
Clickbait Detection using Natural Language Processing and

Machine Learning

Varun Shah

March 23, 2018

Abstract

Clickbait refers to social media posts designed to entice the clicking of an accompanying link in order to

increase online readership. Clickbait detection is important for the preservation of quality and ligitimacy in

social media and news publishers. In this paper, I present a model for clickbait classification using Natural

Language Processing and Machine Learning. The data used was found on the “Clickbait Challenge 2017”

[4] website. I utilized Python’s Natural Language Tool Kit [5] and Stanford CoreNLP [8] parts-of-speech

tagger to develop and implement features that would help the model classify clickbait. Results showed

that once the features are added to the model, RandomForest achieves the highest classification accuracy of

88.2051% with an ROC–AUC of 0.928 for clickbait instances.

i

Contents

1 Introduction 1

2 Background and Related Work 2

3 Data 4

4 Preprocessing and Preliminary Results 7

4.1 Discretizing postTimestamp . 8

4.2 Optimizing StringToWordVector . 9

4.3 Selecting attributes for the model . 11

4.4 Selecting a classification algorithm . 12

5 Adding Clickbait Indentification Features 14

5.1 “Failed” Features . 15

5.1.1 hasSuperlative . 15

5.1.2 hasNum . 16

5.2 Useful Features . 16

5.2.1 numWords . 17

5.2.2 numOverTitle . 17

5.2.3 posRatio . 18

6 Results 19

7 Conclusion and Future Work 20

ii

List of Figures

1 Examples of clickbait. Source: Google images . 1

2 Example of postText [4]. 4

3 Example of targetT itle [4]. 5

4 4-point scale for crowdsourced annotators [4]. 6

5 Class distribution in clickbait17-train-170331 data. 7

6 Distribution of postTimestamp. Red = clickbait, Blue = no-clickbait. 8

7 Specifications of optimized StringToWordVector. 12

8 Illustration of numOverTitle. 17

9 Example of a POS Sequence. 18

10 Detailed performance analysis of model on unseen data. 20

iii

List of Tables

1 Comparing classification accuracies with different minTermFreq values 9

2 Analyzing outputWordCounts . 10

3 Analyzing normalizeDocLength . 10

4 Analyzing stemmer . 11

5 Analyzing stopwordsHandler . 11

6 Analyzing tokenizer . 11

7 Comparing accuracies of various classification algorithms. 13

8 Distribution of hasSuperlative feature . 16

9 Distribution of hasNum feature . 16

10 Mean number of words in postText by class attribute . 17

11 Results of adding features to model . 19

iv

Figure 1: Examples of clickbait. Source: Google images

1 Introduction

Clickbait refers to social media posts that are designed to entice the clicking of an accompanying link in

order to increase online readership. This is done by exploiting the “curiosity gap” – providing enough

information to make readers curious, but not enough to satisfy that curiosity without requiring them to click

the link accompanying the post [10]. Such posts are meant to mislead readers by exaggerating the content

of the accompanying link. Figure 1 gives us some examples of clickbait where crutial information about

the post is intentionally shielded in order to spark curiosity among readers, making them ask questions

like “What did Kendall Jenner say?”, “Why did the 14-year-old stab her little sister?”, and so on. These are

important pieces of information that any good journalist would mention in the title itself. More examples

of clickbait include:

• A Woman Dropped Her Purse, Scattering All Her Belongings. What We Found Inside Will Blow Your

Mind. < link >

• 9 Out Of 10 Doctors Will Not Recommend This Medicine That Could Cure Cancer. < link >

• Here’s What Will Actually End Racism. < link >

1

Clickbait usage has increased significantly in recent years [7] and is being adopted by news publishers,

violating journalistic ethics and decreasing the quality of content on one’s news feed [7]. Therefore, clickbait

detection is extremely important for the preservation of quality and legitimacy in social media and news

publishers.

This motivates the “Clickbait Challenge 2017” [4], organized by Tim Gollub, Martin Potthast, Matthias

Hagen, and Benno Stein of Bauhaus-Universität Weimar. This is an open challenge to develop a classifier

that can detect clickbait in social media posts. The data is provided in the form of a Twitter corpus compiled

by the founders. Each post is rated by five annotators and their mean score determines the class label,

“clickbait” or “no-clickbait.” The data is described in greater detail in Section 3.

