On Symmetric Circuits and FPC

Matthew Anderson Anuj Dawar University of Cambridge Computer Laboratory

27 June 2013

Context / Motivation

A circuit is symmetric if every permutation of its inputs induces an automorphisms of the circuit.

A circuit is symmetric if every permutation of its inputs induces an automorphisms of the circuit.

[Denenberg-Gurevich-Shelah '86]

Characterises first-order logic FO by uniform constant-depth poly-size symmetric Boolean circuits.

[Otto '97]

Characterises infinitary logic L_∞ by certain uniform symmetric classes of infinite Boolean circuits.

A circuit is symmetric if every permutation of its inputs induces an automorphisms of the circuit.

[Denenberg-Gurevich-Shelah '86]

Characterises first-order logic FO by uniform constant-depth poly-size symmetric Boolean circuits.

[Otto '97]

Characterises infinitary logic L_∞ by certain uniform symmetric classes of infinite Boolean circuits.

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.

Vocabulary au

Finite τ -structures fin $[\tau]$

FPC Inflationary fixed-point logic extended with the ability to express the size of definable sets.

- Assume standard syntax and semantics.
- Expresses properties invariant to isomorphisms of structures.

Colored DAGs

- A \mathbb{C} -Colored Directed Acyclic Graph (CDAG) over a set U:
 - Gates G
 - Inputs I
 - Directed edges E form acyclic graph on $G \uplus I$ with leaves I with a single root gate r.
 - Coloring $\xi: G \uplus I \to \mathbb{C}$
 - Input Tuples $\lambda: I \to U^k$

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

$$\tau = \{X^1\}$$

A CDAG is an abstraction of a Boolean circuit on τ -structures:

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

$$\tau = \{X^1\}$$

A CDAG is an abstraction of a Boolean circuit on τ -structures:

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

 $\tau = \{X^1\} \ X^{\mathcal{A}} = \{x_2, x_3\}$

A CDAG is an abstraction of a Boolean circuit on τ -structures:

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

 $\tau = \{X^1\} \ X^{\mathcal{A}} = \{x_2, x_3\}$

A CDAG is an abstraction of a Boolean circuit on τ -structures:

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

 $\tau = \{X^1\} \ X^{\mathcal{A}} = \{x_2, x_3\}$

Each node in a circuit naturally evaluates to a Boolean value.

• A circuit is invariant if the value computed at the root is independent of isomorphisms of the structure.

A CDAG is an abstraction of a Boolean circuit on τ -structures:

- Let $\mathbb{B} = \{AND, OR, NOT\}.$
- Let $\mathbb{C} = \mathbb{B} \uplus \tau$.
- Color each gate with an element of B and each input with a relation from τ.
- Let U be the domain of the structure.

 $\tau = \{X^1\} \ X^{\mathcal{A}} = \{x_2, x_3\}$

- A circuit is invariant if the value computed at the root is independent of isomorphisms of the structure.
- A family of invariant Boolean circuits on τ-structures for all sizes of U defines a function fin[τ] → {0,1}.

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

• fixes the root r,

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

- fixes the root r,
- takes $i \in I$ to $\pi(i) \in I$ with

1 $\xi(i) = \xi(\pi(i))$, and **2** $\pi(\lambda(i)) = \pi(u_1, \dots, u_k) := (\sigma(u_1), \dots, \sigma(u_k)) = \lambda(\pi(i))$; and

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

• fixes the root r,

• takes
$$i \in I$$
 to $\pi(i) \in I$ with

1
$$\xi(i) = \xi(\pi(i))$$
, and
2 $\pi(\lambda(i)) = \pi(u_1, \dots, u_k) := (\sigma(u_1), \dots, \sigma(u_k)) = \lambda(\pi(i))$; and

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

• fixes the root r,

• takes
$$i \in I$$
 to $\pi(i) \in I$ with

1 $\xi(i) = \xi(\pi(i))$, and **2** $\pi(\lambda(i)) = \pi(u_1, \dots, u_k) := (\sigma(u_1), \dots, \sigma(u_k)) = \lambda(\pi(i))$; and

If π exists, σ induces an automorphism of C. (wlog., π is unique.)

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

• fixes the root r,

takes
$$i \in I$$
 to $\pi(i) \in I$ with
 $f(i) = \xi(\pi(i))$, and
 $\pi(\lambda(i)) = \pi(u_1, \dots, u_k) := (\sigma(u_1), \dots, \sigma(u_k)) = \lambda(\pi(i))$; and

• takes
$$g \in G$$
 to $\pi(g) \in G$ with
1 $\xi(g) = \xi(\pi(g))$, and
2 if $v \in G \uplus I$ has $(v,g) \in E$, then $(\pi(v), \pi(g)) \in E$.

If π exists, σ induces an automorphism of C. (wlog., π is unique.)

