
A Parallel Approach in Computing Correlation

Immunity up to Six Variables

Carole J. Etherington1, Matthew W. Anderson2,

Eric Bach3, Jon T. Butler1, Pantelimon Stănică4

1ECE Department and 4Applied Mathematics Department,
Naval Postgraduate School, Monterey, CA 93943, U.S.A.

Email: carole.etherington@navy.mil,{jbutler,pstanica}@nps.edu
2Computer Science Department, Union College

807 Union Street, Schenectady, NY 12308; Email: andersm2@union.edu
3Computer Sciences Department, University of Wisconsin
Madison, WI 53706, U.S.A.; Email: bach@cs.wisc.edu

March 10, 2015

Abstract

We show the use of a reconfigurable computer in computing the correlation immunity of
Boolean functions of up to 6 variables. Boolean functions with high correlation immunity (in
addition to other cryptographic properties) are desired in cryptographic systems because they
are immune to correlation attacks. The SRC-6 reconfigurable computer was programmed in
Verilog to compute the correlation immunity of functions. This computation is performed
at a rate that is 190 times faster than a conventional computer.

Our analysis of the correlation immunity is across all n-variable Boolean functions, for
2 ≤ n ≤ 6, thus obtaining, for the first time, a complete distribution of such functions. We
also compare correlation immunity with two other cryptographic properties, nonlinearity and
degree.

Keywords. reconfigurable computer, configurable computing, cryptographic Boolean func-
tions, correlation immunity, rotation symmetric Boolean functions

1 Introduction

The correlation immunity of a Boolean function measures the extent the variable values can be
guessed given the function value. When Boolean functions are used in encryption, functions
with high correlation immunity (along with other cryptographic properties) are preferred, since
they are less susceptible to an attack than functions with low correlation immunity. Interest in
this topic developed because Siegenthaler [28] in 1984 showed how an attack can be effectively
applied to encryption systems using functions with low correlation immunity.

Correlation immune (CI) functions are also used in machine learning (see [1, 22]): a “greedy”
method to obtain a decision tree representation of a Boolean function given just a set of input-
output pairs proceeds by choosing (recursively) a node of the tree to maximize a cost indicator

1

(information gain). However, if the function happens to have non-zero correlation immunity, this
cost function is zero and thus not useful; i.e., a decision tree representation cannot be obtained
in the case of a function that has non-zero correlation immunity. Since most n-variable functions
have zero correlation immunity for n ≥ 2, the greedy method works for most functions.

We show that a reconfigurable computer is effective in enumerating Boolean functions accord-
ing to their correlation immunity. Especially, we can compare Boolean functions with respect to
various cryptographic properties, including nonlinearity and degree due to prior use of a recon-
figurable computer in computing these cryptographic properties [27]. Since Rothaus’ original
paper on bent functions in 1976 [23], there has been much work on the cryptographic properties
of Boolean functions [11]. Such properties include strict avalanche criterion [14, 30], propagation
criteria [20], and algebraic immunity [9, 10]. We have previously shown a 60,000× speed-up in
using a reconfigurable computer to compute bent functions [27].

2 Some definitions

In this paper, we use the Landau symbol O with its usual meaning. Specifically, f = O(g)
means |f(x)| < c|g(x)| holds with some constant c, for x sufficiently large. Also, we write f ∼ g
if limx→∞

f(x)
g(x) = 1.

Let F2 be the prime field of characteristic 2. For any positive integer n, the set [n] :=
{1, . . . , n}. Let Fn

2 = {x = (x1, . . . , xn) : xi ∈ F2, for all i ∈ [n]} be the vector space of
dimension n over F2. Any function from Fn

2 to F2 is said to be a Boolean function on n variables,
whose set is denoted by Bn. Addition over F2 and Fn

2 are both denoted by ⊕ whereas addition
over integers is denoted by +. For any x ∈ Fn

2 , the weight of x is wt(x) =
∑n

i=1 xi. The algebraic
normal form (ANF) of a Boolean function f ∈ Bn is

f(x1, . . . , xn) =
⊕

a=(a1,...,an)∈Fn
2

µax
a1
1 . . . xann ,

where µa ∈ Fn
2 , for all a ∈ Fn

2 , and where xaii = 1 if ai = 0 and xaii = xi if ai = 1. The algebraic
degree of f is deg(f) = max

a∈Fn
2

{wt(a) : µa 6= 0}. The Fourier transform or the Fourier coefficient

of f ∈ Bn at u ∈ Fn
2 is

f̂(u) = 2−n
∑
x∈Fn

2

(−1)f(x)(−1)u·x,

where u · x =
⊕n

i=1 uixi is the inner product of u = (u1, . . . , un) and x = (x1, . . . , xn). The

Walsh–Hadamard transform of f ∈ Bn at u ∈ Fn
2 is Wf (u) = 2nf̂(u).

The set of Fourier coefficients {f̂(u) : u ∈ Fn
2} is said to be the Fourier spectrum of f .

The set of Walsh–Hadamard coefficients {Wf (u) : u ∈ Fn
2} is said to be the Walsh–Hadamard

spectrum of f . These transforms are invertible, that is, for all x ∈ Fn
2 ,

(−1)f(x) = 2−n
∑
u∈Fn

2

Wf (u)(−1)u·x =
∑
u∈Fn

2

f̂(u)(−1)u·x.

The Walsh-Hadamard spectrum of any Boolean function f ∈ Bn is constrained by Parseval’s
identity ∑

u∈Fn
2

Wf (u)2 = 22n. (1)

2

Since, it will be used later, we introduce below the 2n × 2n Walsh-Hadamard matrix Hn =(
(−1)b(i)·b(j)

)
0≤i,j≤2n−1

(b(i) is the binary expansion of i written as a vector with n components),

or inductively, H1 = (1), H2 =

(
1 1
1 −1

)
and, in general, Hn = H1⊗Hn−1 =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
(’⊗’ is the Kronecker product). It is known that Wf = Hn(−1)f .

