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Abstract

Mosses are widespread vegetations on the ground layer level in boreal forests. They play important

roles in productivity, soil hydroclimate regulation and nutrient cycling in the ecosystem. The Polytrichum

mosses are desiccation-tolerant and have two physiological states: a hydrated state and a desiccated state.

The physiological features and growth rates of mosses differ in different states. Monitoring the physiolog-

ical states of Polytrichum moss using near-surface remote sensing will be helpful in predicting the growth

of mosses and assessing the vegetation condition in boreal forests. The initiative of this project is to classify

the physiological states of the mosses based on digital images of moss canopies. In this project, we took

images of moss canopies in fields and used OpenCV library to extract attributes that quantify the color

and the structure of mosses from images. We then compiled a dataset with extracted attributes and use

Weka Machine Learning Library to find ideal machine learning algorithms to do classification. The results

showed that kNN classification algorithm had the best performance among the tested algorithms. The

trained kNN model was used to predict images in the mixed state in multiple scales. The predictions were

mapped back to the original images to compare with manual classifications of canopy images. On average,

66.4% of the area was predicted correctly. The median of this number was 74.1%. Overall, this model could

provide a reasonable prediction of the physiological state of moss in images.
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1 Introduction

Mosses are small flowerless green plants that can be found widely in nature. They are major components

of plantations in many ecosystems. The biomass of mosses may even greater than other plantations in

wet habitats such as fens and bogs [1]. Biomass measures the total mass of all living organisms within the

species community, and is also an important measurement of species richness. In boreal forests, moss pop-

ulations do not have a large biomass. However, they still have important influences on the environment,

including productivity and thermal environment of the soil, nutrient cycling in the ecosystem and even

attach influence on other plants in the environment [9]. The Polytrichum genus, also known as hair-cap

moss, is commonly found in moist, shaded and cool areas in fields, forests or woodlands [8]. One of the

common habitats of hair-cap moss species is boreal forests. Touw and Rubers’s work tells that the species

Polytrichum formosum grows in temperate zones of Northern Hemisphere, as well as in Africa and New

Zealand. It is commonly found in coniferous and deciduous forests [14]. Polytrichum juniperinum is widely

spread in North America. This species commonly distributed from the alpine zone in the New England

mountains to dry scrub oak forests [2]. Like other moss species, Polytrichum moss also has a significant in-

fluence on the local ecosystem. Besides contributing to the nutrient cycling and regulating soil climate, they

can impact regeneration of other plant species. In boreal and temperate coniferous forests, the presence of

Polytrichum moss can promote the germination of white spruce seeds [10], but reduce seedling growth of

the Pinus sylvestris tree species [13].

The Polytrichum genus is desiccation tolerant. It can withstand drought-like conditions and return to

normal growth state after rehydration. The physiological states of mosses changes during this dehydrating

and rehydrating process. Under normal hydrated conditions, Polytrichum moss should have a dark green

appearance and narrow pointed leaves grow along the stem [8]. When the plant is hydrated, leaves spread

outward from the stem to approximately 90 degrees. Figure 1 gives an example of the appearance of the

moss under hydrated condition. When the plant is dehydrated, leaves curl up and the plant is tubular-

looking [8] as shown in Figure 2. The metabolism of the moss also changes along its physiological state.

As mosses dry out, their growth is inhibited and the rate of photosynthesis decreases. The metabolism rate

goes back to normal when the moss is rehydrated [11]. Hydrated state is the physiological state in which

the moss obtains enough water from the environment and maintains its normal productivity and growth

rate. In dehydrated state, the moss suffers from a water loss and reduces its metabolism rate and growth

rate. Hydrated and desiccated states are the only physiological states appears in the desiccation tolerance

Polytrichum genus during the desiccation and recovery process.

Due to the significant impact of the moss population on its neighboring environment, knowing the

1



growth condition of the moss can provide valuable information in evaluating the healthiness of the boreal

forest ecosystem. For Polytrichum moss species, the time that an organism stays at each physiological states

is related to its growth rate. In short, having information on the physiological state of the moss population

in the ecosystem will assist the assessment of the environment. Traditionally, there are three approaches

for monitoring the phenology of vegetation. The first is direct human observation, which is commonly

used to observe a limited number of organisms in a small geographic area. The second way is satellite

remote sensing, which can monitor the vegetation on a large scale but low resolution. The last method

is to use near-surface remote sensing. This method uses radiometric instruments or imaging sensors to

monitor the phenological change of vegetation to understand its temporal variation in phenology [12]. For

our question, the third approach is the most suitable in terms of the scale. A population of mosses is too

large to be manually monitored by human and is too small to use satellite images.