In this paper, I will describe my attempt at building a clickbait classifier model. I begin by describing

past attempts at clickbait analysis and detection in Section 2, then move on to describing the data used

in my experiments in Section 3, the text processing and filtering involved before choosing the appropriate

machine learning algorithm was applied, and the Natural Language Processing techniques that helped me

add features to the model to improve its classification accuracy. For my experiments, I used Weka 3.8.1 – an

open source machine learning tool.

2 Background and Related Work

The first known Machine Learning approach to clickbait detection was made by Martin Potthast, Sebastian

Köpsel, Benno Stein and Matthias Hagen [7]. They compiled the first clickbait corpus, containing 2,992

Twitter tweets, 767 of which are clickbait. Their clickbait model is based on 215 features which divide into 3

categories: the teaser message, the linked web page, and the meta information. The teaser messages them-

selves are divided into three subcategories: the first comprises basic text statistics (number of tokens, length

of message, etc.) and the other two comprise dictionary features (parts-of-speech usage, word patterns or

templates, etc.). To analyze the linked web page, the readability and length of the main content is measured

when extracted with the open source Boilerpipe library. Meta information comprises information about a

tweet’s sender, media attachments, retweets, and the time of tweeting. The corpus is randomly split into

training and testing datasets in the ratio 2:1. Results showed that the RandomForest classifier performs

better than other algorithms, such as LogisticRegression and NaiveBayes, acheiving an ROC–AUC [9] of

0.76 [7].

The clickbait corpus developed for their paper focuses only on Twitter posts. It also only takes into

account tweets posted by the 20 most popular (in terms of retweets) publishers. Each post is assessed by

3 individuals and is labeled either clickbait or not. More so, these judgments were made only on the basis

2

of the teaser message of each post and not by clicking on the accompanying link. The Clickbait Challenge

dataset uses judgments made by 5 individuals. This is further elaborated in Section 3 where we describe

the dataset obtained from the Clickbait Challenge 2017 website [4].

Alex Peysakhovich and Kristin Hendrix [6] describe their efforts in detecting and reducing clickbait in

Facebook’s News Feed. They describe a system that determines whether a post is clickbait based on two

key points: if the title withholds information necessary to understand the article and if the title exaggerates,

creating misleading expectations of the article for the reader. The system not only identifies posts that are

clickbait but also identifies the web domains and Facebook Pages that frequently post clickbait so that links

posted from these Pages appear lower down in the News Feed. This change can be reversed if the Page

stops posting clickbait. Their motivation is to ensure that Facebook is a place for authentic communication.

Based on research conducted by Jonas Blom and Kenneth Hansen, clickbait (or “forward-reference”)

posts have several key grammatical traits that help identify them as such [2]. The key traits cited are:

• Demonstrative pronouns, such as “these”, “they”, “them”, “this”, etc. For example, “These were

Chavez’s last words” [2] leaves the reader wondering what his last words were.

• Personal pronouns, such as “he”, “him”, “she”, “her”, etc. For example, “He wants to make the

national team wear EU clothes” [2] leaves the reader wondering who “he” refers to.

• Adverbs, such as “here”, “there”, “somewhere”, etc. For example, “Here you can use 4G with iPhone

5” [2] leaves the reader wondering where 4G can be used.

• Definite articles, such as “the”, “a”, “an”, etc. For example, “In a few seconds the terror bomb ex-

plodes” [2] leaves the reader wondering what terror bomb is being referred to.

• Imperatives with implicit discourse diectic reference, for example in “See if your bank is at risk of

collapsing” the word “see” refers to something revealed by the full text [2].

• Interrogatives referring to an answer given in the full text, for example, “Do you live in a violent

municipality?” is not a rhetorical question and implicitly refers to an answer available in the full text

[2].

• General nouns with implicit discourse diectic reference, for example, “VIDEO: Gigantic baby born in

Texas” refers to a part of the upcoming discourse if the link is clicked [2]. Another example of this is,

“10 good reasons to eat chocolate” implicitly refers to an upcoming discourse (a list of reasons) [2].

This gives me reason to believe that analyzing the parts-of-speech usage could be a good way to detect

clickbait. My intuitions are described in Section 5.

3

Figure 2: Example of postText [4].

