
Specializing Generative Adversarial Networks To Render

Terrain Textures

Hein H. Aung

March 20, 2018

Abstract

I studied Neural Networks for texture generation. In particular, I have researched and created Genera-

tive Adversarial Networks (GANs) for rendering new images of different types of ground terrain textures

(such as soil, grass plains, drought plains, etc). A GAN consists of two neural networks: a discriminator

and a generator. The generator create a batch of images with random pixels. On the other hand, the dis-

criminator tries distinguish between the real image and fake image by taking the inputs from a set of real

images and a set of fake images from the generator. There has been ample research done with GANs that

produce synthetic 2D images or 3D graphical models. The GAN I have created, given a set of input images,

will dynamically render a set of different variations of original images of terrain textures. For example, if

the training input is a set of green grass, the output will be a set of withered grass plain, fresh grass plain,

and so on. I sent out a survey to the campus to evaluate these images and my final results indicate that

people can identify the generated textures type.

i

Contents

1 Introduction 1

2 Related Work 2

3 Background 3

3.1 Image Classification . 3

3.2 Convolutional Neural Network (CNN) . 5

3.3 Generative Adversarial Network . 6

4 Approach 8

5 Tools 8

6 Method for Evaluation 9

7 Architecture and Design 9

7.1 Discriminator . 9

7.2 Generator . 11

8 Data 12

9 Training 13

10 Results and Analysis of Evaluations 14

11 Conclusion 22

11.1 Acknowledgement . 23

Appendices 24

A GAN code 24

ii

List of Figures

1 No-Man’s Sky.[3] The game uses procedural generation of terrains and textures of non-player

characters (NPCs) and allow the player to explore different planets, solar systems, and star

systems. 4

2 In the image above an image classification model takes a single image and assigns probabil-

ities to 4 labels, cat, dog, hat, mug. [4] . 5

3 A cartoon of Neuron[17] . 6

4 Multi-layered Convolution Network. Left: A Regular 3-layer Neural Network. Right: How

a neuron would look like Mathematically[13]. 6

5 Generative Adversarial Network . 7

6 Google forms for evaluation . 10

7 Dataset: crackedground, pebbles, pavement, and grass ground 13

8 Generated images: cracked ground (left top), pebbles (right top), grass ground (left bottom),

and pavements (right bottom) . 15

9 Loss values of generator and discriminator while training. We are only considering the ab-

solute value of each of the loss value. the negative value is used just for visual aid. We want

two lines to get closer to each other. 16

10 Loss values of discriminator and generator on the category of pebbles. As both networks are

trained more and more, the loss values for the real images and the fake images become closer

together. The resulting images on the left looks more like pebble than the right image which

is brighter. 17

11 Generated grass . 17

12 Generated pavement . 18

13 Generated pebbles . 20

14 Generated pebbles . 22

iii

List of Tables

1 Analyzed response table of grass ground (Figure 11) . 18

2 Analyzed response table of Pebbles (Figure 13) . 19

3 Analyzed response table of cracked ground (Figure 14) . 19

4 Analyzed response table of pavement(Figure 12) . 20

5 Scores of each image . 21

iv

1 Introduction

The concept of artificial neural network is basically introduced from the subject of biology where neural

networks play an important and key role in human cognition. In human body work is done with the help

of neural network. Neural network is a web of inter connected neurons which are millions in number.

Using these concepts, we have tried to create machines capable of not just logic and reasoning but also

creativity and art. So far, the most striking successes in neural networks have involved discriminative net-

works [2], that classify a dimensional input to a class label [10]. These striking successes have primarily

been based on the backpropagation algorithm, a method of training a neural network in which the initial

system output is compared to the desired output, and the system is adjusted until the difference between

the two is minimized and dropout algorithms, a very efficient way of performing model averaging with

neural networks [11, 7]. Deep generative models have had less of an impact, due to the difficulty of approx-

imating many unmanageable probabilistic computations that arise in the random estimation and related

strategies. [9] These difficulties have been sidestepped by a new generative model estimation procedure,

known as Generative Adversarial Networks (GAN), developed by Ian J. Goodfellow.

A generative adversarial network consists of two neural networks: generator and discriminator. The

generator stochastically generates an image, and after a certain time of training, the images generated will

ideally be indistinguishable from the training dataset of images.

Since it is generally infeasible to engineer a function that tells whether that is the case, a discriminator net-

work is trained to do the assessment, and since networks are differentiable, we also get a gradient, the loss

value (a value that tells whether the discriminator or the generator is doing a good job(closer to zero) or a

bad job(far from zero)), we can use to steer both networks to the right direction.

As a fan in computer gaming, I find it quite amusing to encounter real world graphics, especially the

real world environment in games. Engineering or drawing such textures takes times for artists. As GAN is

filled with new artifacts for synthesis, I got motivated to develop GAN that synthesize terrain textures that

mimic real world terrains. A texture can be represented as an image with repeated patterns. The goal of

this ground terrain texture synthesis is to infer a generating process from a set of example textures, which

then allows to generate arbitrarily many new similar samples of that texture. Success in this task is judged

primarily by visual quality and similarity to the original texture as estimated by human observers, but also

by other criteria such as the speed of learning [15], ability to generate different variations of the input tex-

ture. More applications of image rendering can be found in architecture, simulators, movies, and visual

1

effects.

So far, terrain have been procedurally generated through a host of algorithms designed to mimic real-

life terrain. In games, the terrain and the game world need to be created by the game designers and artists.

