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Question: Tensegrity Robots can use
Machine Learning to learn how to move
efficiently. Can we make them learn better
and faster, especially in new, unseen
conditions?



Proposed Solution: Use Transfer Learning, a
subfield of Machine Learning, to have the
robots use previous learning experiences to
adapt better and learn faster.



0. Background



0.1 Tensegrity Robots

e A class of soft robots composed of intertwined springs and rigid struts.

e Tensegrity = Tensile + Integrity
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0.1 Tensegrity Robots

e (Can carry payloads in the center and can be dropped from heights.

e NASA exploring use for planetary missions.




0.1 Tensegrity Robots

e (Can be made to move using vibrations from attached motors.

e Tensegrity Gait = Configuration of Motors

Gait= (m,m,, .., m ), where n= No. of Motors
and

m. = (phase, frequency, amplitude)

e Gait Performance = Speed / Distance Travelled / ...



0.2 Bayesian Optimization

e A Sequential Model-based Optimization (SMBO) algorithm for optimizing
expensive functions using a Gaussian Process.

e Works by evaluating the function systematically at different points and
trying to update it's prediction of what the function looks like at each step.
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0.2 Bayesian Optimization

e Bayesian Optimization can be used to train a Tensegrity Robot Gait to

move make it move as fast as possible.
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state the robot is deployed in.



0.2 Bayesian Optimization

e Bayesian Optimization can be used to train a Tensegrity Robot Gait to
move make it move as fast as possible.

e Problem: Needs to be trained in every new environment and abnormal
state the robot is deployed in.

e (Proposed) Solution: Use Transfer Learning.



0.3 Transfer Learning

Transfer learning = Improvement of learning in a
new task using knowledged from related task that

has been learned previously. [2]



0.3 Transfer Learning

e Source Task = Task that has been previously learnt

e Target Task = New task to learn

e Use Source Task to improve learning in Target Task
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0.4 Proposed Solution

e Use Transfer Learning along with Bayesian Optimization.
e Framework proposed by T.T Joy, et. al. [3]

e Model observations from source task as noisy outputs of target task:
y; = fi(xf) + €

where % is the source observation, f* the target function, and € the noise.

e Modify the Gaussian Process to incorporate this noise during

optimization.



1. Tools



1.1 Tensegrity Simulation

e Homegrown C++ and ODE-based Tensegrity physics simulator.

e Models struts as capsule and springs as forces following Hooke's Law.

e Models each motor as a perpendicular force applied periodically at points

along the circumference of the strut.

Motor::Motor() {
_step = 0;
_frequency = PI / 8;
_limit = (2 * PI) / _frequency;
_Speed = 1.9;
}

Motor::Motor(float initial_phase, float frequency) {
_step = initial_phase;
_frequency = frequency;
_limit = 2

}

* PI / (_frequency);
void Motor::set_speed(double speed) {_speed = speed;}
double Motor::get_speed() {return _speed};

void Motor::set_frequency(double frequency) {_frequency = frequency;}
double Motor::get_frequency() {return _frequency;}

void Motor::_step_reset() {_step = 0;}

// dSpacelD space, dWorldID world

Strut::Strut(d_vector coords, d_vector angles, double mass,
double length, double radius, d_vector color) {

// _space = space;
// _world = world;
_coords = coords;
_angles = angles;
_length = length;
_Mmass = mass;
_radius = radius;
_color = color;
_motor = NULL;
}

double Strut::get_mass() {return _mass;}
double Strut::get_radius() {return _radius;}
double Strut::get_length() {return _length;}



1.1 Tensegrity Simulation
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https://docs.google.com/file/d/157ixvm_IlOiyvC-VNTyPlSbNhqcCOQ-V/preview

1.3 Bayesian Optimization and Transfer Learning

e Used the Python PyGPGO library for
Bayesian Optimization.
e Re-engineered it to implement the

Transfer Learning framework.

pyGPGO: Bayesian Optimization for Python
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pyGPGO is a simple and modular Python (>3.5) package for bayesian optimization.



2. Methodology



2.1 Simulator + Optimizer System

e The optimizer program communicates with the simulator using Sockets.
e Optimizer sends out gaits to evaluate. Simulator evaluates and sends back

performance of the gait.
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2.2 Experiment

e Perform the optimization process for Source Task, Target Task without
Transfer Learning, and Target Task with Transfer Learning.

e Perform n = 50 optimization cycles for each task. Perform 10 experiments.

Plain Ground Hilly Terrain



3. Results



3.1 Learning Improvement



3.1.1 Experiment 1 - Difference in Gravity and Friction

e Source Task:
O Gravity — _0.1 :: ....................................................................................

o Friction=0.5

e Target Task:
o Gravity=-0.5
o Friction=0.75

o ——
- — -

e 40 Optimization Trials
e Metric: Max Speed
Achieved

e 10% Improvement
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3.1.1 Experiment 2 - Flat vs. Hilly Terrain
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3.2 Learnt Gaits



3.2.1 Experiment 1 - Difference in Gravity and Friction
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3.2.2 Experiment 2 - Flat vs. Hilly Terrain
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3.3 Statistical Significance

Using Mann-Whitney U test
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4. Conclusion



4.1 Conclusion

In conclusion, my research shows that previous learning
experiences indeed can be leveraged to improve new learning

tasks for Tensegrity Robots in the context of locomotion.
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May the force be with you!