3 Data

For preliminary results and feature development the clickbait17-train-170331 dataset found on the “Clickbait

Challenge 2017” [4] website is used. Unfortunately, the dataset is poorly documented and we do not know

the where these posts come from (geographically) or when they were collected, but we do know that these

posts were made in 2017. This dataset has 2459 instances with the following attributes:

• id: Unique integer assigned to identify each post

• postT imestamp: Time of the post in GMT

• postText: Text of the post without the link (teaser message) – see Figure 2

• postMedia: Image/Video accompanying post

• targetT itle: Title of the article linked in the post – see Figure 3

• targetDescription: Short description of linked article

• targetKeywords: Keywords used in the linked article

• targetParagraphs: Selected paragraphs from the linked article

• targetCaptions: Caption(s) of the image(s) in linked article

• truthJudgements: List of clickbait scores in [0, 1] given to each post – see Figure 4

• truthMean: The mean of the scores given in truthJudgements

4

Figure 3: Example of targetT itle [4].

5

Figure 4: 4-point scale for crowdsourced annotators [4].

• truthMedian: The median of the scores given in truthJudgements

• truthMode: The mode of the scores given in the truthJudgements

• truthClass: Whether a post is “clickbait” or “no-clickbait” (class attribute)

Figure 2 is an example of the postText, or teaser message from the dataset. It is important to note that the

accompanying link is not part of the postText and is not something we will analyze in this paper. Figure 3

is an example of the targetT itle of a post – it is the article title of the linked article in the postText.

The truthJudgements attribute is made up of crowdsourced clickbaiting scores provided by five anno-

tators on a 4-point scale as illustrated in Figure 4. The truthClass is determined by the truthMean – if the

mean score of the five annotators is greater than or equal to 0.5, the truthClass is “clickbait”, otherwise

“no-clickbait”.

Out of the 2451 instances, 762 are “clickbait”. Some examples from the dataset include:

• What India’s microloan meltdown taught one entrepreneur

• 31 Accessories Every 90s Girl Will Recognize

The remaining 1697 instances are “no-clickbait”. Examples from the dataset include:

• Prince Harry meets Lady Gaga at the Royal Albert Hall

• Apple debuts iOS 9: Battery enhancements, smarter Siri and more

Figure 5 illustrates the imbalance in the truthClass. We see that the number of “clickbait” instances is less

than half the number of “no-clickbait” instances.

6

Figure 5: Class distribution in clickbait17-train-170331 data.

The clickbait17-train-170630 dataset is used to evaluate the performance of our clickbait detector. This

dataset is also obtained from the “Clickbait Challenge 2017” [4] website and has the same attributes as the

one just described, except that it comprises 19538 instances. Out of these, 4761 are “clickbait” and 14777 are

“no-clickbait”.

4 Preprocessing and Preliminary Results

Since the class attribute is not evenly distributed, the data was downsampled 70% to ensure that the classi-

fier does not train itself on such a heavily biased dataset. The reason we downsampled to 70% is so that we

do not repeat any “clickbait” instances in order to balance the dataset. This is because we want the classifier

to familiarize itself with as many “clickbait” instances as possible while still being able to distinguish them

from “no-clickbait” instances. The reason we choose to downsample instead of upsample is so that the

“clickbait” instances are not repeated in order to balance the class distribution.

For preliminary experiments, we include the following attributes in our model:

• postT imestamp (Nominal)

• postText (String)

• targetT itle (String)

• truthClass (Nominal)

7

Figure 6: Distribution of postTimestamp. Red = clickbait, Blue = no-clickbait.

In each experiment, I assess the accuracy of the classifier in predicting clickbait by running a stratified

10-fold cross-validation [1]. In this technique, the data is randomly divided into 10 subsamples of equal

size. 9 of these subsamples are used to train the model, while the remaining subsample is used to test

the model. This process is repeated 10 times with every subsample acting as the testing data exactly once.

Finally, the results obtained in each fold are averaged to obtain the classification accuray of the model.

Stratification ensures that each fold contains roughly the same proportions of class labels [1].

These attributes required some preprocessing before any experiements could be run.

4.1 Discretizing postTimestamp

In its raw form, postT imestamp gives us the exact time of each post normalized to GMT. The values in this

attribute are too scattered and unique to run any meaningful analysis and so with Python code, they were

divided into 6-hour bins as follows:

• Morning (6 am to 12 pm): 447 instances

• Afternoon (12 pm to 6 pm): 836 instances

• Evening (6 pm to 12 am): 723 instances

• Night (12 am to 6 am): 445 instances

Figure 6 is a graphical representation of the distribution of postT imestamp. The integers represent the

number of instances in each 6-hour bin and we can use them to identify which bar represents what time of

day. For example, the bar with 836 instances represents “Afternoon.”