After images or recordings are collected, the next step is image process and analysis. In theory, a person

can go through the collected images and observe the change in phenology of the canopy. However, this is

not applicable in reality since there will be numerous monitoring files to view. A computational program is

needed to automate the image analysis process. Since the moss species only has two physiological states,

the program should be able to classify a piece of moss canopy into one of the two states. Machine learning is

an effective empirical method for doing data-driven classification problems. Machine learning algorithms

recognize patterns in a training dataset and apply the pattern relationship to make predictions on a similar

dataset. Previous research has demonstrated that machine learning is a useful tool to use when a large

number of data are available but the theoretical knowledge is incomplete [6]. In published studies, machine

learning has been using in predicting the classes of vegetation using remote sensing data [3].

Inspired by the method used in previous research, I developed a program to identify the physiological

states of hair-cap moss population using near-surface sensing images of the canopy.

2 Related Work

2.1 Near-surface Remote Sensing

Previous studies have applied the near-surface remote sensing technique to monitor the changes in leaf

phenology in deciduous broadleaf forest [4] and to record spatial and temporal variation in the phenology

of forest canopies [5]. A study on mosses in the Antarctic polar region used a remote sensing imaging

method to access the fitness of moss-beds [7]. In a study that utilized near-surface remote sensing to study

the spatial and temporal variation in canopy phenology, researchers set up networked digital webcams to

2



Figure 1: An image of a patch of hydrated Polytrichum moss, outside Cooperstown, NY.

Figure 2: An image of a patch of dehydrated Polytrichum moss, outside Cooperstown, NY.
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monitor the top of the tree canopies during 12:00 to 14:00 every day throughout the year. Then they used

a MATLAB script to analyze the digital image files. Based on the color information extracted from the

images, researchers generated the seasonal changes in the canopy phenology [12].

2.2 Machine Learning Applications

In previous research, machine learning has been used to accomplish supervised classification of remote

sensing data. Predicting the land cover or vegetation classes are typical questions of this domain. Machine

learning algorithms that are commonly used included random forest (RF), support vector machine (SVM)

and artificial neural networks (ANN) in these studies. Naive Bayes (NB) and k-nearest neighbors (kNN)

were also applied in geological mapping using remote sensing data. In these studies, spectral reflectance

imagery served as inputs and manually classified classes served as training data. The classification process

was separated into three main stages: pre-processing data, training machine learning model and evaluating

predictions [3].

3 Project Design

3.1 Planning

Based on the research in section 1, near-surface remote sensing approach was ideal for the problem. How-

ever, given the scale of this project, it was not applicable to set up webcams in the field and conduct actual

remote sensing on moss canopies. To simplify the problem, I used a set of near-surface images of moss

canopies as the data source instead of remote sensing recordings. Since hair-cap moss species grows abun-

dant within the New York State, I was able to collect images of moss canopies locally. Initially, the plan of

this project was to produce a strategy for classifying each image of moss canopy into purely binary states,

either hydrated or desiccated. Thus, in the initial image collection stage, the number of images in the mixed

state was significantly lower than the number of images in hydrated or desiccated states. However, as the

project moved forward, another piece was added to the original plan, mapping the physiological state of

the canopies that were in mixed states. Since one patch of mosses can contain both hydrated and desiccated

states, it will be more useful to be able to identify the exact locations of hydrated (or desiccated) mosses

under the mixed state. Thus I decided to include the mixed state into the classification problem.
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Term Aims/Outcomes
Spring Background research

Topic selection
Fall Collected moss canopy images

Explored image processing methods for extracting attributes
Conducted preliminary trial using extracted attributes

Winter Further explored image processing tools and determined attributes to be used in classification
Process images and compile the training dataset

Evaluated the performance of different algorithms
Classified mixed images manually
Wrote evaluation pipeline program

Table 1: A brief timeline of the completion time of each part of the design.

3.2 Timeline

This project was completed in three terms, from Spring 2017 to Winter 2018. The execution of the project

can be divided into the following steps:

• Data Collection and preprocessing

• Model training

• Prediction evaluating

See the timeline of this project in Table 1.

