
Effective ANN Topologies for use as Genotypes for

Evolutionary Design and Invention

John R. Peterson

March 18, 2017

Abstract

There is promise in the field of Evolutionary Design for systems that evolve not only what to manufac-

ture but also how to manufacture it. EvoFab is a system that uses Genetic Algorithms to evolve Artificial

Neural Networks (ANNs) which control a modified 3d-printer with the goal of automating some level of

invention. ANNs are an obvious choice for use with a system like this as they are canonically evolvable

encodings, and have been successfully used as evolved control systems in Evolutionary Robotics. How-

ever, there is little known about how the structural characteristics of an ANN affect the shapes that can be

produced when that ANN controls a system like a 3d-printer. We consider the relationship between certain

structural characteristics of an ANN and the ability of that ANN to produce complex geometric shapes by

controlling a 3d-printer. We develop an understanding of shape complexity for 2d-shapes in a simulated

3d-printer in order to use Genetic Algorithms to optimize ANNs with fixed structures to produce complex

outputs and assess the relationship between topologies of ANNs and the systems success in producing

complex outputs under evolutionary optimization.

i

Contents

1 Introduction 1

2 Approach and Constraints 2

3 EvoFab: A System for Evolutionary Fabrication with 3d Printers 3

3.1 EvoFab 0.3 System Design . 3

3.2 EvoFab Simulation . 4

4 Describing the Complexity of 2d Shapes 5

4.1 Kolmogorov Complexity . 5

4.2 Shannon Entropy . 6

5 Measures of Shape Complexity in Simulation 7

5.1 Entropy of Curvature in Simulation . 8

5.2 Alternative Measurements for Use in Simulation . 8

5.3 Comparison of Implemented Measurements as Measures of Shape Complexity 9

6 ANN Designs and Features for Testing 10

6.1 Significant Structural Characteristics of ANNs for 3d-Printer Control 10

6.2 Encoding of “Global Position” Information . 11

6.3 Simple Recurrence for Simple ANNs . 12

6.4 Printer Instruction Encoding . 13

7 Testing Configuration 14

8 Results 15

8.1 Results for Networks Optimized to P . 15

8.2 Results for Networks Optimized to B . 16

9 Discussion 21

9.1 On “Shape Complexity” . 21

9.2 On “Usefulness” of ANNs as Genotypes for Evolutionary Design with 3d-Printers 22

10 Future Work 23

ii

1 Introduction

Genetic Algorithms have shown significant utility over the past twenty years in the optimization of prob-

lems that are difficult for humans to systematically approach. There is significant appeal to the possibility

of building automated systems to produce solutions to complex problems with limited or no human inter-

vention. One problem that clearly falls into this category is that of physical design. Often, a design task is

proposed only as a loosely-coupled set of constraints to be optimized to where the relationships between

these constraints make designing an appropriate product a very difficult task. Genetic Algorithms have

been used very successfully to produce designs for a number of these difficult design problems, ranging

from antennae [8], to cantilever bridges made from LEGOS [5], to VLSI circuits [2]. To date, much of the

work done using Genetic Algorithms for design have focused on evolving descriptive models of objects,

which some researchers have said results in a Fabrication Gap, a gap between what can be automatically

designed, and what can be automatically manufactured [11]. In particular, evolved designs, when entirely

decoupled from the process needed to manufacture them, may be difficult or even impossible to manufac-

ture once designed.

One proposed solution to this Fabrication Gap is to evolve the manufacturing procedure used to pro-

duce a physical design, rather than the design itself. The hope is that while other approaches result in only

a description of an object optimized to a set of design parameters, this approach would result in both a

design and a validated procedure for the manufacture of that design. Over the past few years, work at

Union College on EvoFab [12][7] has begun the process of implementing an evolutionary system in this

philosophy. With EvoFab, we have begun to approach the problem of evolving manufacturing procedures

by incorporating a 3d-printer, modified to be controlled by an Artificial Neural Network (ANN), into a GA

system which evolves populations of ANNs optimized to control the 3d-printer to produce solutions to

physical design tasks.

In the EvoFab system, ANNs are used as solutions for evolutionary optimization (genotypes) which

control a 3d-printer in order to produce an expressed geometric result (phenotype). ANNs are a natural

choice for genotypes to be used in this system. Previous iterations of the EvoFab project relied on linear

instruction sets as genotypes for evolution. However, it became clear that these linear instruction sets did

not behave well under the operations needed for GAs (mutation and crossover). Small changes made to

the genotype via mutation resulted in physical phenotypes that were drastically dissimilar to the parent.

Similarly, crossover was of little value because linear snippets of assembly instructions were very sensitive

to context and had no value when used as building blocks [7]. In contrast, ANNs are generally understood

to be canonically evolvable genotypes, where a minor mutation to the genotype will produce a minor

1

change in the expressed phenotype, and where the relative lack of context sensitivity of snippets of the

genotype encoding permit reasonable results under crossover.

However, while we know that ANNs are appropriate encodings for use as genotypes for Genetic Algo-

rithms, we do not have a clear sense as to their behavior as control systems for 3d-printers. ANNs have

been successfully used as evolved control systems in evolutionary robotics [4]. However, relevant problems

and desirable solutions in evolutionary design differ significantly from those in evolutionary robotics. In

particular, it is important for a manufacturing system to be able to produce “interesting” outputs, where

the shapes produced are sufficiently complex to be usefully composed into a complex physical product.