8

minTermFreq Classification Accuracy
1 81.2814%
2 81.2814%
3 81.2814%
4 81.2814%
5 81.2814%
6 80.9045%
7 79.9623%
8 80.4648%
9 78.5804%
10 77.3869%

Table 1: Comparing classification accuracies with different minTermFreq values

4.2 Optimizing StringToWordVector

The unsupervised StringToWordVector filter converts String attributes into a set of attributes representing

the information obtained from a word based on its occurrance and usage in the text we are analyzing. This

is useful for text classification. The filter has multiple specifications including:

• minTermFreq – This sets the minimum frequency for a term to be included in a vector on a per-class

basis.

• outputWordCounts – Output the word counts indicates the presence or absence of a word.

• normalizeDocLength – Whether the word frequencies for an instance should be normalized.

• stemmer – Sets the stemming algorithm to be used in order to reduce each word into its root form. For

example, “stemming” would become “stem”, “writing” would become “write”, and so on.

• stopwordsHandler – Sets the stopwords handler to be used. Stopwords refer to the most common words

used in a language, so for our case it includes words like “the”, “an”, “a”, and so on.

• tokenizer – Sets the tokenizer algorithm to be used. Tokenizing breaks up a string into pieces (words,

keywords, phrases, etc.) called “tokens”. This is useful for analyzing the structure of the text.

I conducted experiments to analyze the effect of each of these specifications on the String attributes and

to assess which values to assign to them. A Support Vector Machine (SVM) [3] is used as the classifier in this

experiment. It is a supervised learning model that analyzes data and classifies it given the class attribute.

Since we are analyzing word vectors, a SVM works well for our purpose. To optimize StringToWordVector I

did the following:

9

outputWordCounts Classification Accuracy
False 81.2814%
True 82.2864%∗

Table 2: Analyzing outputWordCounts

normalizeDocLength Classification Accuracy
No normalization 82.2864%∗

Normalize all data 81.4698%
Normalize test data only 81.4698%

Table 3: Analyzing normalizeDocLength

• I analyzed the effect of minTermFreq by applying the filter with minTermFreq starting from 1, and going

up to 10, running a 10-fold cross-validation. The results of this experiment are shown in Table 1. The

classification accuracy remains the same between 0−5. At 6, the accuracy reduces, but not statistically

significantly. In fact, the only time the classification accuracy decreases significantly from 81.2814%

is at 10. These results suggest that the minTermFreq setting affects classification accuracy and, for this

data, better accuracies are achieved when it is set to <= 5. This is why I set minTermFreq to 5 for the

rest of my experiments.

• After this, I shifted my attention to outputWordCounts. The default value is False. With minTermFreq

still at 5, I ran a 10-fold cross-validation with the default value and with outputWordCounts = True.

Table 2 describes the results. The classification accuracy increased to 82.2864% when outputWord-

Counts was set to True. This increase was statistically significant at the 95% confidence interval level

(as indicated by the * symbol). Therefore, I keep outputWordCounts set to True for the rest of the

experiments.

• The default value for normalizeDocLength is “No normalization”. I ran 10-fold cross-validations with

the default value, as well as with “Normalize all data” and “Normalize test data only”. Table 3

describes the results. The default setting achieved the highest classification accuracy and so I keep it

at that for the rest of the experiments.

• I then ran 10-fold cross-validations using different stemmer values. The default value is NullStemmer,

meaning no stemming. Table 4 indicates that none of the classification accuracies are statistically

significantly different from one another. Therefore, I keep the default stemmer, NullStemmer for the

rest of the experiments.

• I also ran 10-fold cross-validations using various stopwordsHandler values, the default being Null,

10

stemmer Classification Accuracy
NullStemmer 82.2864%

IteratedLovinsStemmer 81.8467%
LovinsStemmer 81.0930%
SnowballStemmer 82.2864%

Table 4: Analyzing stemmer

stopwordsHandler Classification Accuracy
Null 82.2864%

MultiStopwords 82.2864%
Rainbow 81.1558%

RegExpFromFile 82.2864%

Table 5: Analyzing stopwordsHandler

meaning no handling of stopwords. Table 5 indicates that, once again, none of the results are sta-

tistically significantly better than the others and so I keep the default value, Null.