The weight of a Boolean function is the weight of its truth (output) table. An n-variable
function f is balanced if its truth table has as many 0’s as 1’s, that is, its weight is exactly 2n−1.

Example 1. The weight of the AND function f(x) = x1x2 · · ·xn is 1. The weight of the
exclusive OR function f(x) = x1⊕x2⊕· · ·⊕xn is 2n−1. The exclusive OR function is balanced.

An n-variable function f has correlation immunity of order 0 ≤ k ≤ n if and only if, for
every fixed set S of k variables, and for every assignment of values to the variables in S, the
weights of all subfunctions are the same. An n-variable function f is resilient of order k if it is
balanced and has correlation immunity of order k.

An n-variable function f is correlation immune if and only if its correlation immunity k
is 1 or more. An n-variable function f is resilient if and only if it is balanced and correlation
immune. When a function has correlation immunity (resiliency) k but not k+1, we will describe
such a function as exact correlation immune (resilient) of order k.

The following result characterizes correlation immunity (resiliency) (see [11]).

Theorem 1. The following are true.

(i) An n-variable function f has correlation immunity (respectively, resiliency) of at least
order k if and only if Wf (a) = 0, for all a ∈ Fn

2 with 1 ≤ wt(a) ≤ k (respectively,
0 ≤ wt(a) ≤ k).

(ii) An n-variable function f has correlation immunity of at least order k if and only if f ⊕
xi1 ⊕ xi2 ⊕ · · · ⊕ xik is balanced for all 1 ≤ i1 < . . . < ik ≤ n.

Correlation immunity describes the extent to which the variable values can be guessed, given
the function value. A function that has low correlation immunity is the AND function on n > 1
variables. For example, if this function’s output value is 1, then the input variable values are
(x1, x2, . . . , xn) = (1, 1, . . . , 1) with probability 100%. On the other hand, when this function’s
output value is 0, there is a large uncertainty as to which variable values caused this (from
among 2n − 1 values). In a function with high correlation immunity, knowing the function’s
value yields an equal uncertainty as to the variables’ values that produced that function’s value.
For example, in the exclusive OR function f = x1 ⊕ x2 ⊕ · · · ⊕ xn, half of the assignments of
values to the variables yield f = 0 and half yield f = 1. Therefore, knowing that f = 0 or f = 1
yields the same uncertainty regarding the assignment of values to the variables. If we choose
any pair of variables and any of the four assignments of values to the pair (00,01,10,11), we also
have an equal uncertainty as to which of the remaining assignments yield f = 0 and f = 1.

Consider the exclusive OR function f = x1 ⊕ x2 ⊕ · · · ⊕ xn, and consider a subset S of
1 ≤ k < n variables. By symmetry, these might as well be the last k. When they are fixed,
the resulting subfunction is either x1 ⊕ · · · ⊕ xn−k, or its complement. Either choice has weight
2n−k−1. Therefore, f has correlation immunity of order k. Note, however that it does not have
order n correlation immunity, because, by fixing the (unique) set of variables of cardinality n,
the function becomes constant (either 0, 1), which are evidently, not balanced. It follows that

3

this function has exact correlation immunity of n − 1. We shall see later that the algebraic
degree and immunity are constrained.

We recall here that a barbell function is the function x̄1x̄2 · · · x̄n ⊕ x1x2 · · ·xn or its com-
plement. A threshold function is a function fw,T such that fw,T (x) is 1 if the weighted sum∑n

i=1wixi ≥ T , where xi is viewed as an integer equal to its logic value and wi and T are real
numbers. The Achilles heel function, f = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn/2−1xn/2, for n even, is known
to have a binary decision diagram whose number of nodes is especially sensitive to the ordering
of its variables [3].

Table 1 shows the correlation immunity of several example functions, including the barbell,
threshold, and Achilles heel functions. Since functions with odd 1’s all have correlation immunity
0, more than one-half of the Boolean functions have correlation immunity 0.

Table 1: Correlation immunity of some example n-variable Boolean functions.

Function Expression Correlation
Description Immunity

Constant Functions f = 0, f = 1 n
Parity Functions f = x1 ⊕ x2 ⊕ · · · ⊕ xn, f ⊕ 1 n− 1
Barbell Functions f = x1x2 · · ·xn ⊕ x̄1x̄2 · · · x̄n, f ⊕ 1 1

Functions With Odd Weight e.g., f = x1x2 · · ·xn, f = x1 ∨ x2 ∨ · · · ∨ xn 0
Threshold Functions e.g., f = x1x2 ∨ x1x3 ∨ x2x3 0

Achilles Heel Function f = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn/2−1xn/2, n even, f ⊕ 1 0

In applying the definition of the correlation immunity to determine the correlation immunity
of a given function, it was convenient to specify a two-step process. In the first step, we specify
that a condition hold for all k′-subsets of variables. In the second step, we specify that a condition
hold across all assignments of values to the variables chosen in the first step. For pedagogical
reasons, we could view this as a one-step process. That is, we could think of simultaneously
choosing a k′-subset and some assignment of values to the variables. In this way, we produce
one of the

(
n
k′

)
2k
′

subfunctions of f . The definition of correlation immunity then requires that

all of these
(
n
k′

)
2k
′

subfunctions have the same weight. The maximum k′ for which this is true is
the exact correlation immunity of the function. This viewpoint will be useful in the description
of the circuit to compute correlation immunity in Section 4.