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

• fixes the root r,

• takes
$$i \in I$$
 to $\pi(i) \in I$ with
1 $\xi(i) = \xi(\pi(i))$, and
2 $\pi(\lambda(i)) = \pi(u_1, \dots, u_k) := (\sigma(u_1), \dots, \sigma(u_k)) = \lambda(\pi(i))$; and

• takes
$$g \in G$$
 to $\pi(g) \in G$ with
1 $\xi(g) = \xi(\pi(g))$, and
2 if $v \in G \uplus I$ has $(v,g) \in E$, then $(\pi(v), \pi(g)) \in E$.

If π exists, σ induces an automorphism of C. (wlog., π is unique.)

Let $C = (G, I, E, \xi, \lambda)$ be a CDAG over U.

Let $\sigma \in \operatorname{Sym}_U$ be a permutation.

Consider a bijection π on the nodes of ${\it C}$ that

• fixes the root r,

• takes
$$i \in I$$
 to $\pi(i) \in I$ with
1 $\xi(i) = \xi(\pi(i))$, and
2 $\pi(\lambda(i)) = \pi(u_1, \dots, u_k) := (\sigma(u_1), \dots, \sigma(u_k)) = \lambda(\pi(i))$; and

• takes
$$g \in G$$
 to $\pi(g) \in G$ with
1 $\xi(g) = \xi(\pi(g))$, and
2 if $v \in G \uplus I$ has $(v, g) \in E$, then $(\pi(v), \pi(g)) \in E$.

If π exists, σ induces an automorphism of C. (wlog., π is unique.)

Call C symmetric if $\forall \sigma \in \operatorname{Sym}_U$, σ induces an automorphism of C.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

• If S_1 and S_2 support v, then so does their transitive closure.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

If S₁ and S₂ support v, then so does their transitive closure.
 ⇒ There is unique coarsest partition Supp(v) supporting v.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

• If S_1 and S_2 support v, then so does their transitive closure. \Rightarrow There is unique coarsest partition $\operatorname{Supp}(v)$ supporting v.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

• If S_1 and S_2 support v, then so does their transitive closure. \Rightarrow There is unique coarsest partition $\operatorname{Supp}(v)$ supporting v.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

If S₁ and S₂ support v, then so does their transitive closure.
 ⇒ There is unique coarsest partition Supp(v) supporting v.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

If S₁ and S₂ support v, then so does their transitive closure.
 ⇒ There is unique coarsest partition Supp(v) supporting v.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

If S₁ and S₂ support v, then so does their transitive closure.
 ⇒ There is unique coarsest partition Supp(v) supporting v.

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

• If S_1 and S_2 support v, then so does their transitive closure. \Rightarrow There is unique coarsest partition $\operatorname{Supp}(v)$ supporting v.

- Permutations of U act directly on this labelling.
- Define Supp(C) to be the maximum over all nodes v of the number of elements in all but the largest part of Supp(v).

Let C be a symmetric CDAG over U.

A partition S of U supports a node $v \in C$ if every permutation of U that fixes the parts of S fix v under the induced automorphism.

If S₁ and S₂ support v, then so does their transitive closure.
 ⇒ There is unique coarsest partition Supp(v) supporting v.

- Permutations of U act directly on this labelling.
- Define Supp(C) to be the maximum over all nodes v of the number of elements in all but the largest part of Supp(v).

Support Theorem

 $\operatorname{Supp}(C)$ is tightly constrained by the number of nodes in C.

Supp(C) is tightly constrained by the number of nodes in C.

Support Theorem

For any $1 > \epsilon \ge \frac{2}{3}$, let C be a symmetric s-node CDAG over U with $\log |U| \ge \frac{56}{\epsilon^2}$, and $s \le 2^{|U|^{1-\epsilon}}$. Then $\operatorname{Supp}(C) \le \frac{33}{\epsilon} \frac{\log s}{\log |U|}$. Supp(C) is tightly constrained by the number of nodes in C.

Support Theorem

For any $1 > \epsilon \ge \frac{2}{3}$, let C be a symmetric s-node CDAG over U with $\log |U| \ge \frac{56}{\epsilon^2}$, and $s \le 2^{|U|^{1-\epsilon}}$. Then $\operatorname{Supp}(C) \le \frac{33}{\epsilon} \frac{\log s}{\log |U|}$.

Corollary

Poly-size symmetric CDAGs have constant support.

Application: symmetric threshold circuits = FPC

The corollary leads to a characterisation of FPC.

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.

Application: symmetric threshold circuits = FPC

The corollary leads to a characterisation of FPC.

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.

Proof Idea

- Generate the P-uniform circuit over the number sort, using the Immerman-Vardi theorem.
- 2 Label gates with their support partition.
- 3 Transform labels into tuples by duplicating gates.
- 4 Determine equality test indicating edges.
- 5 Evaluate circuit w.r.t. unordered universe using equality test.

Consider arithmetic circuits whose inputs are matrices $X \in \mathbb{F}^{U \times U}$:

- Constants 0, and 1.
- Basis $+, -, and \times$.
- Variables $X = \{x_{u,v}\}_{u,v \in U}$.