• Finally, I analyzed tokenizer by running a 10-fold cross-validation using each tokenizer, the default

being WordTokenizer. Table 6 describes the reaults of this experiment. Since, the default tokenizer is

the only one that achieves a statistically significant classification accuracy, I keep it at that.

Figure 7 depicts the specifications of my optimized StringToWordVector filter.

4.3 Selecting attributes for the model

After preprocessing, I conducted experiments to guage the effect of each attribute on the model’s classifi-

cation accuracy. Again, we use a SVM as the primary classification algorithm for its ability to classify word

vectors.

In order to gauge the effect of removing an attribute from the model, we first run a 10-fold cross-

validation on the complete model with all 4 attributes: postText, targetTitle, postTimestamp, and truthClass

(class attribute). We then remove one of the attributes (never the class attribute) and run a 10-fold cross-

validation comparing the classification accuracy achieved to that of the complete model. Unless there is

tokenizer Classification Accuracy
WordTokenizer 82.2864%∗

AlphabeticTokenizer 81.3442%
CharacterNGramTokenizer 81.2814%

NGramTokenizer 75.6281%

Table 6: Analyzing tokenizer

11

Figure 7: Specifications of optimized StringToWordVector.

a statistically significant decrease in classification accuracy, we conclude that the attribute removed is not

useful in predicting the class attribute. This is repeated so that each attribute is excluded from the model at

least once (except the class attribute). Results of these experiments were:

• I removed targetTitle from the model and ran a 10-fold cross-validation. The classification accuracy

dropped statistically significantly to 77.0101% and so I include targetTitle in the model.

• I removed postText from the model and ran a 10-fold cross-validation. The classification accuracy

drops statistically significantly to 80.1508% and so I include postText in the model.

• I first removed postTimestamp from the model and ran a 10-fold cross-validation. The classification

accuracy decreases to 82.1608%. This decrease is not statistically significant. This is largely because

all the timestamps are normalized to GMT, whereas all these posts were not made from the same

location, which means that the postT imestamp does not accurately represent the time of a given post.

Therefore, I exclude postTimestamp from the model.

Therefore, 3 of the attributes selected for preliminary experimentation proved to affect the classifier’s

ability to predict whether a post is clickbait. The model achieves the highest statistically significant classifi-

cation accuracy when postText, targetT itle, and truthClass are included.

4.4 Selecting a classification algorithm

Now that we have optimized our filters and the model, we shift our attention to finding the best classifier.

We use ZeroR as our baseline predictor. ZeroR always chooses the majority class. This would have been

12

Classification Algorithm Classification Accuracy ROC–AUC
ZeroR 50.0% 0.503
J48 76.3819%∗ 0.802

LibSVM 82.1608%∗ 0.823
RandomForest 86.3065%∗ 0.945

Table 7: Comparing accuracies of various classification algorithms.

“no-clickbait”, but since we have balanced the class distribution, we expect a classification accuracy of

roughly 50%. Our goal is to find classification algorithms that perform statistically significantly better than

our baseline classifier, ZeroR.

The algorithms I analyze in the preliminary stages are:

• LibSVM – Library for support vector classification that supports multi-class classification [3]. We have

already talked about SVMs in Section 4.2.

• J48 – Java implementation for generating a pruned or unpruned C4 decision tree

• RandomForest – Classification algorithm that constructs a forest of random decision trees

Table 7 describes the results of the experiments conducted on each algorithm. All the algorithms per-

form statistically significantly better than the baseline classifier, ZeroR.

I used ROC–AUC as the evaluation metric to evaluate the performance of my classifier as in “Clickbait

Detection” [7] described in Section 2. Its values range from 0− 1 and the closer to 1, the better the classifier

performs. It is a measure of how well our classifier can distinguish between the two classes.

• J48 achieved an ROC–AUC of 0.802. This indicates that J48 performs fairly well [9].

• LibSVM achieved an ROC–AUC of 0.823. This indicates that LibSVM’s performance is good [9]. It

performs statistically significantly better than J48.

• RandomForest performs the best achieving an ROC–AUC of 0.945. This indicates that RandomForest

performs excellently [9].

Therefore, RandomForest performs better than the other algorithms and so we use this as our classifica-

tion algorithm for the remainder of our experiments. We also set our new baseline to 86.3065%. For every

experiment, we check to see if the classification accuracy achieved is statistically significantly better than

this baseline.