3 Some results on the number of correlation immune and re-
silient functions

Various results are known about the tradeoff among cryptographic properties involving corre-
lation immunity. For example, if f is a Boolean function in n variables that has correlation
immunity of order k, then 2k divides the Hamming weight of f . Also, if f is a Boolean function
in n variables, that has correlation immunity of order k, then the degree d of f is at most n−k. If
further, f is balanced and correlation immune of order 1 or more (hence, resilient) and k < n−1,
then the degree of f is at most n − k − 1. Other more esoteric results exist, like the fact that

4

if f has correlation immunity k, then the algebraic normal form (positive polarity Reed-Muller
form) of f either has no terms of degree n− k or has all possible terms of degree n− k.

Camion et al. [4] attempted a nice recursive approach for the construction of a resilient
function f on n+ 1 variables. It is based on the Shannon decomposition of a Boolean function
f , where f = x̄nf0 ∨ xnf1, such that f0 = f |0→xn and f1 = f |1→xn . A Boolean function is
(k + 1)-resilient if and only if the following two conditions hold:

(i) f0 and f1 are resilient functions of order k;

(ii) for all n component vectors v of weight k + 1, the Walsh–Hadamard transform equation
Wf0(v) +Wf1(v) = 0 holds.

Also, if the degrees of f , f0 and f1 are equal (so, deg(f0 ⊕ f1) < deg(f), because otherwise, we
would have deg(f0 + f1) = deg(f), but that is impossible since f = f0 + xn(f0 + f1) and so, f
would increase its degree), then f has its maximum degree n+ 1− (k + 2) if and only if f0 and
f1 have their maximum degree n− (k + 1).

Improving upon an interesting result obtained by Sarkar and Maitra [24], Carlet [6] showed
the following theorem.

Theorem 2 ([6, 24]). If a degree d ≥ 1, n-variable function f has correlation immunity, respec-

tively, resiliency of order k, then its Walsh–Hadamard coefficients are divisible by 2k+1+bn−k−1
d
c,

respectively, 2k+2+bn−k−2
d
c. Moreover, the nonlinearity Nf of an order k correlation immune,

respectively, resilient function f satisfies

2k+bn−k−1
d
c |Nf ≤ 2n−1 − 2k, respectively,

2k+1+bn−k−2
d
c |Nf ≤ 2n−1 − 2k+1.

This easily implies that functions whose correlation immunity is at least 1 have even nonlin-
earity, and if, in addition, they are balanced, their nonlinearity is divisible by 4.

Let CI(n, k) (respectively, BCI(n, k)) be the number of exact order k correlation im-
mune, (respectively, further balanced) n-variable Boolean functions. The notations CI(n, k, d),
BCI(n, k, d) restricts the previous count to degree d Boolean functions.

Theorem 3. The following are true:

(i) BCI(n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI(n, k, 1) = 2
(

n
k+1

)
, 0 ≤ k ≤ n− 1.

(ii) BCI(n, n− 2) = 2
(

n
n−1

)
= 2n.

(iii) BCI(n, n− 3) = n(n−1)(3n−2)(n+1)
3 + 2

(
n

n−2

)
.

(iv) BCI(n, k, d) = 0, if n > (n− k − 1)2d−1; in particular, BCI(n, k, 2) = 0, for all k ≥ n
2 .

(v) CI(n, n− `, 2) = 0, if n > 4k − 5; in particular, CI(n, n− 2, 2) = 0, if n > 3.

Proof. We first show (i). Let f be an affine function, f(x) =
⊕n

i=1 cixi⊕c, ci, c ∈ F2. Certainly,
correlation immunity is preserved by complementation. So, from here on, we always assume
that the constant c = 0. We next take K to be the exact number of nonzero coefficients, say
cij = 1, 1 ≤ j ≤ K. If K = 0, then f is constant (hence, non-balanced) and we see that the
constant functions 1,0 are correlation immune of order n.

5

If K > 0, then f is balanced. So, the number of correlation immune functions of whatever
order will match the number of resilient functions of the same order. Using Theorem 1, we see
that f is not correlation immune (resilient) of order K, since f ⊕ xi1 ⊕ · · · ⊕ xiK = 0. Hence,
f is not balanced. However, f is correlation immune (resilient) of order k := K − 1, since then
f ⊕ xi1 ⊕ · · · ⊕ xij = 0, j ≤ K − 1 will be nonzero and linear, hence balanced. There are

(
n

k+1

)
ways of choosing the nonzero coefficients, and (i) follows. Certainly, (ii) follows by the same
argument, since we know that a function that is resilient of order n− 2 must have degree ≤ 1.

Next, the first term from claim (iii) was found in [4] and counts the number of resilient
of order n − 3 quadratic Boolean functions. The second term corresponds to affine resilient
functions of order n− 3, and follows from (i).

The item (iv) is [29, Theorem 5 and Theorem 7]. Next, we show (v). We recall the interesting
upper bound of Tarannikov et al. [29] for the correlation immunity order k of an unbalanced
Boolean function in n variables, namely

k ≤ 3n− 5

4
. (2)

For k := n − 2, n ≥ 4, this would imply n − 2 ≤ 3n−5
4 , which contradicts n ≥ 4, and this

shows that there are no unbalanced quadratic Boolean functions that are correlation immune
of order k. If f is balanced and correlation immune of order n − 2, then we can apply (iv), or
observe that the degree of f cannot exceed 1 and so, f cannot be quadratic.

Remark 4. Bierbrauer and Friedman [2, 15] found the following bound on the Hamming weight
of a function f that is correlation immune of order k

wt(f) ≥ 2n
2(k + 1)− n

2(k + 1)
,

which gives further constraints on the parameters of a correlation immune Boolean function.