This greatly limits the extent to which the player can experience since the human designer can only build

the static game worlds to a limited extent. However, being able to train machine learning algorithms to

learn terrain is going to allow the game to dynamically generate new areas. This allows for more varied

game play experiences such as Figure 1, ”No-man sky” where the player has no restrictions or invisible

walls and can travel extensively since the game world keep expanding. My research question is Can we

specialize Generative Adversarial Network to render terrain textures?

In the body of this thesis, Section 2 talks about related work done with GANs and other methods for

texture synthesis. Section 3 includes background of GAN, specifically about image classification, convo-

lution neural networks, and a detailed description of GAN. Section 4 talks about my approach. Section 5

lists the tools I used and then in the following Section 6 talks about methodology for my evaluation. Sec-

tion 7 begins to explain the algorithms of GAN I implemented, data processing and the training process of

my GAN. Section 8 and Section 9 explain about the images (generated) and the evaluation of the images.

Then, Section 10 analyzes these evaluations. Lastly, Section 11, discusses the issues that come up during

this research which will be left for future work.

2 Related Work

There has been ample research done with GANs that produce synthetic 2D images or 3D graphical models.

Grigory Antipov et al. [1], proposed a GAN-based method for automatic face aging. Contrary to previous

works that utilize GANs for altering of facial attributes, they made an emphasize on maintaining the origi-

nal person’s identity in the aged version of the person’s face.

Gatys et al. [6] present a more data driven parametric approach to allow generation of high quality tex-

tures from a variety of natural images. Using filter correlations, a basic operation that extract information

from images, in different layers of the convolution networks, an operation in artificial neural networks that

is applied to analyze visual imagery, which is trained discriminatively on large natural image collections

that results in a powerful technique that nicely captures expressive image statistics, classification of image

to a certain class. However, creating a single output texture requires solving an optimization problem with

2

iterative back propagation, which is costly in time and memory. Therefore, in my thesis, I have decided to

use a python library, Tensorflow, [15] which solves the back propagation.

Recent papers, Ulyanov’s [16] and Johnson’s[12] deal with that problem and train feed-forward con-

volution networks in order to speed up the texture synthesis approach of [5]. Instead of doing the costly

optimization of the output image pixels, they utilize powerful deep learning networks that are trained to

produce images minimizing the loss value. A separate network is trained for each texture of interest and

can then quickly create an image with the desired statistics in one forward pass.

In designing generator and discriminator networks, I have implemented both networks based on Ulyanov’s

and Gatys’ algorithms both of which includes using convolution networks.

There are other types of texture synthesis as well. Efros’ paper[5] presents a simple image-based method

of generating novel visual appearance in which a new image is synthesized by stitching together small

patches of existing images. This process as they call it, Image Quilting. They first use quilting as a fast

and very simple texture synthesis algorithm which produces surprisingly good results for a wide range of

textures. Then they extend the algorithm to perform texture transfer, which is rendering an object with a

texture taken from a different object.

3 Background

In this section, I will explain briefly about the concepts that are used for my thesis such as image classifica-

tion, convolutional neural networks, and a formal description of generative adversarial network.

3.1 Image Classification

Images are 3-dimensional arrays of integers from 0 to 255, of size (Width x Height x 3). The 3 represents

the three color channels Red, Green, Blue (RGB). The task in Image Classification is to predict a single label

such as cats, dogs, ships etc. for a given image. Since it is relatively trivial for a human to recognize a visual

concept (e.g. cat), it might not be true for computers. So, it is worth considering the challenges involved

from the perspective of a Computer Vision algorithm. [4] In my thesis, since I will be using terrain textures

as training datasets, I will have to make sure that the viewpoint variation, which is a single instance of an

object that can be oriented in many ways with respect to the camera, should be solved.

3

Figure 1: No-Man’s Sky.[3] The game uses procedural generation of terrains and textures of non-player
characters (NPCs) and allow the player to explore different planets, solar systems, and star systems.

4

Figure 2: In the image above an image classification model takes a single image and assigns probabilities
to 4 labels, cat, dog, hat, mug. [4]

3.2 Convolutional Neural Network (CNN)

Before we talk about convolution,we start with the definition of neural network. A neural network works

like a network of neuron cells in human nervous system and they are all connected by synapses. The Figures

3 and 4, show a biological neuron and a mathematical form of a neuron. In Figure 3, each neuron receives

input signals from dendrites and produces output signals along the axon. The axon eventually branches

out and connects through synapses to the other dendrites of other neurons. In the mathematical model

of a neuron in Figure 4, the signals that travel along the axons such as x1 interact multiplicatively with

the dendrites w1 of other neurons to produce a signal w1x1. The idea is that the synaptic strengths w1

are learned and control the strength of influence of one neuron on another. Moreover, they also decides

whether w1 is positive(excitatory impulse) or negative(inhibitory impulse). In this model, the dendrites

carry the signal to the cell body where all the signals get summed. If the final sum is above a certain

threshold, the neuron can fire, sending an impulse along its axon. In the mathematical model, the neuron

5

Figure 3: A cartoon of Neuron[17]

Figure 4: Multi-layered Convolution Network. Left: A Regular 3-layer Neural Network. Right: How a
neuron would look like Mathematically[13].

fires its impulses through an activation function which are discussed in detail in a later section.

3.3 Generative Adversarial Network

As proposed by Ian Goodfellow [8], a generative adversarial network (GAN) consists of a generator and a

discriminator, where the discriminator tries to classify real objects and objects synthesized by the generator,

and the generator attempts to confuse the discriminator. To build a GAN, we have to create two neural

networks. Then we make them compete against each other, endlessly attempting to out-do one another.

