to f(u, v) for distinct u, v ∈ V .
The program has 2|V |2−2 constraints. Both the variables and
constraints can be indexed by tuples of elements from V . It
can easily be established that the maximum (s, t)-flow linear
program can be defined in FPC. That is to say, suppose that
a capacitated graph (V, c) is given as a τmat-structure with
universe V where the rational matrix c ∈ QV×V

≥0 codes the
capacities. Then, there is an FPC interpretation from τmat to
τmat] τvec that takes a capacitated graph (V, c) and a pair
s, t ∈ V and explicitly expresses a constraint matrix A and
vector b encoding the corresponding flow polytope.

In order to apply Theorem 11 to solve this optimisation
problem we must establish that the flow polytope is bounded
and has FPC interpretations expressing the separation and
circumscription problems. The FPC interpretation for sepa-
ration is immediate from Theorem 9 because the constraints
are explicitly given. For circumscription observe that every
variable is forced to lie in the range [0, ‖c‖∞] and hence the
polytope is contained in the definable sphere S(0, ‖c‖∞ · |V |).
To see that the polytope has full dimension, consider the flow
f(u, v) := 3

4
cmin

(2|V |)d(s,u) for all vertices u, v with c(u, v) > 0,
where cmin is the minimum non-zero capacity of G and d(s, u)
is the minimum distance from s to u. It can be observed
that the flow on each edge with non-zero capacity can be
independently changed by a small amount, implying that the
polytope has full dimension. Formalising this argument proves
the following.

Theorem 12. There is an FPC interpretation Φ(s, t) of τmat in
τmat which takes a τmat-structure coding a capacitated graph
G to a τmat-structure coding a maximum (s, t)-flow of G.

As the interpretation Φ defines a particular flow, the flow
must, in some sense, be canonical because it is produced
without making any choices. Informally, it is a convex com-
bination of maximum flows resulting from the consideration
of all orderings of the vertices. This is possible because
of a convex combination of maximum (s, t)-flows is also a
maximum (s, t)-flow. However, the combinatorial objects—
cuts and matchings—central to our remaining applications are
not closed under convex combinations. In the former case it is
still possible to define the notion of a canonical optimum. In
the latter case it is easy to observe, as noted in the introduction,
that defining a canonical maximum matching is not possible.

V. APPLICATION: MINIMUM CUT

An (s, t)-cutof a capacitated graph G = (V, c) is a subset
C of the vertices V which contains t but not s. The value
val(C) of the cut C is the sum of the capacity of edges going
from vertices in V \C to vertices in C. A minimum (s, t)-cut
of G is a cut whose value is the minimum over all (s, t)-
cuts. A minimum cut of G is a minimum (s, t)-cut over all
choices of distinct vertices s, t. Let f be a maximum (s, t)-
flow in G. We say a vertex v is reachable from a vertex u
in the residual graph G|f if any additional amount of flow
can be pushed from u to v in the presence of the flow f .

Define Cf := {v ∈ V | t reachable from v in G|f}. By the
max-flow/min-cut theorem, Cf is a minimum (s, t)-cut in G.
Given the FPC interpretation Φ from Theorem 12 expressing
an (s, t)-flow f , it is not difficult to construct a formula of
FPC which defines the set of vertices Cf .

Theorem 13. There is a formula ξ(x, s, t) of FPC which
given a τmat-structure coding a capacitated graph G = (V, c),
defines the vertices in a minimum (s, t)-cut of G.

In fact, the cut Cf does not depend on f at all and is the
smallest minimum (s, t)-cut in the sense that it is contained
in all other minimum (s, t)-cuts of G.

Lemma 14. Let G = (V, c) be a capacitated graph with
distinct vertices s, t ∈ V . Then the cut Cf is independent
of the choice of a maximum (s, t)-flow f of G. Moreover, Cf

is the intersection of all minimum (s, t)-cuts of G.

Lemma 14 implies that the FPC formula ξ of Theorem 13
defines a unique (s, t)-cut of the graph G and for this reason
we call it the canonical minimum (s, t)-cut of G: KG,s,t.