The question of how “interesting” objects produced by an ANN-controlled 3d-printer can be is particularly

important when those ANNs are used as genotypes for a GA system tasked with novel invention and fab-

rication. In particular, we ask: What structural characteristics of an ANN impact the geometric complexity of the

shapes those ANNs can produce when controlling a 3d-printer?, and What structural characteristics of an ANN are

likely to improve that ANNs suitability as an evolved control system for invention and fabrication with a 3d-printer?.

2 Approach and Constraints

The aim of this work is to develop an understanding of the relationship between the structural characteris-

tics of ANNs and the geometric complexity of the shapes produced by ANNs functioning as control systems

for a 3d-printer system. To approach this problem, we must develop a quantitative understanding of the

“geometric complexity” of a shape. With a quantitative understanding of “geometric complexity”, we can

use this measurement as an objective function for evolutionary optimization. Through large numbers of tri-

als on populations of ANNs with different fixed structural topologies, we can establish an understanding

of how those the particular characteristics featured in those topologies impact “geometric complexity”.

Because of the additional challenges imposed when working in the physical EvoFab system (namely

hardware stability issues), our work focuses on results and testing using a simple printer simulation. Fur-

thermore, since the current generation of EvoFab is restricted to 2d outputs, we direct our focus toward

geometric results in two dimensions.

2

3 EvoFab: A System for Evolutionary Fabrication with 3d Printers

3.1 EvoFab 0.3 System Design

EvoFab 0.3 uses closed-loop manufacturing specifications instead of the open-loop linear instruction sets

typical to 3d-printers. As opposed to evolving populations of linear instruction sets, this system evolves

Artificial Neural Networks (ANNs) which output motor instructions based on sensor input from a sensor

array on the printer hardware. Our conjecture is that these ANNs will be significantly more evolvable than

the linear sequences used earlier in EvoFab, and will be less brittle under mutation and crossover.

EvoFab 0.3 consists of the fabrication hardware and a control/GA system written in Python. The fab-

rication hardware is based on a RepRap 3d printer kit sold by Velleman [13], modified to accommodate a

pneumatic extruder, two extra end-stops, a photo resistor array around the tip of the extruder, a conveyor-

belt to replace the static build platform, and a replacement control board. Typically, members of the evolved

population are 3-layer feed-forward ANNs with 8 inputs, one for each sensor in the photo resistor array,

and four outputs which control motor motion. The system is shown in Figure 1. A system diagram is

shown in Figure 2.

Figure 1: The EvoFab fabrication system

When running, EvoFab 0.3 runs each of the ANNs in order. After an arbitrary completion time, the

ANN is stopped and the hardware output is evaluated by a computer vision system. Then, the conveyor

belt activates, moving the output off the build surface and allows the next candidate ANN to be evaluated.

After evaluating and ranking all candidate ANNs based on fitness, the system performs a cull step on a

given percentage of the population. These culled members are replaced by fitness-proportional breeding of

the remaining population. The evolution and evaluation procedure for EvoFab 0.3 is shown in Figure 3.

3

Figure 2: System schematic of the EvoFab system

Figure 3: The EvoFab procedure for evolution and evaluation

3.2 EvoFab Simulation

Previous work developing EvoFab and testing the system design as a proof of concept have used a 2d

simulation of the printer written in Python. This simulation describes the printer build platform as a raster

grid where the print head draws in those cells.

For this work we have improved and extended the existing EvoFab simulation. The simulation used

allows the print head to move in cell coordinates. The size of the print head is defined as some multiple of

grid cells, allowing for an arbitrary-resolution raster drawing area. The photo resistor array is simulated

with a 3×3 grid of cells where the dimension of each sensor cell is some multiple of grid cells. The simulated

sensor response is the percentage of the cells in view of each sensor cell that are filled with material. Sample

shapes produced in simulation by randomly-generated simple 3-layer feed-forward ANNs are shown in

Figure 4.

4

Figure 4: Sample outputs in the EvoFab simulation from three randomly-generated, simple ANNs. The
orange circle shows the print head, with the sensor grid around it. Red shows grid cells that have been
filled.

Label Image Compressed Size

A 51680

B 57707

C 6879

D 5036

E 11436

Table 1: Sample input images and calculated compression-based “complexity” measure

4 Describing the Complexity of 2d Shapes

In order to begin to understand the relationship between ANN complexity and geometric result produced

by a 3d printer controlled by that ANN, we first have to approach the question of how to quantify shape

complexity. While humans can intuitively assess the complexity of an object or shape relative to others, to

use complexity as an objective function for optimization we need a quantitative measure of it. There are

a few possible approaches to the problem. For input images of smooth curves (as would be used in the

physical EvoFab system) there are two clear possibilities.

4.1 Kolmogorov Complexity

The Kolmogorov complexity of a string is defined as the shortest binary computer program for computing

that string. By describing the information content of a string based on the smallest unit of computation

that can produce that string, this approach describes a general understanding of “how much information”

exists within a piece of data. [3]

If we are to understand an image as a string, it seems possible that the Kolmogorov complexity of an

5

image of a 2d-shape may give results consistent with an intuitive understanding of the geometric com-

plexity of that shape. However, Kolmogorov complexity is uncomputable in general [3], so defining shape

complexity in this way would depend on some measure that approximates Kolmogorov complexity.

In order to assess the suitability of a measure of shape complexity based on an approximation of Kol-

mogorov complexity, we implemented a measure based on the size of a compressed image and tested it on

shape inputs with varying qualitative “interestingness”. Results of this exploratory testing are shown in

Table 1.