13

5 Adding Clickbait Indentification Features

In order to improve the classifier’s performance I came up with 25 features that I thought would be useful

for clickbait indentification based on intuition and the background work described in Section 2. As ex-

pected, not all of them were useful. In this section I will discuss the features that turned out to be useful for

clickbait detection and some of the features that were not useful. The 25 features I came up with were:

1. The length of the longest word in postText.

2. The number of tokens in postText.

3. The number of words in postText.

4. The number of proper nouns in postText.

5. The number of prepositions in postText.

6. The number of subordinate conjunctions in postText.

7. The number of personal pronouns in postText.

8. The number of determiners in postText.

9. The number of possessive endings (apostrophe) in postText.

10. The number of Wh-pronouns in postText.

11. The number of Wh-adverbs in postText.

12. The number of overlapping words between postText and targetKeywords.

13. The number of overlapping words between postText and targetT itle.

14. Whether postText begins with “Who”, “What”, “When”, “Where”, “Why”, “Which”, or “How”.

15. Whether postText begins with a number.

16. Whether postText has a number at all.

17. Whether postText has a superlative.

18. Whether postText has a question mark (“?”).

19. Whether postText has a 2-gram Noun+ V erb pattern.

14

20. Whether postText has a 2-gram Preposition+Noun pattern.

21. Whether postText has a 2-gram SubordinateConjunction+Noun pattern.

22. Whether postText has a 2-gram Determiner +Noun pattern.

23. Whether postText has a 2-gram PersonalPronoun+ V erb pattern.

24. Whether postText has a Number +NounPhrase+ V erb pattern.

25. The likelihood that the n-gram parts-of-speech pattern appears in postText of “clickbait” instances.

It is important to note that “2-gram” refers to a two-word continuous sequence in the text. Out of these

features, 3, 13, and 25 turned out to be useful additons to the model. They are described in greater detail in

Section 5.2. Section 5.1 describes some interesting features that did not improve the model. These features

were implemented using Python’s NLTK library [5]. I used the StanfordCoreNLP tagger [8] to tag and

analyze the parts-of-speech of postText and targetT itle.

5.1 “Failed” Features

As mentioned eariler, 22 out of the 25 features failed to improve the model’s performance. In other words,

adding these features to the model did not statsitcially significantly improve the classification accuracy with

respect to our baseline – 86.3065%. This section outlines some of the interesting “failed” features.

5.1.1 hasSuperlative

This feature utilizes the StanfordCoreNLP parts-of-speech tagger to analyze the postText and indicates

whether it contains at least one superlative. The intuition behind this feature is that superlatives can be

used to exaggerate the degree to which a statement is true without providing any mathematical justification

and so the use of superlatives could be indicative of clickbait. For example:

• The greatest Italian dishes of all time! < link >

• Here is the worst way to spend your weekend. < link >

• Top 10 most annoying nicknames for pets. < link >

Table 8 illustrates the distribution of this feature in the clickbait17-train-170331 dataset. The poor representa-

tion of this feature in “clickbait” instances (Only 60 out of 762) could be one of the reasons why this feature

did not turn out to be useful.

15

hasSuperlative # Clickbait # No-clickbait
Y es 60 87
No 702 1610

Table 8: Distribution of hasSuperlative feature

hasNum # Clickbait # No-clickbait
Y es 191 416
No 571 1281

Table 9: Distribution of hasNum feature

5.1.2 hasNum

This is also a binary (Yes/No) feature which indicates whether the postText contains at least one number or

not. Intuitively, clickbait posts tend to use numbers as pseudo statistics in order to lure readers into clicking

the accompanying link. Therefore, the use of numbers in the postText could be indicative of clickbait. For

example:

• 10 ways to get a raise in your salary. < link >

• Top five holiday destinations within your budget. < link >

• 20 shocking images you won’t believe are real! < link >

Table 9 shows the distribution of this feature in the clickbait17-train-170331 dataset. The representation of

this feature in “clickbait” instances is higher than hasSuperlative, but it is still low, specially given that the

class distribution in the dataset is already heavily imbalanced. In fact, unlike hasSuperlative, the represen-

tation of this feature in “no-clickbait” instances is much higher than “clickbait” instances. This means that,

given the data, it is more likely that a post containing a number will be “no-clickbait”, which could explain

why it does not positively contribute to the model.