VI. APPLICATION: MINIMUM ODD CUT

The minimum odd cut problem is closely related to the
minimum (s, t)-cut problem. Here the goal is to define a
minimum odd cut of a graph G. That is, a cut of odd
size whose value is minimum among all odd size cuts of
G. A capacitated graph G = (V, c) is symmetric if for all
u, v ∈ V , c(u, v) = c(v, u). In this section we prove that in
each symmetric graph G there is at least one pair of vertices
s, t such that the canonical minimum (s, t)-cut KG,s,t is a
minimum odd cut of G.

Before continuing we must define several special types of
cuts. We extend a capacitated graph G = (V, c) to a marked
capacitated graph G′ = (V, c,M) with a marking M ⊆ V .
We call a vertex v ∈ V marked if v ∈ M . A cut C of a
marked graph G is said to be a marked cut, if both C and C
contain a marked vertex. A cut C of a graph G = (V, c)
with |V | even is said to be an odd cut if |C| is odd. A
marked cut C of a marked graph G = (V, c,M) with |M |
even is said to be an odd marked cut if |C ∩M | is odd (note
that this corresponds to the simpler notion when M = V).
For any set C of cuts we define the basic cuts in C to be
{C ∈ C | ∀C ′ ∈ C, C = C ′ or C 6⊇ C ′}. Note that if C is non-
empty it must contain at least one basic cut. When C is the set
of minimum (s, t)-cuts, the formula ξ of Theorem 13 defines
the unique basic cut in C. We frequently describe sets of cuts
by a sequence of the above adjectives and determine meaning
by first evaluating the adjective which appear closest to the
word “cut”. The most complex cuts we consider are “basic
minimum odd marked cuts”.

We require two technical properties involving the inter-
sections of marked cuts. The first says that basic minimum
marked cuts do not have complicated intersections with basic
minimum (s, t)-cuts.

Lemma 15. Let G = (V, c,M) be a marked symmetric graph.
Let s, t ∈M be distinct vertices and let C be a basic minimum

(s, t)-cut of G. For every basic minimum marked cut C ′ of G
one of the following holds: (i) C ⊇ C ′, (ii) C ∩ C ′ = ∅ or
(iii) {s, t} ∩ C ′ 6= ∅.

The second lemma says that given a basic minimum odd
marked cut C, there exists a minimum marked cut C ′ which
does not have a complicated intersection with C.

Lemma 16. Let G = (V, c,M) be a marked symmetric graph
with |M | even. Let C be a basic minimum odd marked cut of
G. There exists a minimum marked cut C ′ of G such that one
of the following holds: (i) C ⊇ C ′ or (ii) C ∩ C ′ = ∅.

The main result of this section is the following theorem.

Theorem 17. Let G = (V, c,M) be a marked symmetric
graph with even |M | > 0. There exist s, t ∈ M such that the
canonical minimum (s, t)-cut of G is a minimum odd marked
cut of G.

The intuition for the proof is as follows. Let G be a
symmetric graph with minimum odd cut C. Mark all vertices
in G. We use Lemma 16 to locate a basic minimum marked
cut D of G which C does not partition (that is, D is either
contained in C or disjoint from C). If D is an odd cut, and
because D is basic, a canonical minimum (s, t)-cut separating
a vertex t ∈ D from a vertex s 6∈ D is also a minimum
odd cut of G and we are done. Otherwise |D| is even and
we form a new graph G′ by collapsing D into a new super-
vertex z, and then setting the effected capacities so that value
of cuts which do not partition D are unchanged. Since C
does not partition D and |D| is even, the collapsed version
C ′ of C is a minimum odd marked cut of G′. We repeat this
collapsing procedure maintaining a graph G′ and minimum
odd marked cut C ′ until we locate a minimum marked cut
D of G′ that is also minimum odd marked cut. This provides
marked vertices s, t such that the canonical minimum (s, t)-cut
of G′ is a minimum odd cut of G′. The proof concludes using
Lemma 15 to translate this fact back to the original graph G
and in doing so argues that the canonical minimum (s, t)-cut
of G is a minimum odd cut.