Although images A through D seem to be ranked in the expected order, image E, a relatively straight line

has a significantly higher “complexity” as computed than either image D or C. Furthermore, this measure

gives images A and B “complexities” a full order of magnitude above those given to images C and D. These

results likely stem from the fact that although the compressed size of an image should be somewhat related

to Kolmogorov complexity, it is a fairly poor proxy when relying on real-world implementations.

4.2 Shannon Entropy

Shannon entropy is a measure of the uncertainty of a random variable. For a random variable x and a

probability density function (PDF) p(x), the entropy H(x) of that variable is given generally by

H(x) = −
∫ ∞
−∞

p(x) log p(x)dx

In the case of discrete data, entropy is given by

H(x) =
∑
i

pi log pi (1)

Page et al. develop a measure of shape complexity for 2d and 3d shapes based on the Shannon entropy

of curvature [9]. This measure has been shown to strongly correlate with human perceptions of shape

complexity [6] and has been successfully used to describe the complexity of evolved robot morphologies [1].

We base our implementation of entropy of 2d-shape curvature on the model given by Page et al.

For smooth input images, we use openCV to identify the contour of a 2d curve in an input image. To

reduce the level of noise in the placement of the points identified along the contour, we downsample the

points by an order of magnitude. As computed by openCV, the points along the contour are listed in order,

allowing us to compute line segments between each pair of points. A test image with marked points and

line segments is shown in Figure 5.

Page et al. note that for a curve that is sampled uniformly along arc length, curvature is equivalent to

6

Figure 5: Sample input with downsampled points
for exterior contour and line segments marked.
Points are ordered lightest green to darkest green.

Lower Upper Probability
0.0 7.0 0.166666666667
7.0 14.0 0.222222222222

14.0 21.0 0.305555555556
21.0 28.0 0.138888888889
28.0 35.0 0.0277777777778
35.0 42.0 0.0277777777778
42.0 49.0 0.0
49.0 56.0 0.0
56.0 63.0 0.0
63.0 70.0 0.0277777777778

Table 2: Probability Density Function (dis-
crete) calculated from the sample input

Label Image H

A 0.878998287142

B 0.68094959913

C 0.648913678978

D 0.583475152381

E 0.446103952925

Table 3: Sample input images and calcu-
lated entropy

Label Image H

A 0.515925693453

B 0.512699872124

C 0.446103952925

D 0.399160919416

Table 4: Sample input images and calcu-
lated entropy (simulation)

turning angle. We compute the turning angle for each pair of consecutive line segments in our image, and

produce a discrete PDF for the curvature of the input over M bins with a constant bin width (so results for

two different inputs are comparable). The PDF for the sample input shown in Figure 5 is shown in Table 2.

With the PDF computed, we simply calculate entropy for sampled data as given in Equation 1. Results

for the standard set of smooth inputs are shown in Table 3.

5 Measures of Shape Complexity in Simulation

In order to be able to use any measurement of shape complexity as an objective function for optimization in

the simulated EvoFab system, that measure has to appropriately evaluate the low-resolution raster shapes

that are produced as expressed phenotypes in simulation.

Because it performed poorly in initial testing we did not implement the compression-based pseudo-

Kolmogorov complexity measure for use with the EvoFab simulation. Instead, we focused on an adapted

7

implementation of entropy of curvature along with other simpler geometric descriptions.

5.1 Entropy of Curvature in Simulation

To compute turning angles on the exterior of a raster shape in simulation we first compute the exterior

contour of the shape by identifying “boundary lines” between filled and unfilled cells and tracing a path

composed of those lines. We then compute the turning angle of consecutive line segments spanning two

points on the contour. This ensures that there is more variation in the computed angle than simply 0 and

90 degrees. Entropy is then computed as usual. Results of initial testing are shown in Table 4.

Interestingly, while shapes A and B are ranked as expected, the solid square, C, is ranked as having

higher complexity than shape D. This discrepancy highlights the possibility that although entropy of cur-

vature appeared to correspond well with shape complexity for smooth inputs, it does not seem particularly

well-suited (or easy to define well) for use in a low-resolution raster-based simulation.

5.2 Alternative Measurements for Use in Simulation

Because of the computational expense and poor initial results of the compression-based complexity mea-

sure, alternative geometric objective functions were explored. The following measures were implemented:

• Ratio of perimeter of the shape to the units of filled area

• Ratio of perimeter of the shape to the perimeter of a “bounding rectangle”

• Ratio of perimeter squared to the units of filled area (denoted P)

• Ratio of perimeter to the normalized “bounding rectangle” perimeter (the perimeter of the bound

divided by the area of the bound) (denoted B)

These measures were implemented with the understanding that they might describe the intuitive notion

of “shape complexity” while using only simple geometric attributes. The first two measures: the ratio of

the perimeter of the shape to the number of filled cells and to the perimeter of a “bounding rectangle”

are the two most obvious geometric measures that would be likely to be related to perceived complexity.

The other two measures can be understood as modifications of the first two that are “normalized” to the

non-perimeter value. In the case of (perimeter/filled area), we note that area does not scale linearly with

perimeter — rather, it scales linearly (or close to linearly) with the square of perimeter, and we square

the perimeter value accordingly to get P . In the case of (perimeter/perimeter of bounding rectangle) we

simply incorporate the filled area of the rectangle into the measure (with some understanding that two

shapes identical other than scale, should have identical complexity), resulting in B.