Denisov [12] found that the number of n-variable correlation immune functions of order k,
say CI(n, k), is asymptotically

CI(n, k) ∼ 22n+Q−k(2n−1π)−(M−1)/2,

where M =
∑k

j=0

(
n
j

)
and Q =

∑k
j=1 j

(
n
j

)
. Denisov published a “correction” in 2000 (see [13]),

but it turns out that his original result was correct and the latter paper is incorrect, as was
shown by Canfield et al. [5]. For k = 1, one can get a simpler estimate

CI(n, 1) ∼ Dn =
1

2

(
8

π

)n/2

22n−n2/2, as n→∞.

A more refined version of the approximation for CI(n, 1) was computed by Bach [1]

CI(n, 1) = Dn

(
1− n2

2n+2
+O

(
n4

22n

))
.

Denisov [12] also showed that the number BCI(n, k) of balanced and correlation immune (re-
silient) functions, satisfies the asymptotic formula

BCI(n, k) ∼ 22n−(nk)(n−k)/2(2/π)M/2, as n→∞,

6

where M =
∑k

j=0

(
n
j

)
.

There are various results concerning bounds on the number of correlation immune and/or
resilient functions and the interested reader can find some in the listed references (or elsewhere).
Also, Yang and Guo [31] found in 1995 that the number of correlation immune functions of
order 1 is upper bounded by

CI(n, 1) ≤
2n−1∑
k=0

k∑
r=0

(
2n−2

r

)2(
2n−2

k − r

)2

.

Le Bars and Viola [16] found a lower bound for the number of resilient Boolean functions of
order 1, namely

BCI(n, 1) ≥ 22n−n2+ 3
2
n+1e

1
2
−n(nπ)n/2.

A quick analysis of this lower bound gives us a ‘glimpse’ at the complexity of completely enu-
merating all resilient functions for n = 6, 7: if n = 6 there are more than 242.77, and for n = 7,
there are more than 296.72 resilient Boolean functions. By using a construction of a resilient of
order k function in n variables from a resilient of order 1 in n − k + 1 variables, Le Bars and
Viola found (for free) the following lower bound for the number of resilient of order k functions

BCI(n, k) ≥ 22n−k+1−(n−k+1)2+ 3
2

(n−k+1)+1ek−n−
1
2 ((n− k + 1)π)(n−k+1)/2,

which can be combined with Schneider’s bound [25, 26] for 0 < k < n,

BCI(n, k) ≤
n−k∏
j=1

(
2j

2j−1

)(n−j−1
k−1)

.

The previous bound is rather weak for high order of resiliency, and it was slightly improved by
Carlet and Klapper [8], who showed that BCI(n, k) is upper bounded by

2
∑n−k−1

i=0 (ni) − 2
∑n−k−2

i=0 (ni)

222k+1−1
+ 2

∑n−k−2
i=0 (ni), for 2 ≤ k < n/2

21+
∑n−k−1

i=0 (ni)−
∑n−k−1

i=0 (k−1
i)(1 + ε) + 2

∑n−k−2
i=0 (ni), ε = 2−Ω((2n/n)1/2), for n/2 ≤ k < n

and Carlet and Gouget [7], who showed that BCI(n, k) is upper bounded by

2
∑n−k−2

i=0 (ni) + 2−(k+1
n−k−1)−1

(
n

n− k − 1

) n−k∏
j=1

(
2j

2j−1

)(n−j−1
k−1)

.

We further point to [18] for an alternative representation of resilient functions.
Unfortunately, all of these bounds, and asymptotics for n → ∞, simply estimate counts of

the correlation immune and resilient functions. They say nothing about the size of the afore-
mentioned sets for a small number of variables n. Indeed, there are no known expressions for
the exact counts CI(n, k) and/or BCI(n, k) for n ≥ 6 (and all k > 1). We show that a reconfig-
urable computer, combined with the theoretical results can tractably compute the correlation
immunity of functions exhaustively along with other cryptographic properties. Thus, we can
compare their correlation immune/resilient properties, and compare against other cryptographic
properties, such as nonlinearity and degree.

7

Correlation

Immunity
Update

CI Counter

k Function

Generator

Function
Under
Test

Figure 1: Block diagram of circuit for
computing correlation immunity.

k Priority

Encoder

k=1?

2n Function

under test

2n

2n

k=2?

k=n?

m

Figure 2: Breakdown of correlation
immunity computation circuit.

4 Computation of correlation immunity

A Verilog program was written to compute the correlation immunity of Boolean functions on the
SRC-6 reconfigurable computer. Because of the large logic resources available, it was possible
to implement the correlation immunity computation for one function per clock period. With
a clock frequency of 100 MHz, we can compute a function’s correlation immunity at a rate of
100,000,000 functions per second. Later, we compare this to a conventional processor.

Fig. 1 shows a block diagram of correlation immunity computation circuit. The block on the
left labeled “Function Generator” generates the truth table of the function whose correlation
immunity is currently being computed. When this circuit is used in exhaustive enumeration, the
Function Generator is an up counter. The block labeled “Correlation Immunity” is a combina-
torial logic circuit whose input is the truth table of a function and whose output is the value of
its exact correlation immunity. The oval labeled “Update CI Counter” represents that part of
the system that records the correlation immunity. It records each contribution to the histogram
of the number of functions with various values of correlation immunity.

Fig. 2 shows a block diagram of the combinatorial logic block in Fig. 1 labeled “Correlation
Immunity”. The truth table of the function under test is applied on the left to n blocks labeled
“k = α?”, where 1 ≤ α ≤ n. Each block tests whether the function has correlation immunity α
and produces a 1 if and only if the function has correlation immunity α. This output is applied
to a priority encoder that produces at its output a value that is the largest α such that the block
labeled “k = α?” produces a 1. m, the number of lines in the output bus labeled “k” is dlog2 ne
and represents the number of bits needed to represent a number between 0 and n.