4 Methods

4.1 Image Collection

An image set of moss canopies was required in this project. Since no such image set is publicly available,

all images were collected by ourselves. A regular digital camera was used to take images of mosses in

fields. Images of hair-cap mosses outside Cooperstown, NY and in Peebles Island State Park, NY in fall. In

total, 446 images were collected from the two sites. Among these images, 196 are in hydrated states, 200

are in desiccated states and 50 are in mixed states. Each image is taken 25 cm above the ground surface and

covered an area approximately 24cm×18cm. Two people were needed during the image collecting process.

When one person took the image, another person held a cardboard as a sunshade to make sure the lighting

of the images was consistent.
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4.2 Attribute Selection

After obtaining the image set, we then came up with a list of attributes that are distinguishable between

the two physiological states to serve as descriptors. The differences between the hydrated state and the

desiccated state are easy to tell by human eyes. Desiccated mosses have a brownish color and their leaves

all curl up attaching to the stem (Figure 2). Hydrated mosses are green with star-shaped leaves (Figure 1).

By examination, the color of the canopy, number of visible shoots and the structure of shoots are the most

distinguishable features. We wanted to quantify these features in a computational way. OpenCV, a library

provides functions on computer vision, and ImageJ, an open source image processing program, were used

for extracting quantifiable measurements from images.

ImageJ was first used to experiment various image processing algorithms. Since ImageJ has a GUI that

provides good visualizations of the algorithm output after each run and the visual differences between two

physiological states are distinctive in human eyes, ImageJ was the ideal program to use to evaluate the

appropriateness of each image processing program. The immediate visualization feedback helped me to

adjust the parameters used and determine the choice of algorithms. After a series of experimentations, I

selected the following attributes to be the descriptors of the canopy image: number of shoots, the average

size of shoots, the average circularity of shoots, the average aspect ratio of shoots and percentage of green

area present in an image.

The following are the detailed methods used to extract the above attributes from an image:

• percentage of green area coverage: The image is first converted from RGB (Red, Green, Blue) color

space to HSV (Hue, Saturation, Value) color space. Unlike RGB color model, HSV color model is less

impacted by noises caused by different lighting condition, as shades and tones are separated from

the color it resembles in HSV model. Hue channel represents the pure color information of the image

(Figure 3) The value of hue in HSV ranges from 0 to 360 ◦. In ImageJ, the range of green is converted

approximately from 63 to 96. Here, a green pixel was defined as a pixel that had a hue value that lies

within this green value range. The number of green pixels was computed. Finally, the percentage of

the green area in the image was calculated.

• number of shoots: In moss canopies, shoots of mosses usually cluster together. However, particle

counting image processing algorithms generally work ideally on images without overlapping be-

tween individual particles. Thus, I first ran a watershed algorithm to segment the overlapping par-

ticles. Watershed is an algorithm used to perform segmentation of grayscale images. The idea of the

algorithm simulates water flooding. It considers the image as a landscape and places water in every

regional minimum of its relief. When the level of water rises, there must be a point that different water
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sources meet each other. That meeting point is the place to put the dam or the place to do the seg-

mentation. I then used the built-in function in ImageJ called “Analyze Particles” to detect regions that

belong to the same entity, individual shoot structures in this case. The number of such particles was

computed after running the algorithm. Figure 4 is an example of the output after running Analyzing

Particles.

• structure of shoots: The shape and structure of shoots were described using their area, circularity

and aspect ratio. These measurements were also calculated by the function Analyzing Particles. The

function calculated the measurements for each particle that was identified in the image. I then took

the average value of all particles to represent the entire image.

– Area: describe size of the shoot

Area = area of selection in square pixels

– Circularity: describe the integrity of the shape of the shoot

Circularity = 4π area
perimeter2

– Aspect ratio: describe if the shoot is round or elongated

AspectRatio = majoraxis
minoraxis

Here are other functions that I have experimented in the preliminary trial, but decided to discard in

the final program:

• dominant color in the image The average RGB value of the image extracted using k-means color

clustering algorithm. K-means clustering groups each of the n data points into k separate clusters.

Each data point is assigned to a cluster with the nearest mean. The mean of each cluster is its centroid.

In this case, the k-means clustering was used to find the mean RGB color of the image. However,

the k-means clustering algorithm took a long running time to generate the results. Regarding the

efficiency of the entire program, this attribute was not included in the final set of attributes. Instead,

the percentage of green area coverage was used to include color information in the attribute set.

