Transfer Learning for Faster Tensegrity Gait
Optimization

Akshay Kashyap
Advisor: Dr. John Rieffel

Question: Tensegrity Robots can use
Machine Learning to learn how to move
efficiently. Can we make them learn better
and faster, especially in new, unseen
conditions?

Proposed Solution: Use Transfer Learning, a
subfield of Machine Learning, to have the
robots use previous learning experiences to
adapt better and learn faster.

0. Background

0.1 Tensegrity Robots

e A class of soft robots composed of intertwined springs and rigid struts.

e Tensegrity = Tensile + Integrity

7 B

D T B 1 b 08

0.1 Tensegrity Robots

e (Can carry payloads in the center and can be dropped from heights.

e NASA exploring use for planetary missions.

0.1 Tensegrity Robots

e (Can be made to move using vibrations from attached motors.

e Tensegrity Gait = Configuration of Motors

Gait= (m,m,, .., m), where n= No. of Motors
and

m. = (phase, frequency, amplitude)

e Gait Performance = Speed / Distance Travelled / ...

0.2 Bayesian Optimization

e A Sequential Model-based Optimization (SMBO) algorithm for optimizing
expensive functions using a Gaussian Process.

e Works by evaluating the function systematically at different points and
trying to update it's prediction of what the function looks like at each step.

Gaussian Process and Utility Function After 2 Steps

— Target
|® @ Observations

- - Prediction

B 95% confidence interval

f(x)

Utility

0.2 Bayesian Optimization

e Bayesian Optimization can be used to train a Tensegrity Robot Gait to

move make it move as fast as possible.

0.2 Bayesian Optimization

e Bayesian Optimization can be used to train a Tensegrity Robot Gait to
move make it move as fast as possible.
e Problem: Needs to be trained in every new environment and abnormal

state the robot is deployed in.

0.2 Bayesian Optimization

e Bayesian Optimization can be used to train a Tensegrity Robot Gait to
move make it move as fast as possible.

e Problem: Needs to be trained in every new environment and abnormal
state the robot is deployed in.

e (Proposed) Solution: Use Transfer Learning.

0.3 Transfer Learning

Transfer learning = Improvement of learning in a
new task using knowledged from related task that

has been learned previously. [2]

0.3 Transfer Learning

e Source Task = Task that has been previously learnt

e Target Task = New task to learn

e Use Source Task to improve learning in Target Task

Given

Data o

Source-Task
Knowledge

\

Learn

Target Task

performance

higher slope higher asymptote

.
.
"“
.
.
o
g

higher start

training

------ with transfer
—— without transfer

0.4 Proposed Solution

e Use Transfer Learning along with Bayesian Optimization.
e Framework proposed by T.T Joy, et. al. [3]

e Model observations from source task as noisy outputs of target task:
y; = fi(xf) + €

where % is the source observation, f* the target function, and € the noise.

e Modify the Gaussian Process to incorporate this noise during

optimization.

1. Tools

1.1 Tensegrity Simulation

e Homegrown C++ and ODE-based Tensegrity physics simulator.

e Models struts as capsule and springs as forces following Hooke's Law.

e Models each motor as a perpendicular force applied periodically at points

along the circumference of the strut.

Motor::Motor() {
_step = 0;
_frequency = PI / 8;
_limit = (2 * PI) / _frequency;
_Speed = 1.9;
}

Motor::Motor(float initial_phase, float frequency) {
_step = initial_phase;
_frequency = frequency;
_limit = 2

}

* PI / (_frequency);
void Motor::set_speed(double speed) {_speed = speed;}
double Motor::get_speed() {return _speed};

void Motor::set_frequency(double frequency) {_frequency = frequency;}
double Motor::get_frequency() {return _frequency;}

void Motor::_step_reset() {_step = 0;}

// dSpacelD space, dWorldID world

Strut::Strut(d_vector coords, d_vector angles, double mass,
double length, double radius, d_vector color) {

// _space = space;
// _world = world;
_coords = coords;
_angles = angles;
_length = length;
_Mmass = mass;
_radius = radius;
_color = color;
_motor = NULL;
}

double Strut::get_mass() {return _mass;}
double Strut::get_radius() {return _radius;}
double Strut::get_length() {return _length;}