Fig. 3 shows the circuit that realizes the “k = α?” circuit in Fig. 2. The line of blocks on
the left are circuits that separate out the k′-subsets of variables. The blocks near the center
extract the truth table of the subfunctions associated with assigning all combinations of values
to the variables in each subset. Then, the blocks labeled “Ones Count” to the right compute
the weight of each subfunction. Then, the single block on the right produces at is output a 1 if
and only if all weights are the same. This drives the “k = α?” output.

5 Meet in the middle algorithm

In this section, we describe an algorithm that can count the n-variable k-correlation immune
functions, using 22n−1+O(n) time and space. Effectively, n is reduced by 1 but a high price is
paid in memory. This makes it unsuitable for a reconfigurable computer, such as the SRC-6. It

8

CI

All

Equal

k=a?
Function

under test

2n

2n

Sub-

function

Sub-

function

Sub-

function

Ones

Count

Ones

Count

Ones

Count

Variable

k’-Subset

Sub-

function

Sub-

function

Sub-

function

Ones

Count

Ones

Count

Ones

Count

Variable

k’-Subset

Sub-

function

Sub-

function

Sub-

function

Ones

Count

Ones

Count

Ones

Count

Variable

k’-Subset

Figure 3: Correlation immunity circuit.

did serve, however, for completing the analysis for n = 6. This algorithm is described in [17],
but only briefly, so we elaborate here.

Recall that the conditions for k-immunity ((i) of Theorem 1) are linear. Therefore, we can
split our truth tables in two, and attempt to find matching left and right halves.

Let m = n +
(
n
2

)
+ · · · +

(
n
k

)
. From the Walsh-Hadamard matrix, extract the rows indexed

by u with 1 ≤ wt(u) ≤ k, to form W (k). If we write W (k) = (A B), the Walsh-Hadamard
condition for k-immunity becomes (A B)(x y)T , where A,B are m × 2n−1 matrices with ±1
entries, and the column vector (x y)T is the truth table of f (in ±1 form). Equivalently, the
two “signatures” Ax and −By must match.

Make a list of the 2n−1 pairs (Ax, 0) and another list of the 2n−1 pairs (−By, 1). (The “tag”
(0 or 1) indicates which matrix the pair came from.) Sort the combined lists lexicographically.
A first component z that occurs r times with a 0 and s times with a 1 contributes rs to the count
of k-correlation immune functions. (If we append x and y to the pairs, the actual functions
could be produced as well.)

Here is an example. Take n = 2 and k = 1. Then, A =
(

1 −1
1 1

)
and −B =

(−1 1
1 1

)
.

Applying these two matrices to the four vectors (±1,±1)T , we get two lists, each with the four
vectors (0,±2), (±2, 0). Thus, there are four correlation immune functions of two variables.

To get fast code, we can use the following idea. If a,b are ±1 vectors of length 2n−1, and
u,v their 0/1 images (under the map that sends +1 to 0 and −1 to 1), we have

2n−1∑
i=1

aibi = 2n−1 − 2 wt(u⊕ v).

For the last factor, bitwise XOR can be used, followed by a “1’s count” operation. Since our
goal is only to find matches, the rest of the operations can be skipped.

Since 0 ≤ wt(u⊕ v) ≤ 2n−1, the information payload in each pair (Ax, 0) and (−By, 1) can
be stored in a bit string of length mn+ 1, if encoded in a straightforward way.

We now justify the time and space claims made above. For the Ax’s, we need m22n−1
bitwise

9

XOR’s, and 22n−1
1’s counts. The same number is needed for the −By’s. If we assume that

there are instructions for XOR and 1’s count, the complexity for this phase of the algorithm is
O(m22n−1

). Then, we sort the combined table and make a final pass to count the matches. With
standard in-place sorting algorithms, this costs O(22n−1+n), if we reckon that a comparison is
one step. The claimed bounds then follow, since m ≤ 2n.

If the machine does not have a 1’s count instruction, this can be done in software at a cost
of O(n) (remember the word size is 2n) [21]. This will not affect the result.

In practice, k will be small, since the `-correlation immune functions could be culled from a
list of k-immune functions with k ≥ `. Also, since the balance condition is also linear, the same
idea works for counting k-resilient functions.

We implemented three variations on this algorithm for n = 6 to do specialized counting jobs.
First, to count the 2-correlation immune functions, we spread the work over about 729 proces-

sors, using Wisconsin’s Condor distributed computing system. Each processor was responsible
for a subset of x’s and a subset of y’s, and selected possible matches by hashing the signatures.
The x’s and y’s were included in the tuples, making it possible to verify alleged matches. For our
partition of the data, x and y cannot match if they are on different processors, so the individual
counts found by the processors could be summed at the end.

Second, we counted the correlation immune functions with degree≤ 4. Applying the “esoteric
result” at the beginning of Section 2 to n = 6, we see that a 2-correlation immune function has
degree < 5 if and only if its ANF omits the quintic term x1x2x3x4x5. It can be shown that this
happens if the “combed” truth table (result of bitwise AND with 010101...) has even Hamming
weight. This is another linear condition. Rather than add a row to our matrices, however, we
just treated the pairs with even and odd combed Hamming weights separately, and summed the
results. Conveniently, with base 33 encoding, the signatures fit into 32 bits, and the maximum
imaginable signature (336 − 1) was small enough that we could sort by counting.

Finally, we counted the 2-resilient functions. To do this, we used Camion et al.’s result (see
Section 2) that the left and right halves of any 2-resilient truth table are 1-resilient. Using this
criterion as a filter, we made a table of 2 BCI(5, 1) (about 1.6 × 106) tagged signatures, and
then sorted it to get the desired count. By Theorem 2, all Hamming weights are even, so we
stored halved weights (which cannot exceed 16). There were

(
6
2

)
= 15 of these, since we only

needed weight 2 parities. Using base 17 encoding, each tagged signature fit into 63 bits. (Note
that 1715 < 262.) Therefore, 64 bit integer variables could be used.