5.2 Useful Features

3 out of the 25 features proved to be useful for our model. This means, including these features in the model

achieved the highest classification accuracy. Removing either one of these features brings the classifcation

accuracy down statistically significantly. So, while each of these features individually statistically signifi-

cantly improves the model’s accuracy compared to the baseline of 86.3065%, the model performs the best

when all them are included.

16

Overall Mean Clickbait Mean No-clickbait Mean
12.662 11.901 13.002

Table 10: Mean number of words in postText by class attribute

Figure 8: Illustration of numOverTitle.

5.2.1 numWords

This feature indicates the number of words contained in postText (which excludes the accompanying link).

Intuitively, clickbait posts are short and snappy in the hope that they will catch the readers’ attention.

Therefore, we expect a low number of words in postText to be associated with “clickbait” instances. Longer

postText could mean that less information is intentionally shielded as these types of postText would be less

ambiguous.

Table 10 illustrates the mean number of words in postText by class attribute in the clickbait17-train-

170331 dataset. As expected, “clickbait” instances have a lower mean number of words in postText than

“no-clickbait” instances. The results of adding this feature are discussed in Section 6.

5.2.2 numOverTitle

This feature measures the similarity between postText and targetT itle. The intuition behind this is that the

more similar these two attributes are, the more likely it is that postText accurately reflects targetT itle and

the more likely it is that the post is not clickbait. Therefore, we measure the number of overlapping words

– the number of words in postText that are also in targetT itle. In the examples illustrated in Figure 8, the

number of overlaps is 4. This because, we treat “scientists” and “science” as an overlap because they come

from the same root word, “science”. This technique of breaking down every word to its root form is called

‘stemming’ and helps account for difference in tenses, singularity and plurality, and so on, giving us a more

accurate picture of how similar postText and targetT itle truly are.

17

Figure 9: Example of a POS Sequence.

The mean number of overlaps between postText and targetT itle in the dataset is 3.997. For “clickbait”

instances, the mean number of overlaps is 3.150, and for “no-clickbait” instances, the mean number of

overlaps is 4.378. There are a few instances where the postText and targetT itle are the same, which makes

sense since a post is often made by the author of the article. These two being the same does not tell us

anything regarding the class label of this post – that is, it is not the case that these two being the same

makes it more or less likely for a post to be clickbait. The results of adding this feature to the model are

described in Section 6.

5.2.3 posRatio

This was the most useful feature that was implented in the model. It measures the likelihood that a given

post’s parts-of-speech (POS) sequence appears in “clickbait” instances. A POS sequence is the sequence of

parts-of-speech tags of the words in postText. Figure 9 shows us an example of a parts-of-speech sequence.

The intuition behind this feature is that the more likely it is for a given POS sequence to appear in “clickbait”

instances, the higher the chances that that given post is clickbait. The likelihood of a POS seqence appearing

in “clickbait” instances (called posRatio) is measured by the following formula:

posRatio = (#clickbait) / (#clickbait + (#no-clickbait/overallRatio))

where,

• #clickbait = the number of times a POS sequence appears in “clickbait” instances,

• #no-clickbait = the number of times a POS sequence appears in “no-clickbait” instances,

• overallRatio = Total number of “no-clickbait” instances in dataset divided by the total number of

“clickbait” instances.

18

Attributes Included Classification Accuracy
postText+ targetT itle+ numWords+ numOverT itle 82.2864%

postText+ targetT itle+ posRatio 86.6860%
postText+ targetT itle+ numWords+ numOverT itle+ posRatio 88.2051%

Table 11: Results of adding features to model

The reason we divide the “no-clickbait” instances by the overallRatio is to account for the difference in

class distribution. Intuitively, the higher the posRatio of a post, the more likely it is that the post is clickbait.

The posRatio of the first 5 words in the example illustrated in Figure 9 is 0.8698, indicating that it has a high

chance of being clickbait. After running 1-fold cross-validations using the posRatio of the first 1, 2, 3, 4, 5, 6

words in postText, we conclude that the feature works best when analyzing the first 5 words in postText.

This could be because analyzing more than the first 5 words makes the POS sequence too specific to that

particular instance, whereas the POS sequence of less than 5 words is not meaningful enough.

The most common POS sequence in the “clickbait” instances of the data set was Cardinal Number +

Adjective + Noun (plural) + To + Verb. For example, “10 crazy ways to cure cancer!” falls under this POS

sequence. Not surprisingly, the posRatio of these instances was 1. The results of adding this feature to the

dataset is described in Section 6.

