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Question: Tensegrity Robots can use 
Machine Learning to learn how to move 

efficiently. Can we make them learn better 
and faster, especially in new, unseen 

conditions?



Proposed Solution: Use Transfer Learning, a 
subfield of Machine Learning, to have the 

robots use previous learning experiences to 
adapt better and learn faster. 



0. Background



● A class of soft robots composed of intertwined springs and rigid struts.

● Tensegrity = Tensile + Integrity

0.1 Tensegrity Robots



● Can carry payloads in the center and can be dropped from heights.

● NASA exploring use for planetary missions.

0.1 Tensegrity Robots



● Can be made to move using vibrations from attached motors.

● Tensegrity Gait = Configuration of Motors

0.1 Tensegrity Robots

Gait = (m1, m2, …, mn), where n = No. of Motors

and

mi = (phase, frequency, amplitude)

● Gait Performance = Speed / Distance Travelled / ...



0.2 Bayesian Optimization
● A Sequential Model-based Optimization (SMBO) algorithm for optimizing 

expensive functions using a Gaussian Process.
● Works by evaluating the function systematically at different points and 

trying to update it’s prediction of what the function looks like at each step.
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move make it move as fast as possible.
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0.2 Bayesian Optimization
● Bayesian Optimization can be used to train a Tensegrity Robot Gait to 

move make it move as fast as possible.

● Problem: Needs to be trained in every new environment and abnormal 

state the robot is deployed in.

● (Proposed) Solution: Use Transfer Learning.



0.3 Transfer Learning
Transfer learning = Improvement of learning in a 

new task using knowledged from related task that 

has been learned previously. [2]



0.3 Transfer Learning
● Source Task = Task that has been previously learnt

● Target Task = New task to learn

● Use Source Task to improve learning in Target Task



0.4 Proposed Solution
● Use Transfer Learning along with Bayesian Optimization.

● Framework proposed by T.T Joy, et. al. [3]

● Model observations from source task as noisy outputs of target task:

● Modify the Gaussian Process to incorporate this noise during 

optimization.



1. Tools



1.1 Tensegrity Simulation
● Homegrown C++ and ODE-based Tensegrity physics simulator.

● Models struts as capsule and springs as forces following Hooke’s Law.

● Models each motor as a perpendicular force applied periodically at points 

along the circumference of the strut.



1.1 Tensegrity Simulation
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https://docs.google.com/file/d/157ixvm_IlOiyvC-VNTyPlSbNhqcCOQ-V/preview


● Used the Python PyGPGO library for 

Bayesian Optimization.

● Re-engineered it to implement the 

Transfer Learning framework.

1.3 Bayesian Optimization and Transfer Learning



2. Methodology



● The optimizer program communicates with the simulator using Sockets.

● Optimizer sends out gaits to evaluate. Simulator evaluates and sends back 

performance of the gait.

2.1 Simulator + Optimizer System



2.2 Experiment
● Perform the optimization process for Source Task, Target Task without 

Transfer Learning, and Target Task with Transfer Learning.

● Perform n = 50 optimization cycles for each task. Perform 10 experiments.

Plain Ground Hilly Terrain



3. Results



3.1 Learning Improvement



3.1.1 Experiment 1 - Difference in Gravity and Friction
● Source Task:

○ Gravity = -0.1

○ Friction = 0.5

● Target Task:

○ Gravity = -0.5

○ Friction = 0.75

● 40 Optimization Trials

● Metric: Max Speed 

Achieved

● 10% Improvement



3.1.1 Experiment 2 - Flat vs. Hilly Terrain
● Source Task:

○ Flat Surface

○ Gravity = -0.1

○ Friction = 0.5

● Target Task:

○ Hilly Surface

○ Gravity = -0.1

○ Friction = 0.75

● 60 Optimization Trials

● Metric: Max Speed 

Achieved

● 12.1% Improvement



3.2 Learnt Gaits



3.2.1 Experiment 1 - Difference in Gravity and Friction

Source Task

Target Task

Target + TL

M1 - M2 M2 - M3 M1 - M3



3.2.2 Experiment 2 - Flat vs. Hilly Terrain

Source Task

Target Task

Target + TL

M1 - M2 M2 - M3 M1 - M3



3.3 Statistical Significance

Experiment 1
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Using Mann–Whitney U test

p-value < 0.05 
95% Confidence Interval

p-value < 0.01
99% Confidence Interval

Experiment 2



4. Conclusion



4.1 Conclusion

In conclusion, my research shows that previous learning 

experiences indeed can be leveraged to improve new learning 

tasks for Tensegrity Robots in the context of locomotion.
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May the force be with you!