6 The computational results

Table 2 shows the distribution of n-variable functions by exact order of correlation immunity, for
2 ≤ n ≤ 6. This table clearly shows that the majority of functions have correlation immunity 0.
The value of correlation immunity that has the next largest number of functions is 1. Also, Table
2 shows that, for all values of n, there are two functions with correlation immunity n. These are
the constant functions f = 0 and f = 1, appearing in Table 1. Table 2 also shows there are two
functions with correlation immunity n−1. These are the parity functions f(x) = x1⊕x2⊕· · ·⊕xn
and f(x) = 1⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn, also shown in Table 1.

The complete data for n = 6 is certainly new. We can, however, sum the functions with
correlation immunity greater than 0, and thus derive the number of correlation immune func-
tions. The result is shown in Table 3. These values are identical to those computed by Palmer
et al. [19]) and Le Bars and Viola [16], which verifies our results. The number of correlation

10

Table 2: Distribution of n-variable functions by exact correlation immunity, k, for 2 ≤ n ≤ 6.

n / k 0 1 2 3 4 5 6

2 12 2 2 0 0 0 0
3 238 14 2 2 0 0 0
4 64888 636 8 2 2 0 0
5 4291827234 3139004 1044 10 2 2 0
6 18446240589943529428 503483719470800 46549718 1654 12 2 2

immune functions for n = 7 is also known; it is 171522187398423323340476473786538 [16].

Table 3: Number of n-variable correlation immune and resilient functions, for 2 ≤ n ≤ 6.

n 2 3 4 5 6

Cor. Imm. 4 18 648 3140062 503483766022188

Resilient 2 8 222 807980 95259103924394

Table 4 shows the distribution of n-variable balanced functions to exact correlation immunity,
where 2 ≤ n ≤ 6. This data is similar to that shown in Table 2, except that it applies only to
balanced functions (whose function values have as many 0’s as 1’s). Thus, this table shows only
the resilient functions. Note that there are no resilient functions with correlation immunity n.
The only possible candidates are the constant functions in in Table 4, which are not balanced.
However, there are two functions with correlation immunity n− 1 in these tables. These are the
parity functions, which are balanced. From the above enumeration, we can sum the functions
with correlation immunity greater than 0, and thus compute the number of correlation immune
functions that are balanced. These are the resilient functions. The result is shown in the second
line in Table 3. The values are identical to those appearing in [19] and in [16]. Le Bars and
Viola [16] have also determined that there are 23478015754788854439497622689296 1-resilient
functions for n = 7.

Table 4: Distribution of n-variable balanced functions by exact resiliency, k, for 2 ≤ n ≤ 6.

n / k 0 1 2 3 4 5 6

2 4 2 0 0 0 0 0
3 62 6 2 0 0 0 0
4 12648 212 8 2 0 0 0
5 600272410 807428 540 10 2 0 0
6 1832120657223119734 503483702719940 16749696 1150 12 2 0

A function f is rotation symmetric [11] if and only if for any values (x1, x2, . . . , xn),

f(x1, x2, . . . , xn) = f(xn, x1, x2, . . . , xn−1), (3)

that is, the function is invariant under rotation of indices.

Example 2. The four functions f(x) = 0, f(x) = 1, f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn, and f(x) =
1⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn (for all x ∈ Fn

2) are all rotation symmetric.

Table 5 shows the distribution of n-variable balanced functions to exact correlation immunity
k for rotation symmetric functions. The fraction of all functions that are rotation symmetric

11

Table 5: Distribution of n-variable rotation symmetric functions versus exact correlation immu-
nity k and n, for 2 ≤ n ≤ 6.

n / k 0 1 2 3 4 5 6

2 4 2 2 0 0 0 0
3 10 2 2 2 0 0 0
4 48 12 0 2 2 0 0
5 214 34 4 0 2 2 0
6 14656 1686 36 2 0 2 2

functions is small, and this is seen in the table. It is interesting that, for correlation immunity
equal to n and n − 1, there are two functions for all values of n shown. This is because all
functions with these values of correlation immunity are rotation symmetric. Indeed, all of these
functions are symmetric, which is a subtype of rotation symmetric functions.

Table 6 shows the distribution of 4-variable functions as a function of both correlation im-
munity and nonlinearity. The computation of the nonlinearity by reconfigurable computer is
described in [27]. So, for each function we compute its correlation immunity, as described in
this paper and its nonlinearity, as described in [27]. The functions with largest nonlinearity
are the bent functions; for n = 4, there are 896 bent functions. As with the distributions dis-
cussed earlier, the majority of functions have a correlation immunity of 0. But, in this table,
it can be seen how the functions are distributed according to nonlinearity. Most functions have
nonlinearity near the middle values, 3 through 5. And, most of these are concentrated along
the value of correlation immunity equal to 0. It is interesting that the largest concentration of
functions with the highest correlation immunity (1 only) and relatively high nonlinearity occur
at nonlinearity 4.

Table 6: Distribution of n-variable functions versus exact correlation immunity k and nonlin-
earity (N), for n = 4.

N / k 0 1 2 3 4

0 8 12 8 2 2
1 512 0 0 0 0
2 3712 128 0 0 0
3 17920 0 0 0 0
4 27504 496 0 0 0
5 14336 0 0 0 0
6 896 0 0 0 0

Table 7 shows data similar to that of Table 6 except that it is for n = 5. Interestingly, there
are a relatively substantial number of functions, that is 384, with the highest nonlinearity 12
and moderate correlation immunity 2.