In the process, they both become better at what they do. A common analogy that is used to describe the

discriminator in GANs as a brand new police officer who is being trained to detect counterfeit money. Its

job is to look atmoney and report if it is fake or real. For the generator, it will be a counterfeiter, who will

6

Figure 5: Generative Adversarial Network

create fake money from scratch, without any knowledge of what real money looks like.

The counterfeiter, in the first round, will create a batch of images that barely resemble money at all since it

does not know anything about what money is supposed to look like. Since the police officer is also new at

its job, we have to step in and show the officer a batch of real dollar bill. This back-and-forth game between

the counterfeiter and the police officer continues thousands of times until both become experts. Eventually

the counterfeiter is producing near-perfect counterfeit money and the police officer has turned into a master

detective looking for the slightest mistakes.

To give a more formal mathematical definition of a GAN, Generative means the ability to produce, Ad-

versarial refers to involving oppositions and thus, Generative Adversarial Networks can be defined as a

network, that uses a contest to produce an image that look at least superficially authentic to human ob-

servers, having many realistic characteristics. As shown in Figure 5, the the generator takes in a creates a

batch of fake images and the discriminator takes in two inputs, a batch of real images, and a batch of fake

images created by the generator.

To learn the distribution of the generator, pg over a batch of data Z, we have to have random input

noise variable p(Z) that represents a mapping of data space as G(Z). We also define the discriminator

distributionD(X) which will outputs a single scalar. D(X) represents the probability that X came from

the data rather than pg . We train the discriminator D to maximize probability of training examples and

samples from the generator, G. At the same time, we train G to minimize log(1−D(G(z))). A more detailed

description of these mathematical algorithms will be explained in a later section.

7

4 Approach

To implement a GAN for texture synthesis, I include the schedule as follows.

1. Created a prototype: Single Convolution layer discriminator and a generator based on the algorithms

of Ulyanov [16], Gatys [6], and tensorflow[15] tutorial, which is a python library for neural network.

2. To test the accuracy for this model, I have chosen MNIST dataset(Modified National Institute of Stan-

dards and Technology) which is a large database for hand-written digits used for training various

image processing systems.

3. Find and process dataset. I searched for dataset for terrain textures and found a texture library. I

specifically downloaded terrain textures of four categories (cracked ground, grass ground, pebbles,

and pavement). Then, processed all images to have similar standard size.

4. Modify the prototype into Multi Convolutional layer along with the Generator. I implemented one

more convolution layers in both discriminator and generator.

5. Develop Training algorithm based on Tensorflow tutorial and Siraj Raval’s pokeGAN [14].

6. Train GAN and generate different variations of terrain textures using the trained model of GAN.

7. Design Evaluation in Google forms for generated images. Since I used human subjects as evaluators,

I submitted my design Human Subjects Research Review Committee (HSRRC) of Union College.

8. Sent out Google form to campus and collected evaluations.)

9. Analyze Evaluations and write report.

5 Tools

I use Python for the entire implementation along with two libraries Nympy for scientific computations, and

Tensorflow [15] a library for deep learning.

There are other libraries that help build neural networks such as Pythorch. However, I chose Tensorflow

due to it’s ease of use and gentle learning curve. The declaration and control of model parameters and vari-

ables are simple and putting together the model is intuitive Tensorflow has support for GPU with simple

API calls making training faster. Therefore, I will also uses automatic differentiation, eliminating the need

to write custom backpropagation methods.

8

Google open-sourced a Python library for performing fast gradient-based machine learning on GPUs. It

comes with a vast knowledge base and tutorials including examples for most neural network architectures.

Moreover it also has good developer community offering help for most roadblocks.

With Tensorflow, we can quickly build and test a neural network with few lines of code. Moreover, we

can also change the type of processing units form CPU to GPU. For my prototype GAN, I created a single-

layered discriminator and a single-layered generator for a prototype. To test this for, a training session is

implemented using Tensorflow source code from the tutorial. For the final GAN, another training session

is implemented using Siraj Raval’s pokeGAN training algorithm [14].

6 Method for Evaluation

For evaluation, will be performing the manual qualitative evaluations on the results/ images synthesized

from the generator after the whole training process is done. The manual evaluations include a survey where

I will ask a set of random evaluators to determine what the synthesized images look like with a short text

description within the ground terrain context as shown in figure 6. It is done in Google forms which was

sent out campus wide to get the evaluations. Therefore, no research fund was needed. Since I used human

subjects as evaluators, I submitted my design Human Subjects Research Review Committee (HSRRC) of

Union College. Then, from the collected evaluations, I analyzed the text descriptions of each image and

calculated the percentage in which the majority of people regard which class of ground texture, the image

belongs to.

7 Architecture and Design

In this section, I will be explaining the algorithm I used to build the GAN. Since both the discriminator

and the generator are neural networks, their architectures are formed by layers Convolution and activation

(which are described down below). Each Layer accepts an input 3D volume which are height x width x color

channel and transforms it to an output 3D volume through a differentiable function. For example, using an

image of 128 x 128 pixels, the basic layers can be broken down into the following. Note that the images are

(RGB) colored images, and thus, the number of color channel is 3.

7.1 Discriminator

• Input Layer: [128 x 128 x 3] will hold the raw pixel values of the image, in this case an image of width

128, height 128, and with three color channel.

9

Figure 6: Google forms for evaluation

• Convolutional Layers: will compute the output, the 3D volumes of features, which is the matrix

multiplication between the weight matrix W , called ”filter”, and a small region in the input volume

called, Kernel size. This will result in [128 x 128 x W] since we are using W filters.

• Flattening will convert the output of the convolution part of the CNN into a 1D feature vector, to be

used by the classifier. It gets the output of the convolution layers, flattens all its structure to create a

single long feature vector (e.g [1, 128 * 128 * 3]) to be used by the dense layer for the final classification.