1.1 Tensegrity Simulation

Altitude

'f}ime

https://docs.google.com/file/d/157ixvm_IlOiyvC-VNTyPlSbNhqcCOQ-V/preview

1.3 Bayesian Optimization and Transfer Learning

e Used the Python PyGPGO library for
Bayesian Optimization.
e Re-engineered it to implement the

Transfer Learning framework.

pyGPGO: Bayesian Optimization for Python

i codecov [80%] docs passing | DOl 10.5281/zenodo.1040676 | JOSS ' 10.21105/j0ss.00431

Fitted Gaussian process

] -~ Posterior mean
04
..1 B
-2 4
0 1 2 3 4 5 6
Acquisition function
0.0015
—— Found optima
0.0010 A
0.0005 4
0.0000 4 . - - - : = -
0 1 2 3 4 5 6

pyGPGO is a simple and modular Python (>3.5) package for bayesian optimization.

2. Methodology

2.1 Simulator + Optimizer System

e The optimizer program communicates with the simulator using Sockets.
e Optimizer sends out gaits to evaluate. Simulator evaluates and sends back

performance of the gait.

e)
IR :~~,‘5~
ﬂ \
-q
\ _Bayesian Optimizer \ Computational Model /

SR

2.2 Experiment

e Perform the optimization process for Source Task, Target Task without
Transfer Learning, and Target Task with Transfer Learning.

e Perform n = 50 optimization cycles for each task. Perform 10 experiments.

Plain Ground Hilly Terrain

3. Results

3.1 Learning Improvement

3.1.1 Experiment 1 - Difference in Gravity and Friction

e Source Task:
O Gravity — _0.1 :: ..

o Friction=0.5

e Target Task:
o Gravity=-0.5
o Friction=0.75

o ——
- — -

e 40 Optimization Trials
e Metric: Max Speed
Achieved

e 10% Improvement

| | | | | | | | | | | |) | | |
0 12 14 16 18 20 2 2 26 28 30 2 k) 36 38 40

3.1.1 Experiment 2 - Flat vs. Hilly Terrain

== = Target
|— Target + Transfer Leaming

e Source Task:

35

o Flat Surface

o Gravity =-0.1

30

o Friction=0.5 . 2

e Target Task: m——

25

o Hilly Surface

o Gravity =-0.1 "

o Friction=0.75

e 60 Optimization Trials .

e Metric: Max Speed

Achieved "

e 12.1% Improvement

0 0 12 4 1 18 20 2 24 26 28 30 32 34 36 38 4 4 4 46 48 50

3.2 Learnt Gaits

3.2.1 Experiment 1 - Difference in Gravity and Friction

M1 - M2 M2 - M3 M1 -M3

Source Task

Target Task

Target + TL

3.2.2 Experiment 2 - Flat vs. Hilly Terrain

M1 - M2 M2 - M3 M1 -M3

Source Task

Target Task

Target + TL

3.3 Statistical Significance

Using Mann-Whitney U test

Max Speed Achieved

27

26

25

24

23

22

21

20

Experiment 1

Tar'get Target + TL

p-value < 0.05
95% Confidence Interval

Max Speed Achieved

5.0

45

40

35

30

25

Experiment 2

T T
Target Target + TL

p-value < 0.01
99% Confidence Interval

4. Conclusion

4.1 Conclusion

In conclusion, my research shows that previous learning
experiences indeed can be leveraged to improve new learning

tasks for Tensegrity Robots in the context of locomotion.

4.2 References

[1] John Rieffel and Jean-Baptiste Mouret. Adaptive and resilient soft tensegrity robots. Soft Robotics,
page (to appear), 2018. arXiv preprint arXiv:1702.03258.

[2] Lisa Torrey and Jude Shavlik (2009). Transfer Learning. In Handbook of Research on Machine Learning
Applications. 2009.

[3] Joy T.T., Rana S., Gupta S.K., Venkatesh S. (2016) Flexible Transfer Learning Framework for Bayesian
Optimisation. In Advances in Knowledge Discovery and Data Mining. PAKDD 2016.

May the force be with you!