4.3 Machine Learning Algorithm Selection

Weka Machine Learning Library was used to train various models and determine which algorithm was the

most suitable to accomplish the classification. The Weka library contains implemented machine learning al-

gorithms and a collection of tools for selecting attributes and comparing algorithms. Weka Library provided

different types of implemented classifiers, including trees, rules, Bayes, lazy and functions, which were all
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Figure 3: An image of the hue channel of a moss canopy image that contains both hydrated and desiccated
areas.

Figure 4: Sample result of analyzing particles of a hydrated moss canopy image.
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Algorithms Percent Correct Classification Significance (v/ /*)
ZeroR 33.56
OneR 73.17 v
kNN 95.25 v

Logistic 90.25 v
J48 92.45 v

JRip 92.10 v
Naive Bayes 88.54 v

Table 2: Results of paired t-test on classification accuracy (10-folds cross-validation) of selected algorithms
with ZeroR as the benchmark.

commonly used algorithm types. At least one algorithm was chosen from each type to be a candidate.

The selected classification algorithms were OneR, J48, JRip, Naive Bayes, kNN and Logistic Regression.

All of which were commonly used machine learning algorithms that can be applied to almost any data

classification problem.

5 Results

Weka’s experimenter was used to evaluate the performance of the chosen algorithms. The input dataset

in this experiment contained extracted image attributes mentioned in the subsection 4.2. As mentioned in

subsection 4.1, the class of the instances in this dataset was not balanced. There were around 200 images in

each of the desiccated and hydrated states, but there were only 50 images for the mixed state. To balance

the number of instance in each class, I up-sampled the minority class, i.e. mixed state, to contain the same

number of instances as the majority classes.

The 10-fold cross-validation was used to check the accuracy of the classification algorithms. Then I con-

ducted two-tailed paired t-tests the prediction to evaluate the performance of the algorithms. In the first

test, the classification accuracies of the selected algorithms were compared with the classification accuracy

of ZeroR. ZeroR classifier predicts the majority class and ignores predictors. The performance of Zero clas-

sifier is commonly used as a benchmark for evaluating the prediction of other classification algorithms. The

results of this experiment are displayed in Table 2. The significance level is set to be 0.05. Significance col-

umn uses annotation “v” to indicate a specific result is statistically better or “*” to indicate if it is statistically

worse.

According to the result of the t-test, all selected algorithms can predict statistically significantly better

than zeroR. Thus I ran another experiment to compare the performances of the 6 chosen algorithms. Since

k-nearest neighbor had the best performance in the last test, it was used to be the baseline classifier. Again

the level of significance was 0.05. The results in Table 3 show that the classification accuracies of the rests
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Algorithms Percent Correct Classification Significance (v/ /*)
kNN 95.25
OneR 73.17 *

Logistic 90.25 *
J48 92.45 *

JRip 92.10 *
Naive Bayes 88.54 *

Table 3: Results of paired t-test on classification accuracy (10-folds cross-validation) of selected algorithms
with kNN as the benchmark.

Rank Attributes Information Gain Value
1 Percentage of Green Area Coverage 0.919
2 Circularity 0.877
3 Average Size of Particles 0.844
4 Number of Particles 0.435
5 Average Aspect Ratio of Particles 0.422

Table 4: Attribute selection output using information gain based feature selection.

of algorithms are statistically significantly worse than kNN.

I also applied information gain based feature selection algorithm to evaluate predictor attributes. This

algorithm calculates the information gain for each attribute in the dataset. The result of evaluation ranges

from 0 (no information) to 1 (maximum information). Attributes with a higher information gain value make

a greater contribution to the classification stage and vice versa. The results showed that percentage of green

area coverage contributes the most to the prediction model, followed by the average circularity of particles

and the average size of particles. Nevertheless, the information gain values for all attributes were greater

than 0.4, indicating all attributes played an important role in the model. Detailed outputs of the attribute

evaluator are shown in Table 4.

6 Evaluation

6.1 Manual Classification

For evaluating the performance of the machine learning algorithms, I first classified all images in mixed

state manually. I adapted a freehand masking demo of MATLAB to allow the user freehand circle the

hydrated regions on the canopy images. Then a binary colored image was generated based on the drawing

(Figure 5). On the left is the original image of the moss canopy. After I manually circled the area of mosses

that I determined as hydrated, the program automatically generated a binary image that used green to

represent the hydrated region and yellow to represent the desiccated region. I classified all 50 mixed images
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Figure 5: Sample input (left) and output (right) image of the MATLAB program.

in this way and the generated images were used to evaluate the accuracy of the machine learning outputs.