• Activation layer: will compute the class scores, for each convolution layer and transfer the results into

other convolution layers. This convolution and activation repeats depending on how many convolu-

tion layer we have. For my case, it will be two layers.

Below is the architecture of the discriminator.

10

DISCRIMINATOR(input)

1 filters = 64

2 // convolutes the input image into 64 filters so that

3 // we have[128 x 128 x 64]

4 conv1 = convolute(input, filters)

5

6 // relu means leaky rectified linear unit for activation function.

7 out-conv = relu (conv1)

8

9 // Flatten the out-conv

10 out-flat = reshape (out-conv, [-1])

11 // flattens into 1-D.[15]

12

13 // First fully-connected layer

14 initialize weight for fully connected layer wfc

15 initialize bias for fully connected layer bfc

16

17 // Activated function for fully connected layer

18 // matrix multiply wfc and out-flat

19 out-fc = add(matmul(wfc, out-flat)+bfc)

7.2 Generator

The Generator can be considered as a reverse of Convolution network. It takes a dimensional random pixel

values and upsample the them to have a [128 x 128 x 3] image. Upsampling means increasing the sample

size. Then, an activation function is used to stabilize the output and mapping it down to have [1, 128 x 128

x 3] pixel to match texture image from the discriminator.

• Input Layer: [64 x 64 x 32] will hold the random pixel values of seed images for creating the generated

images. Since we used th filter of 64 in the discriminator, we chose the dimension of first input to be

[64 x 64 x 32]. Just like the discriminator, we want to flatten the layer so that it is easier to multiply

with the weights. Thus, the layer is flattened into [n, 64 x 64 x 32]. n refers to the number of seed

images.

• Fully-connected Layer: is created using the random weights w and bias b as mentioned before.

11

• Deconvolution Layer: you want to have images of dimensions [128 x 128 x 3] in the end. Thus,this

layer learns the filters/ weights from training and apply them back to the seed images.

• Output: an image with dimensions (128 x 128 x 3).

GENERATOR(input, rand dim)

1 // setting a fully connected layer so that we can upsample it layer by layer

2 initialize weight for fully connected layer wfc with rand dim and

3 shape of [64 x 64 x 32].

rand dim is usually 100 [14]

4 initialize bias for fully connected layer bfc

5

6 // Activate layer

7 out deconv = add(matmul(wfc, input)+bfc)

8

9 // flatten to get dimension of [64x 64 x 32]

10 flat deconv = reshape(out deconv, [-1, 64 x 64 x 32])

11

12 out dim = CHANNEL = 3 // 3 color channels

13 // Deconvolution starts (uses manual upsampling using kernel filters)

14 // de-convlutes flattened image (deconvoulte = transpose & convolute)

15 // get [128 x 128 x 3]

16 deconv1 = convolute(transpose(flat deconv, out dim))

17

18 // Activated layer

19 out deconv = tf.tanh(deconv1)

20 // tf.tanh will return a tensor respectively with

21 // the same float type as x[15]

8 Data

I have chosen four categories from texturelib.com, which are (1) cracked ground, (2) pebbles, (3) pavements,

and (4) grass ground, with 120 - 190 images each. The choice is due to their distinctions among them such

12

Figure 7: Dataset: crackedground, pebbles, pavement, and grass ground

as pavements are more symmetric than cracked grounds so the generated image will also have distinctions

for a human observer to evaluate/classify.

I feed in each category and let the networks train in the Union college CROCHET lab. The processor of the

computer used to trained is Intel Core i5 4570s CPU @ 2.90 GHz x 4 and the graphic card is NVE7 64 bit.

The training hour is dependent on the number of range I chose(usually more than 1000). I chose to the

range to be 2000.

9 Training

The accuracy test for the prototype single convolution layer classifier was used based on the algorithm from

Tensorflow and Siraj Raval [14]. One of the most important part about training GANs is to consider the loss

value. The loss value can be referred to as the value of the difference between the fake image(predicted

value) and the real world image (actual value). The loss value will be high if the discriminator is doing a

poor job at classifying the training data, and will be low otherwise. Similarly, the generator will also have

high loss value if it is creating poor images. We want the loss value to get closer to 0 so that both networks

are actually learning and improving one another.

Dloss =
1
m

∑m
i=1[logD(xi) + log(1−D(G(zi)))]

EQ 1:From [14] Computing loss function for the discriminator.The delta symbol denote the gradient of the

13

generator. m is the number of samples. D refers to the probability function by the discriminator and G

refers to that of generator. x is a batch of real images and z is a batch of fake images.

The first part of the equation, xi, refers to optimizing the probability that the real data (x) is computed

highly. The second part refers to optimizing the probability that the generated data or fake data, G(z) is

rated poorly. Logarithmic functions are applied to these probabilities so that it is easier to decide the gradi-

ent −whether the loss is going high or low for the discriminator.

Gloss =
1
m

∑m
i=1 log(1−D(G(zi))

EQ 2:From [14] Computing loss function for the generator. In Figure 1.5, the term refers to optimizing the

probability that the generated data G(z) is rated highly.

Since the generator is constantly improving images and the discriminator is constantly getting better at

distinguishing the images, the idea is to create a loss function that can affect both the generator and the

discriminator. The back and forth alternation of this gradient optimization between the discriminator and

the generator, using these expressions on new batches of real and generated fake data each time, the GAN

will eventually start to producing data that is as realistic as the network is capable of modeling.

As shown in Figure5 the discriminator must take in real world images and fake images from the gener-

ator. So, we calculate the probability of real world image (Dloss) and the probability of fake images (Gloss)

as shown in Figure.