6 Results

Now that we have identified features useful for clickbait detection, we evaluate our model on the bigger

clickbait17-train-170630 dataset, described in Section 3. The reason we do this is to test how well our classifier

performs on unseen data. Therefore, our posRatio is calculated based on the POS sequences observed in the

smaller dataset, which means that there will be missing values since there are POS sequences in the bigger

dataset that we have not yet seen.

We start with our baseline as ZeroR’s classification accuracy – 75.8553%. Figure ?? shows us the results

of adding these features to our model. All of these accuracies are statistcially significantly better than our

baseline. Moreso, each subsequent accuracy is statisically significantly better than the previous. In other

words, simply adding posRatio to the model gives us a statistcally significantly higher accuracy than adding

numWords and numOverT itle. Our model performs the best when all these features are added, giving us

a classification accuracy of 88.2051%.

19

Figure 10: Detailed performance analysis of model on unseen data.

7 Conclusion and Future Work

Figure 10 shows us an analysis of our classifier’s performance on unseen data. From it, we can conclude

that our classifier performs better than the one presented by Martin Potthast, Sebastian Köpsel, Benno Stein

and Matthias Hagen [7], acheiving an ROC–AUC of 0.928 for “clickbait” instances. From the confusion

matrix we see that only 131 “no-clickbait” instances were wrongly classified as “clickbait”, which is good

because we would rather wrongly classify “clickbait” instances as “no-clickbait” than dismiss a legitimate

article as clickbait.

The winners of the clickbait challenge achieved a classification accuracy of 85.6%. Our classifier per-

forms better, however, these two accuracies were evaluated on different datasets so they are not directly

comparable.

In conclusion, we can say that we have successfully identified and implemented features that are useful

for clickbait detection. Our classifier performs very well compared to past machine learning attempts,

including participants of the “Clickbait Challenge 2017” [4].

As future work, it would be interesting to analyze the images in each article. It would also be interesting

to analyze how many ads are present on the linked webpage since clickbait is normally used to increase

viewrship on webpages in order to earn money from advertisements. Therefore, the number of ads would

be a strong indicator of whether a post is clickbait.

20

References

[1] 10-fold Cross-validation. URL: https://www.openml.org/a/estimation-procedures/1.

[2] Jonas Nygaard Blom and Kenneth Reinecke Hansen. “Click bait: Forward-reference as lure in online

news headlines”. In: Journal of Pragmatics 76 (2015), pp. 87 –100. ISSN: 0378-2166. DOI: https://

doi.org/10.1016/j.pragma.2014.11.010. URL: https://www.sciencedirect.com/

science/article/pii/S0378216614002410.

[3] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector machines”. In: ACM

Transactions on Intelligent Systems and Technology 2 (3 2011). Software available at http://www.

csie.ntu.edu.tw/˜cjlin/libsvm, 27:1–27:27.

[4] Clickbait Challenge 2017. http://www.clickbait-challenge.org/. Accessed: 06/07/2017. URL: http:

//www.clickbait-challenge.org/.

[5] Natural Language Toolkit. Accessed: 03/23/2018. URL: https://www.nltk.org/.

[6] News Feed FYI: Further Reducing Clickbait in Feed. https://newsroom.fb.com/news/2016/08/news-

feed-fyi-further-reducing-clickbait-in-feed/. Accessed: 06/07/2017. URL: https://newsroom.fb.

com/news/2016/08/news-feed-fyi-further-reducing-clickbait-in-feed/.

[7] Martin Potthast et al. “Clickbait Detection”. In: Advances in Information Retrieval. 38th European Confer-

ence on IR Research (ECIR 16). Ed. by Nicola Ferro et al. Vol. 9626. Lecture Notes in Computer Science.

Berlin Heidelberg New York: Springer, 2016, pp. 810–817. DOI: http://dx.doi.org/10.1007/

978-3-319-30671-1_72.

[8] Stanford CoreNLP - Natural Language Software. Accessed: 03/23/2018. URL: https://stanfordnlp.

github.io/CoreNLP/.

[9] The Area Under an ROC Curve. URL: http://gim.unmc.edu/dxtests/roc3.htm.

[10] Katy Waldman. Mind the ’curiosity gap’: How can Upworthy be ’noble’ and right when its clickbait headlines

feel so wrong? 2014.

21