We now formalise the notion of collapsing a graph. We
begin by establishing notation for substituting sets into sets.
Let C,D ⊆ V and z 6∈ V such that either C ⊇ D or C∩D =
∅. Define C(z/D) to be a subset of V ′ := (V \D) ∪ {z}

C(z/D) :=

{
(C\D) ∪ {z}, C ⊇ D,
C, C ∩D = ∅,

and for C ′ ⊆ V ′ define C ′(D/z) to be a subset of V

C ′(D/z) :=

{
(C ′\{z}) ∪D, z ∈ C ′,
C ′, z 6∈ C ′.

Observe that (C(z/D))(D/z) = C.
The subroutine COLLAPSE(G,D, z) in Fig. 2 describes a

method of collapsing the vertex set D ⊆ V in the marked
graph G = (V, c,M) to a single new super-vertex z. This
subroutine is designed to preserve a basic minimum odd
marked cut C with respect to a well-chosen marked cut D.

Fig. 2. A subroutine to collapse a set of vertices to a new single vertex.

COLLAPSE(G,D, z)

Input: A marked capacitated graph G = (V, c,M), a set
D ⊆ V and z 6∈ V .

Output: The graph obtained from G by collapsing of the
vertices in D to z.

1: V ′ ← V (z/D).

2: c′(u,w)←

c(u,w), u, w ∈ V \D,∑

x∈D c(u, x), u ∈ V \D,w = z,∑
x∈D c(x,w), w ∈ V \D,u = z.

3: M ′ ←M\D.
4: return (V ′, c′,M ′).

Fig. 3. An algorithm producing a witness for a minimum odd marked cut.

WITMINODDCUT(G,C)

Input: A symmetric graph G = (V, c,M) and a minimum
odd marked cut C of G.

Output: (s, t) ∈M2 such that KG,s,t is a minimum odd
marked cut.

1: G0 := (V 0, c0,M0)← (V, c,M).
2: C0 ← C.
3: for i ∈ {0, 1, 2, . . .} do
4: Let Di be a basic minimum marked cut of Gi such that

Ci ⊇ Di or Ci ∩Di = ∅.
5: if Di is an odd marked cut of Gi then
6: return (s, t) with t ∈ Di ∩M i and s ∈M i\Di.
7: Gi+1 ← COLLAPSE(Gi, Di, zi).
8: Ci+1 ← Ci(zi/Di).

Lemma 18. Let G = (V, c,M) be a marked symmetric graph
with |M | even. Let z 6∈ V and C,D ⊆ V be marked cuts of
G such that C ⊇ D or C ∩ D = ∅. Define C ′ := C(z/D)
and G′ := (V ′, c′,M ′) := COLLAPSE(G,D, z).

1) The values of C in G and of C ′ in G′ are identical.
2) If C is a basic minimum odd marked cut of G and |D∩

M | is even, then C ′ is a basic minimum odd marked cut
of G′, and |M ′| is even, non-zero and M ′ (M .

With the key properties of COLLAPSE established we are
ready to prove the main result of this section.

Proof of Theorem 17. Fix a basic minimum odd marked cut C
of G. Figure 3 describes the algorithm WITMINODDCUT that
computes vertices s and t witnessing the claim of the theorem
from C by iteratively collapsing G. To prove the theorem it
suffices to argue the algorithm halts and produces (s, t) ∈
V 2 such that the canonical minimum (s, t)-cut KG,s,t is a
minimum odd marked cut.

As the algorithm runs it maintains the invariant that Ci is
a basic minimum odd marked cut of Gi. Observe that this
is initially true for C0 = C because M0 = M and C is a
basic minimum odd marked cut of G. Suppose Ci is a basic

minimum odd marked cut of Gi. The basic minimum marked
cut Di of Gi with Ci ⊇ Di or Ci ∩Di = ∅ is guaranteed to
exist by Lemma 16 (if the cut given by that lemma is not basic
there must be a basic minimum marked cut strictly within it
that continues to satisfy the intersection properties with Ci).
If Di is an odd marked cut, the algorithm halts at line 6.
Otherwise the graph Gi and cut Ci are collapsed relative to
Di. The second part of Lemma 18 implies that Ci+1 is a basic
minimum odd marked cut of Gi+1. Thus the invariant holds.