10 Results and Analysis of Evaluations

As I have explained in my methodology section, I sent out a Google Forms for evaluation via email cam-

pus wide. The form includes informed consent and thirty images of generated pictures in random order.

The participants are asked to write a short description of each given image within the context of ground

textures. I collected data on the Google Form from 3/1/2018 to 3/9/2018. I received 20 responses. For

analyzing these responses, I have chosen to share, in this paper, the best results from each categories and

two of the worst results.

For analysis of grass, since I have given freedom to the evaluators for text descriptions with less than

14

Require: Dloss, Gloss

real image =random image
random Input = random Dimension
fake image = generator(random Input)

real Result = discriminator(real image)
fake Result = discriminator(fake image)

Dloss = fake Result−Real Result
Gloss = −fake Result

while i ≤ Epoch do
while j ≤ batch do

Update discriminator (dloss)
Update generator (gloss)
Print image

Algorithm 1: TrainGAN ()

Figure 8: Generated images: cracked ground (left top), pebbles (right top), grass ground (left bottom), and
pavements (right bottom)

15

Figure 9: Loss values of generator and discriminator while training. We are only considering the absolute
value of each of the loss value. the negative value is used just for visual aid. We want two lines to get closer
to each other.

four words, I have regarded these words including the text ”grass”, ”moss”, ”forest”, ”fields”, ”plants”,

”bushes”, ”algae”, ”lawn”, ”leaves” as grass ground. For pebbles, I have regarded these words including

the text ”cobble”, ”gravel”, ”rocks”, ”stones” as pebbles. For cracked ground, I have regarded these words

including the text ”dry”, ”crack”, ”desert”, ”broken”, ”jagged”, ”fractured”, ”splintered”, ”chipped” as

cracked ground. For pavement, I have regarded these words including the text ”rows”, ”tiles”, ”columns”,

”walls”, ”bricks” as pavement. I will be deciding that each evaluated image is ideally good and realistic if

50% of responses or more chose to say the above words in their descriptions and bad otherwise.

From Table 1, we can that 19 out of 20 (95%) evaluators regards this image as grass related textures.

Thus, I have chosen this image as an ideally realistic texture. Similarly, Table 2 has shown that 17 out of

20 (85%) regards this image as pebbles, which is also chosen to be a ideal texture. However, for cracked

ground which has 8 out of 20 (40%) and pavement which has 6 out of 20 (30%) are regarded as not realistic

enough. As we can see in table 5, after computing all the scores and getting the average, the score tends to

be 11.2 with (56%). Thus, the

16

Figure 10: Loss values of discriminator and generator on the category of pebbles. As both networks are
trained more and more, the loss values for the real images and the fake images become closer together. The
resulting images on the left looks more like pebble than the right image which is brighter.

Figure 11: Generated grass

17

Figure 12: Generated pavement

Description of image! Accounted as grass ground
wasabi no
Grassy yes
grass yes
lawn yes

Fairway green yes
grassy yes

Grassy field yes
Grass yes

16 squares of grass yes
definitely grass yes

grass yes
Large Grass yes

grass yes
grass yes
grass yes
Grass yes

grass, grassland yes
lawn yes
grass yes
Grass yes

19/20

Table 1: Analyzed response table of grass ground (Figure 11)

18

Description of image! Accounted as Pebbles
more rocks yes

Rocky area but there are clouds in the way yes
Rough terrain no

gravel yes
More gravel yes

pebbly yes
Sand and pebbles yes

Pebbles yes
16 grounds of rocks yes

lots of rocks and sand yes
Rock, minerals yes
Larger Pebbles yes
walkway rock yes

little stones yes
cross sign no

Pebble yes
city no

sandy soil no
rocky yes

Pebbles yes
17/20

Table 2: Analyzed response table of Pebbles (Figure 13)

Description of image! Accounted as cracked ground
rocks no

Snowy mountain no
rocks no

cracked granite yes
Charcoal no

desert, parched yes
Rocks no

Cracked ground yes
grounds of rocks no

looks like rocks on dry soil almost desert like yes
Marble no

Dry Dessert yes
marble no
dry soil yes
ice cube no
Ground no

stone, gravel no
cliff face no
cracked yes

Dry Cracked Ground yes
8/20

Table 3: Analyzed response table of cracked ground (Figure 14)

19

Description of image! Accounted as pavement
houses taken from above no
Like a load of small cities no

wood no
abstract art no

Wood no
burlap no

Mud Bricks yes
Bricks yes
bricks yes

looks like the walls made up of brown blocks yes
stones no

Dry Soil no
cut wood no

aerial city view no
wood no
Tile yes

city roads in europe no
natural mosaic no

dry no
Pavement Tiles yes

6/20

Table 4: Analyzed response table of pavement(Figure 12)

Figure 13: Generated pebbles

20

No. Score of each image Percentage Maximum Minimum
1 17/20 85%
2 16/20 80%
3 14/20 70%
4 18/20 90%
5 16/20 80%
6 17/20 85%
7 17/20(Table 2) 75%
8 8/20 40%
9 6/20 30%

10 15/20 75%
11 12/20 85%
12 14/20 70%
13 10/20 50%
14 3/20 15% yes
15 4/20 20%
16 8/20(Table 3) 50%
17 19/20 (Table 1) 95% yes
18 3/20 15% yes
19 13/20 65%
20 8/20 40%
21 10/20 50%
22 9/20 45%
23 9/20 45%
24 12/20 60%
25 18/20 90%
26 6/20 (Table 4) 30%
27 6/20 30%
28 16/20 80%
29 7/20 35%
30 5/20 25%

Averages Average Score= 11.2 Average % = 56%

Table 5: Scores of each image

21

Figure 14: Generated pebbles

11 Conclusion

As I have asked in my research question: Can we create a Generative Adversarial Network that draw ter-

rain textures? From the results of the experiment, it was successful enough to draw terrains from grass and

pebbles due to the percentile that is greater than 75% shown in Table(1 and 2). However, for cracked ground

and pavements, which have the percentile less than 50% (Table 3 and 4), it was not successful enough for

evaluators to identify a certain type of ground. Finally, From Table 5, we can see the average of the percent-

ages is 56%. Therefore, we can conclude that my GAN can render certain terrain textures such as Grass and

pebbles but cannot render pavements and cracked ground.