8

5.3 Comparison of Implemented Measurements as Measures of Shape Complexity

In order to assess the applicability of the implemented measurements as measures of shape complexity, we

compare computed rankings of a known set of inputs to a qualitative ranking. This comparison is shown

in Table 5.

Rank Std Entropy Perim/Area Perim/Bounding Rect P B

0 0.2028 0.3102 1.0952 16.2 70.875∗

1 0.4088 0.45 1.1111 19.0588 70.875∗

2 0.4146 0.5294 1.1176 21.9661 70.875∗

3 0.4155 0.6101 1.1206 30.0833 73.7647

4 0.4215 0.6666 1.125∗ 33.2830 82.6875

5 0.4326 0.7142 1.125∗ 35.2666 90.5625

6 0.4379 0.7666 1.125∗ 40.3341 120.4761

7 0.4452 0.7916 1.2962 42.32 135.0

8 0.4488 0.7924 1.3125 42.8571 172.8571

9 0.4550 0.92 1.4375 46.6666 188.8888

10 0.4830 0.9705 1.5714 61.0169 235.9259

11 0.5179 1.0169 1.6666 64.0588 537.9310

Table 5: Rankings of a standard set of inputs by all five candidate geometric measures (along with “std” —
human-ranked inputs). Note that starred (∗) values are not rounded.

Notably, the measure that performs most similarly to the qualitative ranking is P , the “normalized”

ratio between shape perimeter and filled area. Not only does this measure outperform the others in terms

of the correspondence of rankings to human rankings, but the “complexity scores” given by the measure

9

vary proportionally to intuitive understandings of increases in complexity. We see that B, the “normalized”

bounding-box measure also performs quite well, and while it tends to rank shapes differently than both the

given qualitative ranking and the perimeter measure, it clearly behaves better than any of the remaining

two candidate measures.

6 ANN Designs and Features for Testing

With a sense that these two geometric “ranking” functions may function as a reasonable proxy for geomet-

ric complexity (or more generally, a qualitative sense of “interestingness”), the focus shifts to how those

functions behave in a system like EvoFab (in simulation). In particular, we begin to be able to develop a

context for how to best test the fitness of printer-directing ANNs.

In order to do this, we define fixed ANN topologies based on a set of significant network “features”.

With populations of ANNs restricted to those fixed network topologies, we then optimize those networks

using the simulated EvoFab GA system to maximize the fitness of the networks for each of the two promis-

ing geometric measurements: P and B.

6.1 Significant Structural Characteristics of ANNs for 3d-Printer Control

The fundamental goal of this work is to improve our understanding of what “kinds” of ANNs are able

to produce complex geometric results when controlling an EvoFab-like 3d-printer system. In order to do

this, we identify a number of “features” of ANNs which are likely to have influence on the fitness of those

networks.

It is important to note that this work is focused on very simple neural networks for use as control

systems. Much current work using neural networks for complex problems is focused on the use of many-

layered networks with complex structure. However, as simple neural networks have been successfully used

as control systems for interesting problems in Evolutionary Robotics [4][10], we hypothesize that simple,

3-layer, feed-forward, sigmoid-activated ANNs are a reasonable platform for investigative work on their

use as control systems for Evolutionary Fabrication with 3d-printers.

Furthermore, these simple ANNs are trivial to encode as genotypes for use with Genetic Algorithms.

Since we evolve populations of ANNs with a shared structural topology, we are able to fully describe a

member of that population by an ordered list of weights corresponding to each of the (ordered) connections

present between nodes in that network.

With these simple networks as a platform for our work, we identify the following as features that are

10

likely to impact the behavior of ANNs in our system.

1. The number of hidden nodes in an ANN

Increasing the number of hidden nodes in an ANN increases the number of connections and paths be-

tween the input nodes of the network and the output nodes. In doing this, it increases the interpretive

capabilities of that ANN.

2. Whether or not the ANN has recurrence

An ANN is recurrent, if there are any cycles between layers of the network. Intuitively, recurrence can

be viewed as a certain amount of “memory”, or “state” within a network. Where a network without

recurrence produces an output based only on the current external inputs to the network, a network

with recurrence produces outputs based both on current sensor inputs, and on some previous input

or output to or from the network.

3. Whether or not the ANN has an understanding of the “global” position of the printer on the build

platform

In the EvoFab 0.3 system, the ANN directing printer motion has inputs based on local sensor data

around the extruder head. That is, the ANN receives input based on the state of the world locally

around the extruder, but has no information about the absolute position of the extruder relative to the

build platform. Adding inputs to the ANN based on this global position could potentially aid in the

production of interesting/complex geometric outputs.

6.2 Encoding of “Global Position” Information

Since our chosen ANNs have sigmoid activation functions, and few inputs, it is not immediately obvious

how to introduce global position data as inputs to the neural network. This sigmoid activation function is

well suited to the simulated sensor inputs to the network, which simply represent “percent fill” of the area

under that portion of the sensor grid. As percent fill increases or decreases, the sigmoid function crosses

a critical value and “activates”. In contrast, global (x, y) position is not likely to be useful simply as raw

numeric inputs to the ANN.

A reasonably obvious solution to this problem is to encode the x and y coordinate each as a log2(n) bit

graycode value, where n is the dimension of the (square) build platform. Graycode is a binary encoding of

integers where each increment from m to m+ 1 is performed by changing a single bit. This is in contrast to

standard binary encodings, where the difference in representation from m to m+1 may require a significant

number of flipped bits (for example, from 01111 to 11111). Each of the log2(n) bits would then be given

11

as a binary input to the ANN. The ANN has, therefore, a full-precision measure of its position on the build

platform.