Lemma 18 also implies that as the algorithm runs, |M i| is
even and M i+1 (M i. The invariant and M0 = V imply that
the test in line 5 will be successful and cause the algorithm to
halt within |V |2 iterations. Because Di is a marked cut of Gi,
when line 6 is reached Di ∩M i and M i\Di are non-empty
disjoint sets. This means that distinct s and t exist and are
returned by the algorithm. Let r be the value of i when the
algorithm halts. Fix any t ∈ Dr∩Mr and s ∈Mr\Dr. We use
the shorthand Ki to denote the canonical minimum (s, t)-cut
KGi,s,t for 0 ≤ i ≤ r. It remains to argue that K0 = KG,s,t

is a minimum odd marked cut.
Since the cut Dr is a minimum marked cut of Gr and s, t ∈

Mr, Dr is also a minimum (s, t)-cut of Gr and it has the same
value as the canonical minimum (s, t)-cut Kr. This implies
that Kr is a minimum marked cut of Gr because s, t ∈ Mr.
By Lemma 14, Dr contains Kr, but Dr is also basic, so we
conclude that Dr = Kr.

The first property of Lemma 18 implies that
val(Ci(zi/Di)) = val(Ci+1) for all 0 ≤ i < r, and
hence that val(Ci) = val(C) for all 0 ≤ i ≤ r. Since Kr

is a minimum marked cut of Gr and Cr is a marked cut
of Gr, val(Kr) ≤ val(Cr) = val(C). The first part of
Lemma 18 also implies that val(Ki+1(Di/zi)) = val(Ki+1)
for all 0 ≤ i < r. Since Ki+1(Di/zi) is an (s, t)-cut of Gi,
val(Ki) ≤ val(Ki+1(Di/zi)) for all 0 ≤ i < r. Hence we
conclude that val(K0) ≤ val(Kr) ≤ val(C).

It remains to argue that K0 is an odd marked cut. Since Kr

is an odd marked cut, it suffices to show that Ki is an odd
marked cut if Ki+1 is an odd marked cut, for all 0 ≤ i < r.
To this end assume that Ki+1 is an odd marked cut. Apply
Lemma 15 with Gi, Ki and Di; we note that (i) Ki ⊇ Di,
(ii) Ki∩Di = ∅, or (iii) {s, t}∩Di 6= ∅. Property (iii) cannot
hold because s and t are selected after Di was collapsed. This
means that Ki either contains all of Di or is disjoint from Di.
Because the Ki and Ki+1 are canonical (s, t)-cuts,

Ki ⊆ Ki+1(Di/zi) ⊆ (Ki(zi/Di))(Di/zi) = Ki.

As the algorithm did not halt at step i, |Di ∩M i| is even and
thus Ki is an odd marked (s, t)-cut.

We conclude that K0 is an odd marked cut with value at
most that of a minimum odd marked cut C of G. Therefore
K0 = KG,s,t is a minimum odd marked cut.

Consider the following procedure for locating a set of
minimum odd marked cuts in a marked symmetric graph
G = (V, c,M): For all distinct s, t ∈ M compute the
canonical minimum (s, t)-cut KG,s,t, eliminate those cuts

which are not odd, then eliminate those cuts which are not
minimal. Theorem 17 indicates that some cuts remain and
that those cuts are minimum odd cuts of G. Note that the
algorithm WITMINODDCUT in the proof of Theorem 17 is
used only in the analysis and not actually run during the above
procedure. This simple algorithm for defining a non-empty set
of minimum odd cuts is critical to expressing the separation
problem for the matching polytope in FPC.

VII. APPLICATION: MAXIMUM MATCHING

Let G = (V,E) be an undirected graph. A matching
M ⊆ E is defined by the property that no two edges in M
are incident to the same vertex. A matching M is maximum
if no matchings with size larger than M exist. A maximum
matching is perfect if every vertex in G is incident to some
edge in the matching (i.e., |M | = |V |

2).