For future work, there can be more improvements for the GAN I have developed for texture rendering,

for example, I can try to create the generated image more and more realistic by getting more datasets. We

can try to find the similar type of cracked ground or grass ground datasets to make a more realistic images.

Due to the insufficient number of similar images, the evaluators seems to be unable to specifically identify

a certain type ground. This is one of my limitations in my thesis. For example, one of the images form

the training datasets, might be taken from a height of 1 meter and others might be taken from a different

height. This is one of the issues wit image classification which is scale variation [4]. Thus, the sized of

pebbles, cracks and bricks from pavements might be varied differently. If a dataset of similar type of terrain

exists, the GAN could be improved for a better and more realistic images of terrain. Another limitation is

that I can design the evaluation to be a check box rather than a text description which will greatly limits

22

the evaluators to answer the appointed image. This will also help me analyze the evaluations with conve-

nience. Another way I could design the experiment is that, I can create a trivial question type for each image

given the original image next to the generated one. Then, asking if the generated image look as realistic as

the original image would help me evaluate the GAN as well.

11.1 Acknowledgement

I would like to thank Stanford course on Deep-learning that has helped me study about Convolution Neu-

ral Networks, Akshay Kashyap for referring me to this website and David Frey for keeping the reserved

computer in the CROCHET lab.

References

[1] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. “Face Aging with Conditional Generative

Adversarial Networks”. In: (2017). URL: https://arxiv.org/pdf/1702.01983.pdf.

[2] Y Bengio. Learning deep architectures for AI. now Publishers Inc., 2009. ISBN: 78-1-60198-294-0.

[3] Gareth Bourn. No-Man Sky. 2017. URL: https://www.nomanssky.com.

[4] Csc-231n. CS231n Convolutional Neural Networks for Visual Recognition. 2017. URL: http://cs231n.

github.io/classification/.

[5] Alexei A. Efros and William T. Freeman. “University of California, Berkeley”. In: (2002). URL: https:

//people.eecs.berkeley.edu/˜efros/research/quilting/quilting.pdf.

[6] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “Texture Synthesis Using Convolutional

Neural Networks”. In: (2016). URL: https://papers.nips.cc/paper/5633- texture-

synthesis-using-convolutional-neural-networks.pdf.

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural networks”. In: ().

URL: http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

[8] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: (2014). URL: https://arxiv.org/pdf/

1406.2661.pdf.

[9] Ian J. Goodfellow et al. “Maxout Networks”. In: (). URL: http://proceedings.mlr.press/v28/

goodfellow13.pdf.

23

https://arxiv.org/pdf/1702.01983.pdf
https://www.nomanssky.com
http://cs231n.github.io/classification/
http://cs231n.github.io/classification/
https://people.eecs.berkeley.edu/~efros/research/quilting/quilting.pdf
https://people.eecs.berkeley.edu/~efros/research/quilting/quilting.pdf
https://papers.nips.cc/paper/5633-texture-synthesis-using-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/5633-texture-synthesis-using-convolutional-neural-networks.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
http://proceedings.mlr.press/v28/goodfellow13.pdf
http://proceedings.mlr.press/v28/goodfellow13.pdf

[10] Geoffrey Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech Recognition”. In:

(2012). URL: https://static.googleusercontent.com/media/research.google.com/

en//pubs/archive/38131.pdf.

[11] Kevin Jarrett et al. “What is the Best Multi-Stage Architecture for Object Recognition?” In: (). URL:

http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf.

[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual Losses for Real-Time Style Transfer and

Super-Resolution”. In: (2016). URL: https://cs.stanford.edu/people/jcjohns/papers/

eccv16/JohnsonECCV16.pdf.

[13] Hong K. Artificial Neural Network (ANN). 2016. URL: http://www.bogotobogo.com/python/

scikit-learn/Artificial-Neural-Network-ANN-1-Introduction.php.

[14] Siraj Raval. Generative Adversarial Networks. 2017. URL: https://github.com/llSourcell/

Generative_Adversarial_networks_LIVE/blob/master/EZGAN.ipynb.

[15] TensorFlow. URL: https://www.tensorflow.org/.

[16] Dmitry Ulyanov et al. “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”.

In: (2016). URL: https://arxiv.org/pdf/1603.03417.pdf.

[17] Wikipedia. Neurone. 2017.