Table 8 shows the distribution of 4-variable functions versus exact correlation immunity k and
degree. High degree in Boolean functions is a desired cryptographic property. The computation
of degree is accomplished using the “transeunt triangle” [27]. This is a circuit consisting entirely
of exclusive OR gates that transforms the truth table of a function to its ANF. Additional gates
extract from the ANF a binary number that is the degree of the function. So, for each function,
we compute its correlation immunity, as described in this paper and its degree as described

12

Table 7: Distribution of n-variable functions versus exact correlation immunity k and nonlin-
earity (N), for n = 5.

N / k 0 1 2 3 4 5

0 10 20 20 10 2 2
1 2048 0 0 0 0 0
2 31232 512 0 0 0 0
3 317440 0 0 0 0 0
4 2278400 23040 0 0 0 0
5 12888064 0 0 0 0 0
6 57873920 122368 0 0 0 0
7 215414784 0 0 0 0 0
8 645867160 1799080 640 0 0 0
9 1362452480 0 0 0 0 0

10 1411209216 890880 0 0 0 0
11 556408832 0 0 0 0 0
12 27083648 303104 384 0 0 0

here. Table 9 shows a distribution similar to that of Table 8 except that it is for 5-variable
functions. There are a relatively substantial number of functions (384) with moderate degree
(3) and moderate exact correlation immunity (2).

Table 8: Distribution of n-variable functions versus correlation immunity k and degree (Deg),
for n = 4.

Deg / k 0 1 2 3 4

0 0 0 0 0 2
1 8 12 8 2 0
2 1712 304 0 0 0
3 30400 320 0 0 0
4 32768 0 0 0 0

In Table 10, the rows for d ≤ 3 were computed on the SRC-6. This was combined with
the count of 2-correlation immune functions to complete the k = 2 column. Since the number
of 1-correlation immune functions is known, the total for d ≤ 4 and k ≥ 1 could be used to
complete the k = 1 column. The remaining column was determined by subtraction.

Table 11 shows the time it takes to do the exhaustive enumeration across 4 variables. The first
row shows that 0.655 msec. is needed to complete the enumeration on the SRC-6 reconfigurable
computer; this corresponds to one function per clock cycle of a 100 MHz clock. The second row
shows that 1,238.7 msec. is needed when a C program is compiled into Verilog using the SRC-6’s
compiler and run on the SRC-6’s FPGA (Xilinx Virtex-II Series 6000). The third row shows
that 190 msec. is needed by the same C program when it is run on a conventional processor
(the SRC-6’s 2.8 GHz Xeon microprocessor). The small time required in the case of a Verilog
program shows a significant advantage in using the large logic resources of an FPGA. Compared
to the conventional processor time, the SRC-6 programmed in Verilog has a 190 times speedup.

13

Table 9: Distribution of n-variable functions versus exact correlation immunity k and degree
(Deg), for n = 5.

Deg / k 0 1 2 3 4 5

0 0 0 0 0 0 2
1 10 20 20 10 2 0
2 59736 5096 640 0 0 0
3 65478976 1563968 384 0 0 0
4 2078804864 1569920 0 0 0 0
5 2147483648 0 0 0 0 0

Table 10: Distribution of n-variable functions versus exact correlation immunity k and degree
(Deg), for n = 6.

Deg / k 0 1 2 3 4 5 6

0 0 0 0 0 0 0 2
1 12 30 40 30 12 2 0
2 3760424 417512 15000 1240 0 0 0
3 4388747656096 9270073536 24586784 384 0 0 0
4 143859057441024156 251732566372708 21947904 0 0 0 0
5 9079005106896312932 251741882607004 0 0 0 0 0
6 9223372036854775808 0 0 0 0 0 0

Total 18446240589943529428 503483719470790 46549728 1654 12 2 2

7 Concluding Remarks

Correlation immunity is an important cryptographic property of Boolean functions. We show
a fast circuit that allows a computation of correlation immunity of Boolean functions at a rate
of 108 functions per second on the SRC-6 reconfigurable computer. In the case of 4-variable
functions, this results in a 190 times speedup compared to a conventional computer. For the
first time ever we are able to find the distribution of 6 variable functions versus the order of
correlation immunity. We also can quickly analyze and compare Boolean functions on the basis
of their cryptographic properties. Specifically, we compare correlation immunity with two other
cryptographic properties, nonlinearity and degree, and obtain for the first time, a complete
distribution of such functions for ≤ 6 dimensions.

Acknowledgments. Eric Bach was partially supported by NSF Grant CCF-1420750. Matt
Anderson’s work was done at the University of Wisconsin, partially supported by NSF Grant
CCF-0523680. Thanks also to Barbara Hamilton of IDA for assistance with references.

References

[1] E. Bach, “Improved asymptotic formulas for counting correlation-immune Boolean func-
tions”, SIAM J. Discrete Math. 23 (2009), 1525–1538.

14

Table 11: Comparing computation time for correlation immunity over all 4-variable functions.

Computer/ Time
Program (msec.)

100 MHz FPGA/Verilog 0.655
100 MHz FPGA/C 1,238.7
2.8 GHz Xeon/C 190

[2] J. Bierbrauer, “Bounds on orthogonal arrays and resilient functions”, J. Combin. Des. 3
(1995), 179–183.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-Vincentelli, Logic Mini-
mization Algorithms for VLSI Synthesis, Kluwer Acad. Publ., ISBN 0-89838-164-9, 1984.

[4] P. Camion, C. Carlet, P. Charpin, N. Sendrier, “On correlation immune functions”, Adv.
in Crypt. – CRYPTO ’91, Springer–Verlag, 1991, pp. 86–100.