A. Maximum Matching Program

Maximum matching has an elegant representation as a
linear program. In fact, it is an instance of a slightly more
general problem: b-matching. Let c ∈ QE

≥0, b ∈ NV and
A ∈ {0, 1}V×E be the incidence matrix of the undirected
graph G = (V,E): the columns of A correspond to the edges
E and the rows to the vertices V , and Ave = 1 if edge e is
incident on vertex v. Alternatively we view edges e ∈ E as
two-element subsets of V . The goal of the b-matching problem
is to determine an optimum of the following integer program

max c>y subject to Ay ≤ b and y ≥ 0E . (2)

We obtain the usual maximum matching problem in the special
case where b = 1V and c = 1E .

Generically, integer programming is NP-complete, so in-
stead of trying to directly solve the above program we consider
the following relaxation as a rational linear program

max c>y subject to Ay ≤ b, y ≥ 0E , and

y(W) ≤ 1

2
(b(W)− 1), ∀W ⊆ V with b(W) odd,

(3)

where y(W) :=
∑

e∈E,e⊆W ye and b(W) :=
∑

v∈W bv. Here
we have added a new set of constraints over subsets of the
vertices. The integral points which satisfy (2), also satisfy the
additional constraints that are added in (3). To see this, let
y be a feasible integral solution, consider some set W with
b(W) odd. If |W | = 1, then y(W) = 0 because no edges
have both endpoints in W , so assume |W | ≥ 2. It follows
that 2y(W) ≤ b(W), by summing the constraints of Ay ≤ b
over W with respect to only the edges with both endpoints
in W . Since b(W) is odd, 1

2b(W) is half integral, but y(W)
is integral because y is an integral solution; this means the
constraint y(W) ≤ 1

2 (b(W) − 1) is a valid constraint for all
integral solutions. In fact [22] shows something stronger.

Lemma 19 ([22, Theorem P]). The extremal points of the
linear program (3) are integral and are the extremal solutions
to the b-matching problem.

Thus to solve b-matching it suffices to solve the relaxed
linear program (3). As mentioned before, it will not be possible
to show that FPC can generally define a particular maximum
matching, there can be simply too many. However, the above
lemma means that the existence of a (likely non-integral)
feasible point y of (3) with value c>y witnesses the existence
of a maximum b-matching with value at least c>y. In addition,
the number of constraints in this linear program is exponential
in the size of the graph G. Thus, we cannot hope to interpret
this linear program directly in G, using FPC. Rather what we
can show is that there is an FPC interpretation which, given G,
b and c, expresses the separation problem for the b-matching
polytope in the linear program (3). Combining this with the
results of Section III gives an FPC interpretation expressing
the b-matching optimum.

B. Expressing Maximum Matching in FPC

The b-matching polytopes have a natural representation over
τmatch := τmat]τvec. Although the number of constraints in the
b-matching polytope may be large, the individual constraints
have size at most a polynomial in the size of the matching
instance. Thus this representation is well-described.

We now describe an FPC interpretation expressing the
separation problem for the b-matching polytope given a τmatch-
structure coding the matrix A and bound vector b. As in the
explicit constraint setting, our approach is to come up with a
definable set of violated constraints iff the candidate point is
infeasible. We then define a canonical violated constraint by
summing this definable violated set. Identifying violated vertex
and edge constraints can easily be done in FPC as before.
However, it is not immediately clear how to do this for the
odd set constraints.

To overcome this hurdle we follow the approach of [12]. Let
y be point which we wish to separate from the matching poly-
hedron. Define s := b−Ay to be the slack in the constraints
Ay ≤ b. Analogous to b(W), define s(W) :=

∑
v∈W sv .

Observe that 2y(W) + y(W : V \W) + s(W) = b(W) (here
y(W : V \W) is sum of edge variables with one endpoint
in W and one in V \W). This translates the constraints
y(W) ≤ 1

2 (b(W)− 1) exactly to y(W : V \W) + s(W) ≥ 1.
This means to find a violated constraint of this type it suffices
to find W such that y(W : V \W) + s(W) < 1.