Appendices

A GAN code

#Author Hein H. Aung

Created on − Jan 9th , 2018

l a s t Updated on − Feb 28 th , 2018

import os

import tensorf low as t f

import numpy as np

import random

import sc ipy . misc

24

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38131.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38131.pdf
http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf
https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf
http://www.bogotobogo.com/python/scikit-learn/Artificial-Neural-Network-ANN-1-Introduction.php
http://www.bogotobogo.com/python/scikit-learn/Artificial-Neural-Network-ANN-1-Introduction.php
https://github.com/llSourcell/Generative_Adversarial_networks_LIVE/blob/master/EZGAN.ipynb
https://github.com/llSourcell/Generative_Adversarial_networks_LIVE/blob/master/EZGAN.ipynb
https://www.tensorflow.org/
https://arxiv.org/pdf/1603.03417.pdf

from u t i l s import ∗

import cv2

import m a t p l o t l i b . pyplot as p l t

HEIGHT = 128

WIDTH = 128

CHANNEL = 3

save path = ’ Cracked generated5 ’

newtexture path = ’ . / ’ + save path

def l r e l u (x , n , leak = 0 . 2) :

re turn t f . maximum(x , leak ∗ x , name=n)

def d i s c r i m i n a t o r (input , i s t r a i n , reuse=Fa l se) :

f i l t e r s = 64

with t f . v a r i a b l e s c o p e (’ dis ’) as scope :

i f reuse :

scope . r e u s e v a r i a b l e s ()

128 ∗ 128 ∗ 64

conv1 = t f . l a y e r s . conv2d (input , f i l t e r s , k e r n e l s i z e =[4 , 4] , s t r i d e s =[2 , 2] , padding=”SAME” ,

k e r n e l i n i t i a l i z e r = t f . t r u n c a t e d n o r m a l i n i t i a l i z e r (stddev = 0 . 0 2) ,

name= ’ conv1 ’)

bn1 = t f . c o n t r i b . l a y e r s . batch norm (conv1 , i s t r a i n i n g = i s t r a i n , eps i lon =1e−5, decay = 0 . 9 ,

u p d a t e s c o l l e c t i o n s =None , scope = ’ bn1 ’)

a c t 1 = l r e l u (bn1 , n= ’ act1 ’)

F l a t t e n

dim = i n t (np . prod (a c t 1 . get shape () [1 :]))

f c 1 = t f . reshape (act1 , shape =[−1 , dim] , name= ’ fc1 ’)

f l a t t e n e d weight

25

w2 = t f . g e t v a r i a b l e (’w2’ , shape =[f c 1 . shape [−1] , 1] , dtype= t f . f l o a t 3 2 ,

i n i t i a l i z e r = t f . t r u n c a t e d n o r m a l i n i t i a l i z e r (stddev = 0 . 0 2))

f l a t t e n e d b i a s

b2 = t f . g e t v a r i a b l e (’ b2 ’ , shape = [1] , dtype= t f . f l o a t 3 2 ,

i n i t i a l i z e r = t f . c o n s t a n t i n i t i a l i z e r (0 . 0))

Act iva te

l o g i t s = t f . add (t f . matmul (fc1 , w2) , b2 , name= ’ l o g i t s ’)

re turn l o g i t s

def generator (input , random dim , i s t r a i n , reuse=Fa l se) :

output dim = CHANNEL

with t f . v a r i a b l e s c o p e (’ gen ’) as scope :

i f reuse :

scope . r e u s e v a r i a b l e s ()

#64 ∗ 64 ∗ 32

w1 = t f . g e t v a r i a b l e (’w1’ , shape =[random dim , 64 ∗ 64 ∗ 3 2] , dtype= t f . f l o a t 3 2 , i n i t i a l i z e r = t f . t r u n c a t e d n o r m a l i n i t i a l i z e r (stddev = 0 . 0 2))

b1 = t f . g e t v a r i a b l e (’ b1 ’ , shape =[32 ∗ 64 ∗ 6 4] , dtype= t f . f l o a t 3 2 , i n i t i a l i z e r = t f . c o n s t a n t i n i t i a l i z e r (0 . 0))

f l a t c o n v 1 = t f . add (t f . matmul (input , w1) , b1 , name= ’ f l a t c o n v 1 ’)

F la t tened 64 ∗ 64 ∗ 32

deconv1 = t f . reshape (f l a t c o n v 1 , shape =[−1 , 64 , 64 , 3 2] , name= ’ deconv1 ’)

bn1 = t f . c o n t r i b . l a y e r s . batch norm (deconv1 , i s t r a i n i n g = i s t r a i n , eps i lon =1e−5, decay = 0 . 9 ,

u p d a t e s c o l l e c t i o n s =None , scope = ’bn1 ’)

a c t 1 = t f . nn . r e l u (bn1 , name= ’ act1 ’)

128 ∗ 128 ∗ 3

conv2 = t f . l a y e r s . conv2d transpose (act1 , output dim , k e r n e l s i z e =[4 , 4] , s t r i d e s =[2 , 2] , padding=”SAME” ,

k e r n e l i n i t i a l i z e r = t f . t r u n c a t e d n o r m a l i n i t i a l i z e r (stddev = 0 . 0 2) ,

26

name= ’ conv2 ’)

a c t 2 = t f . nn . tanh (conv2 , name= ’ act2 ’)

re turn a c t 2

BATCH SIZE = 16

def r e s i z e r () :

c u r r e n t d i r = os . getcwd ()

t e x t u r e d i r = os . path . j o i n (c u r r e n t d i r , ’ Crack ’)

data = []

f o r each in os . l i s t d i r (t e x t u r e d i r) :

data . append (os . path . j o i n (t e x t u r e d i r , each))

p r i n t images

images = t f . c o n v e r t t o t e n s o r (data , dtype = t f . s t r i n g)

images queue = t f . t r a i n . s l i c e i n p u t p r o d u c e r ([images])

content = t f . r e a d f i l e (images queue [0])

image = t f . image . decode jpeg (content , channels = CHANNEL)

image = t f . image . random brightness (image , max delta = 0 . 0 1)

image = t f . image . random contrast (image , lower = 0 . 9 , upper = 1 . 1)

image = t f . image . res ize images (image , [1 2 8 , 1 2 8])