The primary concern with this implementation is the number of additional inputs that would be added

to the network. While the most basic network in use has 9 inputs, that same network with the addition of

graycode global coordinates would have 9 + 2log2(n) inputs, where n would be on the order of 100. This

would increase the number of inputs to the neural network in our case, but would likely preform fairly

well since it would only add around 14 inputs to the network. However, this implementation is not likely

to scale well to either a larger build plate, or a physical printer system. In the raster EvoFab simulation,

a 100 × 100 “raster unit” build plate represents a large build space. However, since the movement of the

physical printer is significantly more precise, the coordinate system used for global coordinate inputs to the

ANN would likely have to be significantly more precise (and therefore would require many more inputs).

This would cause a significant increase in the number of inputs to the network with the addition of global

coordinate information.

To avoid this problem, we propose a minimal design for the introduction of a “smooth” representation

of global coordinate data as input to an ANN. This implementation fixes the number of inputs added to

the neural network. The values given to these m inputs range from 0 to n/m (where as above, n is the

dimension of the build space). These inputs “accumulate” the value of the current x or y coordinate. So

if there are m = 4 input nodes, and the current x coordinate of the print head is 3
4n + 2, the inputs would

have values n
4 ,

n
4 ,

n
4 , 2 respectively.

This implementation for global coordinate information both avoids the addition of a very large number

of inputs nodes, and should scale appropriately. In addition, our choice of a relatively small number of

additional input nodes for each coordinate value represents how the system will likely behave at scale

when operating in a higher-resolution physical system.

6.3 Simple Recurrence for Simple ANNs

Just as our approach to an implementation of global coordinate information for ANNs focuses on maintain-

ing the structural simplicity of those networks, our implementation of recurrence represents the simplest

possible introduction of “state” into our networks. Our implementation adds a given number of inputs to

the network, where these inputs give the previous n inputs or outputs to or from the network. For testing,

we focus on recurrence from outputs of the network (printer movement instructions) to printer inputs.

12

String Instruction
000 None
001 None
011 None
010 None
110 North
111 South
101 East
100 West

Table 6: Initial encoding for ANN printer
instructions

String Instruction
000 None
001 North
011 None
010 South
110 None
111 East
101 None
100 West

Table 7: Encoding for ANN printer instruc-
tions (modified)

6.4 Printer Instruction Encoding

During exploratory testing, outputs of the ANN were encoded as graycode values corresponding to mo-

tor instructions (Table 6). However, early testing showed that many networks which were bred during

evolution were likely to produce “No Motion” behavior. While not inherently bad for 3d-printer control,

the frequency of this behavior significantly slowed the process of evolution, and served as a barrier to the

discovery of “interesting” output shapes. This problem was first attributed to the clustering of “No Mo-

tion” instructions in the graycode table. However, it did not appear that distribution of the “No Motion”

instructions as shown in Table 7 improved this behavior.

To minimize the impact of these “No Motion” networks on our testing, we prohibit networks from giv-

ing “No Motion” commands to the printer. For all discussed testing we use the following simple encoding

for printer instructions. Each of 4 outputs from the ANN represents a cardinal direction. At each time step,

the direction instruction given to the printer corresponds to the direction associated with the output node

with the largest floating point value.

In addition to eliminating the potential for “No Motion” instructions from the ANN, this encoding also

ensures that there are no “relationships” between the encodings of two cardinal directions. For example,

with the encodings given in Table 6, the encoding for “South” and “East” differ only by a single bit. In

contrast, the encoding for “North” and “East” differ by two bits. This suggests the possibility that it might

be “easier” for ANNs to move towards the southwest corner of the build plate than the northeast corner.

This problem is eliminated by encoding cardinal directions relative to single output nodes, rather than to

binary strings generated based on all of the output nodes of the network.

13

7 Testing Configuration

In order to evaluate the effect of the number of hidden nodes, recurrence, and the presence of global co-

ordinate information on the ability of ANNs to produce “interesting” shapes, we select 12 fixed ANN

topologies, and perform evolutionary optimization using the simulated EvoFab system using each of the

two candidate geometric complexity proxies as objective functions.

We use Genetic Algorithms to maximize the fitness of each fixed-topology population of ANNs relative

to P and B. Figure 6 diagrams the 24 GA runs performed.

P or B

global coord

high hidden
recurrence

no recurrence

mid hidden
recurrence

no recurrence

low hidden
recurrence

no recurrence

no global coord

high hidden
recurrence

no recurrence

mid hidden
recurrence

no recurrence

low hidden
recurrence

no recurrence

Figure 6: The 24 unique GA optimization runs performed for data collection (for 12 ANN topologies and 2
objective functions — totaling 24 GA runs)

For each unique GA configuration, 6 duplicate runs were performed with different random seeds. There

are a number of parameters for the EvoFab optimization system, including parameters for the GA and

parameters for the printer simulation itself. These parameters are held constant between runs. A few

selected (significant) values are shown in Table 8.

Specific values for ANN topologies (including numbers of hidden nodes, and number of time-steps for

recurrence) are given in Table 9.