Define a marked symmetric graph H over vertex set
U := V ∪ {z} where z is a new vertex. Let H have
symmetric capacity d: d(u, v) := ye when u, v ∈ V and
u, v ∈ e, and d(u, v) := sv when u = z and v ∈ V . Let
M := {v ∈ V | bv is odd}. If |M | is odd, add z to M . Thus
we have a marked symmetric graph H = (U, d,M). Consider
any odd marked cut W of H , without loss of generality z 6∈W
(otherwise, take the complement). Observe that the value of
edges crossing the cut is exactly y(W : V \W) + s(W); also
note that s(W) is odd. Thus there is a minimum odd marked
cut W of H with value less than 1 iff there is a violated odd
set constraint in (3).

By Theorem 17, there is a violated odd set constraint iff
for some s, t ∈ M the canonical minimum (s, t)-cut is an

minimum odd marked cut with value less than 1. We conclude,
using Theorem 13 and Lemma 14, that we can define a family
of violated odd set constraints within FPC. Summing these
defined violated constraints produces a canonical violated
constraint which must be non-trivial by Proposition 8. Thus,
as in Theorem 9 there is an FPC interpretation expressing the
separation problem for the polytope in the linear program (3).

Lemma 20. There is an FPC interpretation of τvec in τmatch]
τvec expressing the separation problem for the b-matching
polytopes with respect to their natural representation as τmatch-
structures.

Similar to the proof of Theorem 12 one can show that
the b-matching polytope has full dimension and can be
circumscribed within FPC with respect to its natural well-
described representation. Combining this with Lemma 20 and
Theorem 10, we conclude that there is an FPC interpretation
expressing the value of the maximum b-matching of a graph.

Theorem 21. There is an FPC interpretation of τQ in τmatch]
τvec which takes a τmatch] τvec-structure coding a b-matching
polytope P and a vector c to a rational number m indicating
the value of the maximum b-matching of P with respect to c.

VIII. CONCLUSION

Our main result is that the linear programming problem
on full-dimensional polyhedrons can be expressed in fixed-
point logic with counting—indeed, that the linear optimisation
problem can be expressed in FPC for any class of polytopes
for which the separation problem can be defined in FPC. As
a consequence, we solve an open problem of [1] concluding
that there is a formula of fixed-point logic with counting which
defines the size of a maximum b-matching in a graph. There
are a number of natural research directions to consider.

a) Convex programming: A polytope is an instance of a
much more general geometric object: a convex set. The robust
nature of the ellipsoid method means it has been extended to
help solve more general optimisation problems, e.g., semi-
definite programs and quadratic programs. It seems likely that
our methods can be extended to these settings.

b) Completeness: Linear programming is complete for
polynomial time under logspace reductions [23]. It follows
from our results that it cannot be complete for P under logical
reductions such as first-order interpretations, since this would
imply that P is contained in FPC. Could it still be the case
that linear programming is complete for FPC under such
weak reductions? Or perhaps FOC reductions? Even if linear
programming is not complete, there may be other interesting
combinatorial problems that can be expressed in FPC via
reduction to linear programming.

c) LP hierarchies and integrality gaps: Another intrigu-
ing connection between counting logics and linear program-
ming is established in [24], [25] where it is shown that
the hierarchy of Sherali-Adams relaxations [26] of the graph
isomorphism integer program interleaves with equivalence in
k-variable logic with counting (Ck). It is suggested [24]

that inexpressibility results for Ck could be used to derive
integrality gaps for such relaxations. It is a consequence of
the results in this paper that the Sherali-Adams approximations
of not only isomorphism, but of other combinatorial problems
can be expressed in FPC. Do our results provide another route
to using inexpressibility in FPC to prove integrality gaps?

ACKNOWLEDGMENTS

The authors would like to thank Siddharth Barman for
his helpful comments on an early draft of this paper and
the anonymous reviewers for their constructive suggestions.
Research supported by EPSRC grant EP/H026835.