image . se t shape ([1 2 8 , 128 , 3])

image = t f . c a s t (image , t f . f l o a t 3 2)

image = image / 255 .0

27

images batch = t f . t r a i n . s h u f f l e b a t c h ([image] , b a t c h s i z e = BATCH SIZE ,

num threads = 4 , c a p a c i t y = 200 + 3∗ BATCH SIZE ,

min after dequeue = 200)

num images = len (data)

re turn images batch , num images

EPOCH = 700

def t r a i n () :

random dim = 100

with t f . v a r i a b l e s c o p e (’ input ’) :

rea l image = t f . p laceholder (t f . f l o a t 3 2 , shape = [None , 128 , 128 , 3] , name= ’ real image ’)

random input = t f . p laceholder (t f . f l o a t 3 2 , shape =[None , random dim] , name= ’ rand input ’)

i s t r a i n = t f . p laceholder (t f . bool , name= ’ i s t r a i n ’)

f a k e i m a g e l o s s = generator (random input , random dim , i s t r a i n)

r e a l r e s u l t l o s s = d i s c r i m i n a t o r (real image , i s t r a i n)

f a k e r e s u l t l o s s = d i s c r i m i n a t o r (fake image loss , i s t r a i n , reuse=True)

D loss = t f . reduce mean (f a k e r e s u l t l o s s) − t f . reduce mean (r e a l r e s u l t l o s s)

G loss = − t f . reduce mean (f a k e r e s u l t l o s s)

t v a r s = t f . t r a i n a b l e v a r i a b l e s ()

d vars = [var f o r var in t v a r s i f ’ dis ’ in var . name]

g vars = [var f o r var in t v a r s i f ’ gen ’ in var . name]

t r a i n e r d = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e =1e−3) . minimize (D loss , v a r l i s t =d vars)

28

t r a i n e r g = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e =1e−3) . minimize (G loss , v a r l i s t =g vars)

c l i p d i s c r i m i n a t o r weights

d i s c l i p = [v . ass ign (t f . c l i p b y v a l u e (v , −0.01 , 0 . 0 1)) f o r v in d vars]

b a t c h s i z e = BATCH SIZE

image batch , samples num = r e s i z e r ()

batch num = i n t (samples num / b a t c h s i z e)

s e s s = t f . Sess ion ()

saver = t f . t r a i n . Saver ()

s e s s . run (t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ())

s e s s . run (t f . l o c a l v a r i a b l e s i n i t i a l i z e r ())

coord = t f . t r a i n . Coordinator ()

threads = t f . t r a i n . s t a r t q u e u e r u n n e r s (s e s s =sess , coord=coord)

g l o s s l i s t = []

d l o s s l i s t = []

p r i n t ’ batch s i z e : %d ’ % (b a t c h s i z e)

p r i n t ’ batch num per epoch : %d ’ % (batch num)

p r i n t ’ epoch num: %d’%(EPOCH)

f o r i in range (EPOCH) :

f o r j in range (batch num) :

d i t e r s = 5

g i t e r s = 1

t r a i n n o i s e = np . random . uniform (−1.0 , 1 . 0 , s i z e =[b a t c h s i z e , random dim]) . astype (np . f l o a t 3 2)

Update the d i s c r i m i n a t o r

f o r k in range (d i t e r s) :

t ra in image = s e s s . run (image batch)

s e s s . run (d i s c l i p)

29

, dLoss = s e s s . run ([t r a i n e r d , D loss] ,

f e e d d i c t ={random input : t r a i n n o i s e , rea l image : tra in image , i s t r a i n : True })

Update the generator

f o r k in range (g i t e r s) :

, gLoss = s e s s . run ([t r a i n e r g , G loss] , f e e d d i c t ={random input : t r a i n n o i s e , i s t r a i n : True })

p r i n t i

i f i %10 == 0 :

save images

i f not os . path . e x i s t s (newtexture path) :

os . makedirs (newtexture path)

sample noise = np . random . uniform (−1.0 , 1 . 0 , s i z e =[b a t c h s i z e , random dim]) . astype (np . f l o a t 3 2)

pr int img = s e s s . run (fake image loss , f e e d d i c t ={random input : sample noise , i s t r a i n : Fa l se }) # get image from generator and p r i n t i t out

save images (print img , [4 , 4] , newtexture path + ’/ epoch ’ + s t r (i) + ’ . jpg ’)

g l o s s l i s t . append (gLoss)

d l o s s l i s t . append (dLoss)

p r i n t (’ I t e r : {} ’ . format (i))

p r i n t (’D l o s s : { : . 4 } ’ . format (dLoss))

p r i n t (’ G loss : { : . 4 } ’ . format (gLoss))

p r i n t ()

p l t . p l o t (xrange (len (g l o s s l i s t)) , g l o s s l i s t)

p l t . p l o t (xrange (len (d l o s s l i s t)) , d l o s s l i s t)

p l t . x l a b e l (’ I t e r a t i o n s ’)

p l t . a x i s ([0 , 5 0 0 0 , dLoss , gLoss])

30

coord . r e q u e s t s t o p ()

coord . j o i n (threads)

p r i n t (g l o s s l i s t)

p r i n t (d l o s s l i s t)

p l t . show ()

i f name == ” main ” :

t r a i n ()

31

	Introduction
	Related Work
	Background
	Image Classification
	Convolutional Neural Network (CNN)
	Generative Adversarial Network

	Approach
	Tools
	Method for Evaluation
	 Architecture and Design
	 Discriminator
	Generator

	Data
	Training
	Results and Analysis of Evaluations
	Conclusion
	Acknowledgement

	Appendices
	GAN code