Consider arithmetic circuits whose inputs are matrices $X \in \mathbb{F}^{U \times U}$:

- Constants 0, and 1.
- Basis $+, -, and \times$.
- Variables $X = \{x_{u,v}\}_{u,v \in U}$.

The permanent Per(X) is the invariant polynomial:

$$\operatorname{Per}(X) := \sum_{\sigma \in \operatorname{Sym}_U} \prod_{u \in U} x_{u,\sigma(u)}$$

Consider arithmetic circuits whose inputs are matrices $X \in \mathbb{F}^{U \times U}$:

- Constants 0, and 1.
- Basis $+, -, and \times$.
- Variables $X = \{x_{u,v}\}_{u,v \in U}$.

The permanent Per(X) is the invariant polynomial:

$$\operatorname{Per}(X) := \sum_{\sigma \in \operatorname{Sym}_U} \prod_{u \in U} x_{u,\sigma(u)}$$

One of the most efficient, i.e., size $2^{O(|U|)}$, ways of computing Per(X) known is as a symmetric multilinear formula [Ryser '57].

Consider arithmetic circuits whose inputs are matrices $X \in \mathbb{F}^{U \times U}$:

- Constants 0, and 1.
- Basis $+, -, and \times$.
- Variables $X = \{x_{u,v}\}_{u,v \in U}$.

The permanent Per(X) is the invariant polynomial:

$$\operatorname{Per}(X) := \sum_{\sigma \in \operatorname{Sym}_U} \prod_{u \in U} x_{u,\sigma(u)} = \sum_{S \subseteq U} (-1)^{|U \setminus S|} \prod_{u \in U} \sum_{v \in S} x_{u,v}.$$

One of the most efficient, i.e., size $2^{O(|U|)}$, ways of computing Per(X) known is as a symmetric multilinear formula [Ryser '57].

Consider arithmetic circuits whose inputs are matrices $X \in \mathbb{F}^{U \times U}$:

- Constants 0, and 1.
- Basis $+, -, and \times$.
- Variables $X = \{x_{u,v}\}_{u,v \in U}$.

The permanent Per(X) is the invariant polynomial:

$$\operatorname{Per}(X) := \sum_{\sigma \in \operatorname{Sym}_U} \prod_{u \in U} x_{u,\sigma(u)} = \sum_{S \subseteq U} (-1)^{|U \setminus S|} \prod_{u \in U} \sum_{v \in S} x_{u,v}.$$

One of the most efficient, i.e., size $2^{O(|U|)}$, ways of computing Per(X) known is as a symmetric multilinear formula [Ryser '57].

Theorem

Symmetric multilinear circuits for Per(X) have size $2^{|U|^{\Omega(1)}}$.

Consider arithmetic circuits whose inputs are matrices $X \in \mathbb{F}^{U \times U}$:

- Constants 0, and 1.
- Basis $+, -, and \times$.
- Variables $X = \{x_{u,v}\}_{u,v \in U}$.

The permanent Per(X) is the invariant polynomial:

$$\operatorname{Per}(X) := \sum_{\sigma \in \operatorname{Sym}_U} \prod_{u \in U} x_{u,\sigma(u)} = \sum_{S \subseteq U} (-1)^{|U \setminus S|} \prod_{u \in U} \sum_{v \in S} x_{u,v}.$$

One of the most efficient, i.e., size $2^{O(|U|)}$, ways of computing Per(X) known is as a symmetric multilinear formula [Ryser '57].

Theorem

Symmetric multilinear circuits for Per(X) have size $2^{|U|^{\Omega(1)}}$.

Context: $2^{\Omega(\log^2 |U|)}$ size for multilinear formulas [Raz '08].

Support Theorem

For any $1 > \epsilon \ge \frac{2}{3}$, let C be a symmetric s-node CDAG over U with $\log |U| \ge \frac{48}{\epsilon}$, and $s \le 2^{|U|^{1-\epsilon}}$. Then $\operatorname{Supp}(C) \le \frac{24}{\epsilon} \frac{\log s}{\log |U|}.$

Support Theorem

For any $1 > \epsilon \ge \frac{2}{3}$, let C be a symmetric s-node CDAG over U with $\log |U| \ge \frac{48}{\epsilon}$, and $s \le 2^{|U|^{1-\epsilon}}$. Then $\operatorname{Supp}(C) \le \frac{24}{\epsilon} \frac{\log s}{\log |U|}.$

Applications:

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.

Theorem

Symmetric multilinear circuits for Per(X) have size $2^{|U|^{\Omega(1)}}$

Open Questions

- Can the notion of support be generalised:
 - to multi-sorted domains,
 - to subgroups of Sym_U , or
 - to larger ranges of ϵ ?
- Are there other applications in logic or circuit complexity?
- Is there a similar circuit characterisation of CPT(Card)?

Thanks!