REFERENCES

[1] A. Blass, Y. Gurevich, and S. Shelah, “Choiceless polynomial time,”
Ann. Pure Appl. Logic, vol. 100, pp. 141–187, 1999.

[2] A. Chandra and D. Harel, “Structure and complexity of relational
queries,” J. Comput. Syst. Sci., vol. 25, no. 1, pp. 99–128, 1982.

[3] J.-Y. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the
number of variables for graph identification,” Combinatorica, vol. 12,
no. 4, pp. 389–410, 1992.

[4] A. Dawar, M. Grohe, B. Holm, and B. Laubner, “Logics with rank
operators,” in LICS. IEEE, 2009, pp. 113–122.

[5] A. Blass, Y. Gurevich, and S. Shelah, “On polynomial time computation
over unordered structures,” J. Symbolic Logic, pp. 1093–1125, 2002.

[6] M. Grohe, “Fixed-point definability and polynomial time on graph with
excluded minors,” in LICS. IEEE, 2010, pp. 179–188.

[7] A. Atserias, A. Bulatov, and A. Dawar, “Affine systems of equations
and counting infinitary logic,” Theor. Comput. Sci., vol. 410, no. 18, pp.
1666–1683, 2009.

[8] A. Blass and Y. Gurevich, “A quick update on open problems in
Blass-Gurevich-Shelah’s article ‘On polynomial time computations over
unordered structures’,” Online at http://research.microsoft.com/ gure-
vich/annotated.html, 2005, [Accessed July 19, 2010].

[9] B. Rossman, “Choiceless computation and symmetry,” in Fields of Logic
and Computation. Springer, 2010, pp. 565–580.

[10] L. Khachiyan, “Polynomial algorithms in linear programming,” USSR
Comp. Math. Math, vol. 20, no. 1, pp. 53–72, 1980.

[11] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and
combinatorial optimization. Springer-Verlag Berlin / New York, 1988.

[12] M. Padberg and M. Rao, “Odd minimum cut-sets and b-matchings,”
Math. Oper. Res., vol. 7, no. 1, pp. 67–80, 1982.

[13] M. Anderson, A. Dawar, and B. Holm, “Maximum matching and
linear programming in fixed-point logic with counting,” arXiv, 2013.
[Online]. Available: http://arxiv.org/abs/1304.6870

[14] H. Ebbinghaus and J. Flum, Finite Model Theory. Springer, 1999.
[15] L. Libkin, Elements of Finite Model Theory. Springer, 2004.
[16] N. Immerman, Descriptive Complexity. Springer-Verlag, 1999.
[17] B. Holm, “Descriptive complexity of linear algebra,” Ph.D. dissertation,

University of Cambridge, 2010.
[18] G. Dantzig, Linear programming and extensions. Princeton University

Press, 1963, (most recent edition published in 1998).
[19] D. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why

the simplex algorithm usually takes polynomial time,” JACM, vol. 51,
no. 3, pp. 385–463, 2004.

[20] N. Shor, “Cut-off method with space extension in convex programming
problems,” Cybern. Syst. Anal., vol. 13, no. 1, pp. 94–96, 1977.

[21] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
pp. 169–197, 1981.

[22] J. Edmonds, “Maximum matching and a polyhedron with 0, 1 vertices,”
J. Res. Nat. Bur. Stand., vol. 69 B, pp. 125–130, 1965.

[23] D. Dobkin, R. Lipton, and S. Reiss, “Linear programming is log-space
hard for P,” Inform. Process. Lett., vol. 8, no. 2, pp. 96–97, 1979.

[24] A. Atserias and E. Maneva, “Sherali-Adams relaxations and indistin-
guishability in counting logics,” in ITCS. ACM, 2012, pp. 367–379.

[25] M. Grohe and M. Otto, “Pebble Games and Linear Equations,” in CSL.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012, pp. 289–304.

[26] H. Sherali and W. Adams, “A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems,” SIAM Journal on Discrete Mathematics, vol. 3, no. 3, pp.
411–430, 1990.