6.2 Machine Learning Classification

To evaluate the accuracy of the model, the results of classification needed to be compared with manual

classified outputs. The kNN model trained in section 5 only provided a numerical classification accuracy.

To draw a connection between the model and the manual classified images, I built a pipeline to generate

binary images that represent the classification outcomes of the kNN model.

All images in mixed states were classified using the trained kNN model. Based on the classification

result of the image, the pipeline program decided its next operation: if the prediction was either hydrated

or desiccated, then the program generated a blank image with the same dimension as the original image

but filled with solid color. If the predicted state was desiccated, the image was filled with yellow. If the

predicted state was hydrated, the filled color was green. The color here matched the color used in subsec-

tion 6.1. When the model predicted the image to be in the mixed state, the program sliced the current image

into four pieces. The sliced images were then processed to obtain values of prediction attributes. Since the

size of the image was different from the original image, the Number of Particles attribute was standardized

to keep the consistency between the training and test data. The same model was used to predict the class

of the newly sliced images. The same operation was done as the last iteration. This slicing and predicting

cycle continued until all the images were classified as either hydrated or desiccated. Figure 6 visualizes

the workflow of this pipeline. As the sliced images being classified, new images filled with solid yellow or

green color were generated. After all of the predictions were done, the generated images were merged back

based on their original location index. The final outcome mapped all prediction decision onto the initial

11



moss canopy images.

Figure 7 shows an example of the final image produced by the pipeline and its counterpart manual

classified image. Just by eyeballing the two images, one can see the similarity between them. The calcu-

lated percentage overlap between the manual classified image and the pipeline produced image was 78.3%,

proven the pipeline output was very close to the manual classification result for this image. Further analy-

sis showed that more likely for hydrated mosses to be misclassified as desiccated ones than the other way

around. Figure 8 has a high overlap percentage for about 94%. However, there were also cases that the

prediction outputs were not ideal. In Figure 9, only 32.8% of the area was predicted correctly. The model

failed to identify the majority of the hydrated regions.

Overall, the images generated by the pipeline displayed an ideal consistency with manual classifica-

tions. On average, the prediction and the manual output had a 66.4% overlap. The median of the overlap-

ping percentage was 74.1%, higher than the mean value, which indicated the presence of extremely poorly

classified images. For all hydrated regions, 34.8% was classified correctly, while 79.5% of the desiccated re-

gions were classified correctly. The result showed the model had a tendency of classifying hydrated mosses

into the desiccated state. Although the percentage of overlapping areas was not that high, the model was

able to identify the general location of the hydrated mosses. The location of the green region in generated

images was very consistent with the green region in manual classification images.

One possible explanation of having a lower classification accuracy in predicting hydrated regions was

the bias in doing manual classification. The manual images were generated by freehand drawing on the

border of hydrated regions. It was possible that on the edges, some desiccated regions were also circled

into the drawing and were classified as hydrated. Maybe if the drawing were done by circling the border

of desiccated moss, the results would be different.

7 Future Work

Currently, the manual classification was done by only one person. There might be a potential bias in terms

of the criterion of defining the two physiological states. To improve the objectiveness of the classification,

each image should be classified by more students. Further analysis can test the performance of the model

using either the union of the selected regions or the intersection of all selected regions, and see if this choice

makes a difference.

The program already had the ability to classify the physiological states of moss canopies by digital

images. In the future, we can extend this program to classify states of mosses in video recordings, so that

we will be able to perform actual remote sensing on mosses in the field.
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Figure 6: Visualization of the pipeline process.

Figure 7: Sample pipeline output 1. Left: manual classification Right: assembled image based on model
prediction
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Figure 8: Sample pipeline output 2. Left: manual classification Right: assembled image based on model
prediction

Figure 9: Sample pipeline output 3. Left: manual classification Right: assembled image based on model
prediction
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Appendices

A Pipeline Implementation

I implemented the pipeline program in Python. OpenCV library was used to process images and extract

attributes. Scikit learn machine learning library was used to train the kNN model and make predictions.

Image slicer tool in Python was used for splitting images. Here is a code sample from the pipeline program:
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Figure 10: Sample code
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