14

Parameter Value
population size 100
number culled 80
mutation rate 0.2

crossover : mutation 1 : 1

Table 8: Selected (significant) parameters for GA runs

Description Value
High number of hidden nodes 50
Mid number of hidden nodes 25
Low number of hidden nodes 15

Number of inputs for global coords 4
Number of recurrence time steps 5

Table 9: Specific values for tested ANN topologies

8 Results

8.1 Results for Networks Optimized to P

For almost all ANN topologies, GA results for optimization to maximize P are very similar in terms of

maximum fitness. Figures 7a, 7b, and 7c show results for all replicated runs for three very different network

topologies.

Notably, while there are noticeable differences in the median values, ranges, and locations of plateaus in

fitness in each of these three cases, the highest fitness member of the best duplicate run for each only reaches

a fitness of approximately P(x) = 250. The two major exceptions to this are two network topologies with

15-hidden nodes. The first has no global coordinates, 15 hidden nodes, and no recurrence. This network

topology only reached a fitness of P < 150 (Figure 8). The second has global coordinates, 15 hidden nodes,

and recurrence. This network topology plateaued around P = 250 as expected, with the exception of two

outlier runs with most fit members with fitness P > 300 (Figure 9).

Beyond these major outliers, these results heavily suggest that for all network topologies that have either

recurrence or access to global coordinate information, those are optimizable to a fitness of P ≈ 250. A fairly

typical output from an ANN with fitness around 250 is shown in Figure 11.

Qualitatively, the shape produced by this network is not impermissible “simple”. However, it is clearly

very much less qualitatively interesting than those shapes shown in Figure 9. For this reason, it is likely

significant that effectively all optimization runs with all ANN topologies plateaued around P = 250 rather

early on, and struggled to surpass that fitness.

We also note that while the existence (or perhaps more noticeably, absence) of global coordinate infor-

mation and/or recurrence impacted the ability of ANNs to be optimized to maximize P , an increase in

15

(a) No global coordinates. 50 hidden nodes. No recur-
rence. (b) Global coordinates. 25 hidden nodes. Recurrence.

(c) No global coordinates. 50 hidden nodes. Recurrence.

Figure 7: Fitness of maximum-fitness (P) individual in population over time (generations). Median for all
duplicate runs given in bold orange. Individual maximums for each run given in dotted orange. Green
shading shows the upper and lower quartile spread across duplicate runs for maximum fitness.

hidden nodes in the network did not have as clear of an impact. We can see this by comparing fitnesses

over time with recurrent networks with global coordinate information with 15, 25, and 50 hidden nodes.

These networks are shown in Figures 9, 7b, and 10, respectively.

8.2 Results for Networks Optimized to B

While results of of the optimization of fixed ANN topologies to maximize P do provide some illumination

as to which network characteristics contribute to the “interestingness” of the shapes that those networks

can produce, results from optimization to maximize B provide significantly more information.

Table 10 shows maximum fitnesses of evolved members for each fixed ANN topology (optimized to

16

(a) Highest fitness member of all dupli-
cate runs. P = 142.785

Figure 8: No global coordinates. 15 hidden nodes. No recurrence.

maximize B). There is a noticeable difference in the maximum fitnesses for ANNs with access to global

coordinates (which is significantly more noticeable than when the ANNs were optimized to maximize P).

This distinction between networks with and without global coordinates is demonstrated in Figures 12a and

12b.

Network Topology Maximum Fitness
No global, 15 hidden, no recur 4415.081

No global, 15 hidden, recur 4449.599
No global, 25 hidden, no recur 5747.080

No global, 25 hidden, recur 4449.6
No global, 50 hidden, no recur 5327.882

No global, 50 hidden, recur 5357.647
Global, 15 hidden, no recur 6064.0

Global, 15 hidden, recur 11270.769
Global, 25 hidden, no recur 9917.157

Global, 25 hidden, recur 8360.232
Global, 50 hidden, no recur 9446.068

Global, 50 hidden, recur 9282.987

Table 10: Maximum fitness B (for all duplicate runs) for each network topology.

These figures show behavior typical to network topologies with and without access to global coordinate

information when optimized to maximize B. In particular, runs with network topologies that do not have

access to global coordinates tend to give median and quartile boundaries that plateau with fitness signifi-

cantly less than B = 6000. In contrast, network topologies with access to global coordinates tend to plateau

at fitness B ≈ 6000. In addition, this plateau tends to occur very early (in the first few generations).

17

(a) Second highest fitness
member of all duplicate runs.
P = 320.112

(b) Highest fitness member
of all duplicate runs. P =
359.111

Figure 9: Global coordinates. 15 hidden nodes. Recurrence.

In order to understand the behavior of B as a fitness function, we can look at typical geometric outputs

with values in these two ranges. Figure 13 shows typical outputs from ANNs with fitnesses near 6000 and

below 5000.

While these two typical outputs are not drastically different in terms of their physical shape, they do

appear to involve different mechanisms of printer control. In Figure 13b, the printer appears to start in a

given direction, and then trace along the outside of the build platform along the first corner it encounters.

In contrast, Figure 13a appears to show an ANN which controls the printer to create a shape beyond this

simple edge-tracing. Furthermore, this ANN is able to produce multiple complex corners, and resulting

has a shape that does appear more qualitatively “interesting”.

18

Figure 10: Global coordinates. 50 hidden nodes. Recurrence.

Figure 11: Output from an ANN with fitness of P = 244.0168

Perhaps even more significant than these general trends between network topologies with and without

access to global coordinate information is the existence of individual, very high fitness outliers discovered

when optimizing ANNs to maximize B. These outliers were present in 5 of the 6 network topologies with

access to global coordinate information. Figure 14 shows the outputs produced by these high fitness indi-

viduals.