[5] E. R. Canfield, Z. Gao, C. S. Greenhill, B. D. McKay, R. W. Robinson, “Asymptotic
enumeration of correlation immune Boolean functions”, Cryptogr. Commun. 2:1 (2010),
111–126.

[6] C. Carlet, “On the coset weight divisibility and nonlinearity of resilient and correlation-
immune functions”, Proceedings of SETA’01 (Sequences and their Applications 2001), Dis-
crete Mathematics and Theoretical Computer Science, Springer, 2001, pp. 131–144.

[7] C. Carlet, A. Gouget, “An upper bound on the number of m-resilient Boolean functions”,
Adv. in Crypt. – Asiacrypt 2002, LNCS 2501 (2002), pp. 484–496.

[8] C. Carlet, A. Klapper, “Upper bounds on the numbers of resilient functions and of bent
functions”, 23rd Symposium on Information Theory in the Benelux, Louvain-La-Neuve,
Belgique, May, 2002.

[9] N. Courtois, “Fast algebraic attacks on stream ciphers with linear feedback”, Adv. in Crypt.
- CRYPTO 2003, Berlin, Germany, Springer-Verlag, LNCS 2729, 2003, pp. 176–194.

[10] N. Courtois, W. Meier, “Algebraic attacks on stream ciphers with linear feedback”, Adv. in
Crypt. – Eurocrypt 2003, Berlin, Germany, Springer-Verlag, LNCS 2656, 2003, pp. 345–359.

[11] T. W. Cusick, P. Stănică, Cryptographic Boolean Functions and Applications, Academic
Press - Elsevier, March 2009.

[12] O. V. Denisov, “An asymptotic formula for the number of correlation immune of order k
Boolean functions”, Discrete Math. Appl. 2 (1992), 407–426.

[13] O. V. Denisov, “A local limit theorem for the distribution of a part of the spectrum of a
random binary function”, Discrete Math. Appl. 10 (2000), 87–101.

[14] R. Forré, “The strict avalanche criterion: Spectral properites of Boolean functions and an
extended definition”, Adv. in Crypt. – CRYPTO ’88, Berlin, Germany, Springer-Verlag,
LNCS 403, 1990, pp. 450–468.

15

[15] J. Friedman, “On the bit extraction problem”, Proc. 33rd IEEE Symposium on Foundations
of Computer Science, 1992, pp. 314–319.

[16] J. M. Le Bars, A. Viola, “Equivalence classes of Boolean functions for first-order correla-
tion”, IEEE Trans. Inform. Theory 56:3 (2010), 1247–1261.

[17] L. Hellerstein, B. Rosell, E. Bach, S. Ray, D. Page, “Exploiting product distributions to
identify relevant variables of correlation immune functions”, J. Mach. Learn. Res. 10 (2009),
2374–2411.

[18] S. Mesnager, “On the number of resilient Boolean functions”, Algebraic Geometry and Its
Applications, Proc. of the First SAGA Conference, Papeete, France, 7–11 May 2007, pp.
419–443.

[19] E. M. Palmer, R. C. Read, R.W. Robinson “Balancing the n-cube: a census of colorings”,
J. Algebraic Combin. 1 (1992), 257–273.

[20] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, J. Vandewalle, “Propagation
characteristics of Boolean functions”, Adv. in Crypt. – Eurocrypt ’88, Berlin, Germany,
Springer-Verlag, LNCS 473, 1990, pp. 161–173.

[21] E. M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, 1977.

[22] B. Rosell, L. Hellerstein, S. Ray, D. Page, “Why skewing works: learning difficult Boolean
functions with greedy tree learners”, Proc. 22nd Intl. Conf. Machine Learning, 2005, pp.
728–735.

[23] O. S. Rothaus, “On ‘bent’ functions”, J. Combin. Theory Ser. A 20 (1976), 300–305 (This
is nearly identical to O. S. Rothaus, “On bent functions”, IDA CRD W.P. No. 169, 1966).

[24] P. Sarkar, S. Maitra, “Nonlinearity Bounds and Constructions of Resilient Boolean Func-
tions”, Adv. in Crypt. – CRYPTO 2000, LNCS, vol. 1880, ed. Mihir Bellare, 2000, pp.
515–532.

[25] M. Schneider, “On the construction and upper bounds of balanced and correlation-immune
functions”, Proc. Sel. Areas in Crypt. (SAC 1997) (Carleton Univ., Ottawa), pp. 73–87.

[26] M. Schneider, “A note on the construction and upper bounds of correlation-immune func-
tions”, Cryptography and coding (Cirencester, 1997), LNCS 1355, Springer, Berlin, 1997,
pp. 295–306.

[27] J. L. Shafer, S. Schneider, J. T. Butler, P. Stănică, “Enumeration of bent Boolean func-
tions by reconfigurable computer”, The 18th Annual Internat. IEEE Symp. on Field-
Programmable Custom Comput. Machines, Charlotte, NC, May 2-4, 2010, pp. 265-272.

[28] T. Siegenthaler, ”Correlation immunity of nonlinear combining functions for cryptographic
applications”, IEEE Trans. Inform. Theory 30:5 (1984), 776–780.

[29] Y. Tarannikov, P. Korolev, and A. Botev, “Autocorrelation coefficients and correlation
immunity of Boolean functions”, Adv. in Crypt. – ASIACRYPT 2001 (Gold Coast), LNCS
2248, Springer, Berlin, 2001, pp. 460–479.

16

[30] A. F. Webster and S. E. Tavares, “On the design of S-boxes”, Adv. in Crypt. – CRYPTO
1985, Springer-Verlag, Berlin, Germany, LNCS 218, 1986, pp. 523–534.

[31] Y. X. Yang, B. Guo, “Further enumerating Boolean functions of cryptographic significance”,
J. Cryptology 8 (1995), 115–122.

17