In particular, we note that these designs are much more qualitatively “interesting” when compared with

many of the outputs produced under optimization. Furthermore, we note that these members also have

high fitness when evaluated under P , despite the fact that they were evolved under B. Additionally, the

outputs shown in Figures 14a and 14b have both the highest fitnesses relative to B and the highest fitnesses

relative to P of all members, all ANN topologies, in all runs optimized to either P or B.

19

(a) Global coordinates. 25 hidden nodes. No recurrence. (b) No global coordinates. 25 hidden nodes. Recurrence.

Figure 12: Fitness of maximum-fitness (B) individual in population over time (generations). Median for all
duplicate runs given in bold orange. Individual maximums for each run given in dotted orange. Green
shading shows the upper and lower quartile spread across duplicate runs for maximum fitness.

(a) Typical output from ANN with
fitness B = 5694.928

(b) Typical output from ANN with
fitness B = 4357.41935484

Figure 13

Notably, these high fitness outliers were not present in any duplicate runs for any ANN topologies that

did not have global coordinate access.

Finally, we see that ANN topologies with many hidden nodes do not seem to have an advantage in the

discovery of high fitness individuals. Figures 15a and 15b show optimization of network topologies with

global coordinates and recurrence with 15 and 50 hidden nodes, respectively.

We see that both network topologies show plateaus between B = 4000 and B = 6000. However, while

a high-fitness outlier is discovered around generation 45 in the 15 hidden node runs, discovery of a high

fitness outlier in the 50 hidden node runs occurs around generation 75. Furthermore, with 50 hidden nodes,

it takes until around generation 25 for a particularly low-fitness outlier (around B = 2700) to converge with

the rest of the runs around B = 5000.

20

(a) 15 hidden nodes. Recurrence.
B = 11270.769, P = 435.059

(b) 25 hidden nodes. No recurrence.
B = 9917.157, P = 491.483

(c) 25 hidden nodes. Recurrence.
B = 8360.232, P = 312.720

(d) 50 hidden nodes. No recur-
rence. B = 9446.068, P = 281.756

(e) 50 hidden nodes. Recurrence.
B = 9282.988, P = 306.680

Figure 14: Outputs from high-fitness outliers with global coordinates optimized to maximize B

9 Discussion

9.1 On “Shape Complexity”

Both P and B were designed to serve as proxies for “shape complexity” as described by the entropy of cur-

vature of a 2d-shape. These two measures behaved well in testing when compared to a canonical qualitative

ranking of shapes, and seemed to correspond to intuitive notions of the behavior of “shape complexity”.

However, using these functions as fitness functions for optimization with Genetic Algorithms revealed ma-

jor edge cases that did not perform as well as expected. In particular, these measures appear to heavily

favor large open shapes, where the length of the path of that shape is valued heavily, and complex inter-

nal geometry is sometimes left behind. This is illustrated well by the behavior of P on angled trajectories

(Figure 16). While these fitness functions do, then, value “large” shapes with complex geometries higher

than simple “large” shapes, this discovery of “largeness” may account for some of the major plateauing of

fitnesses among competent ANNs for both P and B.

Fundamentally, this means that neitherP nor B should be viewed as perfect proxies for “shape complex-

21

(a) 15 hidden nodes (b) 50 hidden nodes

Figure 15: Optimization of ANN topologies with global coordinates and recurrence to maximize B

Input Image P

0 30.083333333333332)

1 64.05882352941177

2 72.25

Figure 16: Normalized perim/area measurement on long angled input relative to others

ity”. That being said, the fact that there were a number of outlying individuals in both runs performed to

maximize P and to maximize B with both high fitness and high qualitative “interestingness”, suggests that

these measurements are still somewhat useful for understanding the ability of ANN topologies to produce

complex geometric outputs.

9.2 On “Usefulness” of ANNs as Genotypes for Evolutionary Design with 3d-Printers

Despite the fact that P and B are imperfect as fitness functions to maximize “interestingness”, the existence

of high “interestingness” individuals as optimized outputs suggests that we can still make some conclu-

sions about the fitness of various ANN topologies as genotypes for evolutionary design with 3d-printers.

Based on results from testing to optimize P , we cannot make many definitive conclusions. However,

it is clear that networks that have neither global coordinate information nor recurrence did not perform as

22

well as networks that had either. In addition, the presence of additional hidden nodes did not seem to make

an impact on the ability of a network to produce outputs with high P .

Results from testing to optimize B are more illuminating. It is clear that access to global coordinate

information is a significant factor in the ability of a network topology to produce high B outputs. No

network topology without global coordinates produced a network with fitness B > 6000. In contrast, all but

one of the network topologies with global coordinates showed high-fitness outliers with fitness B > 8000.

Interestingly, the presence of large numbers of hidden nodes in network topologies optimized to maxi-

mizeB did not seem to aid in the discovery of high fitness individuals. This is not surprising if we remember

that the process of optimization is a search over an n-dimensional space of solutions, where each additional

node in the neural network introduces many additional weights, and significantly increases the size of that

search space. In this context, it is logical that simply adding hidden nodes to a network topology does not

make discovery of “interesting” shapes easier. This is particularly true given that low-hidden node ANN

topologies with global coordinates and recurrence have been shown to be able to produce high-fitness in-

dividuals.

From these results, we conclude that global coordinate information is likely essential for an ANN to be

able to produce useful shapes in the EvoFab system. We further conclude that the addition of recurrence to

the network may have a positive impact on the usefulness of that network, although it may slightly increase

the dimensionality of the solution space. Finally, we conclude that relatively low numbers of hidden nodes

are sufficient to produce fairly complex geometric outputs in this system, and that future work to use

EvoFab for evolutionary design should (at least begin) by working with these low-hidden-node networks.

10 Future Work

Because of the scope of this project, there are a number of questions that remain unanswered and work that

could be easily expanded on. Because of difficulty adapting understandings of the entropy of curvature

to the EvoFab simulation, we rely on (imperfect) proxies for shape complexity as objective functions for

optimization. These objective functions were shown to both be imperfect as proxies for shape complexity

and imperfect as fitness functions for use with Genetic Algorithms (because they encouraged major plateaus

at overvalued, relatively uninteresting shapes). It is possible that there is an effective adaption of entropy

to the EvoFab simulation which would serve as a better objective function for optimization.

Furthermore, our set of fixed network topologies is relatively limited. Additional ANN “features” (in-

cluding more sophisticated activation functions) could potentially lead to interesting results. Continued

work could also investigate to what extent increasing sensor resolution, increasing the resolution of global

23

coordinate information, increasing the number of recurrent time steps, and changing the type of recurrence

implemented impacts geometric outputs from those ANNs.

A much larger number of duplicate GA runs for each fixed network topology, along with a higher

number of generations, would allow for statistical analysis comparing the results of optimization with

different network topologies. In addition, similar analysis on the physical EvoFab system would serve to

confirm whether results in simulation generalize to results in the physical hardware.

More generally, these results suggests a set of reasonable ANN topologies for use as evolved fabrication

procedures for evolutionary fabrication and design using EvoFab. Future work will involve work to further

validate the usefulness of ANNs as control systems for fabrication and design.

24

References

[1] Joshua E. Auerbach and Josh C. Bongard. “Environmental Influence on the Evolution of Morpho-

logical Complexity in Machines”. In: PLoS Comput Biol 10.1 (Jan. 2014), pp. 1–17. DOI: 10.1371/

journal.pcbi.1003399. URL: http://dx.doi.org/10.1371%2Fjournal.pcbi.1003399.

[2] James Cohoon, John Karro, and Jens Lienig. “Advances in Evolutionary Computing”. In: ed. by

Ashish Ghosh and Shigeyoshi Tsutsui. New York, NY, USA: Springer-Verlag New York, Inc., 2003.

Chap. Evolutionary Algorithms for the Physical Design of VLSI Circuits, pp. 683–711. ISBN: 3-540-

43330-9. URL: http://dl.acm.org/citation.cfm?id=903758.903786.

[3] T.M. Cover and J.A. Thomas. Elements of Information Theory. A Wiley-Interscience publication. Wiley,

2006. ISBN: 9780471748816. URL: https://books.google.com/books?id=EuhBluW31hsC.

[4] D. Floreano and F. Mondada. “Evolution of homing navigation in a real mobile robot”. In: (). URL:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.2068.

[5] Pablo José Funes. “Buildable Evolution”. In: SIGEVOlution 2.3 (Sept. 2007), pp. 6–19. ISSN: 1931-8499.

DOI: 10.1145/1366914.1366916. URL: http://doi.acm.org/10.1145/1366914.1366916.

[6] Andreas F. Koschan et al. “Towards understanding what makes 3D objects appear simple or com-

plex”. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

00.undefined (2008), pp. 1–8. DOI: doi.ieeecomputersociety.org/10.1109/CVPRW.2008.

4562975.

[7] Tim Kuehn and John Rieffel. “Automatically Designing and Printing 3-D Objects with EvoFab 0.2”.

In: Proceedings of the 13th International Conference on the Synthesis and Simulation of Living Systems (ALife

XIII). 2012, pp. 372–378.

[8] J. D. Lohn, G. S. Hornby, and D. S. Linden. “An Evolved Antenna for Deployment on NASA’s Space

Technology 5 Mission”. In: Genetic Programming Theory and Practice II. Ed. by U.-M. O’Reilly et al.

Kluwer, 2005. Chap. 18.

[9] D. L. Page et al. “Shape analysis algorithm based on information theory”. In: Image Processing, 2003.

ICIP 2003. Proceedings. 2003 International Conference on. Vol. 1. Sept. 2003, DOI: 10.1109/ICIP.2003.

1246940.

[10] Dean A. Pomerleau. “Advances in Neural Information Processing Systems 1”. In: ed. by David S.

Touretzky. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989. Chap. ALVINN: An

Autonomous Land Vehicle in a Neural Network, pp. 305–313. ISBN: 1-558-60015-9. URL: http://

dl.acm.org/citation.cfm?id=89851.89891.

25

[11] John Rieffel. “Evolutionary Fabrication: the co-evolution of form and formation”. PhD thesis. Bran-

deis University, 2006.

[12] John Rieffel and Dave Sayles. “EvoFab: a fully embodied evolutionary fabricator”. In: Proceedings

of the 9th international conference on Evolvable systems: from biology to hardware. ICES’10. York, UK:

Springer-Verlag, 2010, pp. 372–380. ISBN: 3-642-15322-4, 978-3-642-15322-8. URL: http://dl.acm.

org/citation.cfm?id=1885332.1885373.

[13] Velleman k8200 Printer. http://www.k8200.eu/. accessed: 2016-05-02.

26

