
Blending Two Playlist Generation Algorithms
James E. Curbow

Introduction 
 We blend two existing automatic playlist 
generation algorithms. One algorithm is built to 
transition between a start song and an end song 
(Start-End) [1]. The other focuses on the 
smoothness of transitions by inferring song 
similarity based on adjacent occurrences in 
expertly authored streams (EAS) [2].  First we seek 
to establish the effectiveness of the Start-End 
algorithm using the EAS algorithm to determine 
transition smoothness, then we implement 
improvements to optimize the Start-End algorithm.

References 
[1]A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer. Playlist 

generation using start and end songs. In ISMIR, pages 173–178, 
2008.  

[2]R. Ragno, C. Burges, and  C. Herley. Inferring similarity between 
music objects with application to playlist generation. In 
Proceedings of the 7th ACM SIGMM international workshop on MIR, 
pages 73–80. ACM, 2005. 

Expertly Authored Streams 
 The idea: songs that appear adjacent in an 
expertly curated playlist have similarities — an 
expert (such as a DJ) probably wouldn’t follow up 
Beethoven’s 5th Symphony with Justin Bieber’s 
latest single. The EAS algorithm exploits these 
similarities.

Matthew Anderson, Advisor

     The EAS algorithm is implemented using a graph 
data structure, in which each song is represented 
by a node. Each node maintains a dictionary that 
keeps track of neighboring nodes. The weight of an 
edge between two songs equals the number of 
playlist adjacencies between those songs. From 
edge weight we can derive similarity. 

The Start & End Song Algorithm 

    The Start-End algorithm picks and orders songs 
based on increasing similarity ratio. The similarity 
ratio is a song’s similarity to the end song divided by 
its similarity to the start song.

Playlist
1 Song A
2 Song B 
3 Song C
4 Song B 
5 Song A 
6 Song C 
7 Song D 

2

1 2

D
1

C

A B

Figure 1.  The EAS Algorithm: Edge weights  
equal the number of adjacent occurrences 
between songs in the playlist

Similarity Ratio 

songstart song1 song2 song3 songend

Unbiased Random Walk Algorithm

    The Unbiased Random Walk (URW) algorithm 
performs a random walk on the graph produced by 
the EAS algorithm.  It’s starting node is the node 
corresponding to the start song, and the target node 
is the node corresponding to the end song. The 
algorithm finds a random path to the end song. 

    We can make the algorithm greedy by choosing 
the nodes that it adds to the path in a slightly less 
random fashion—by basing the choices off of 
similarity we aim to create smooth transitions 
between songs in the playlist.  We implemented a 
similar algorithm, the Biased Random Walk, that 
chooses songs based on probability as well. 

    Our results for the URW algorithm indicate that it 
performs better than the Start-End algorithm. We 
used adjacent similarity (the similarity between 
each song and its successor) as an indicator for 
playlist smoothness.  The results shown are the use 
our one-way similarity calculation which is 
symmetric.  The bar graph in Figure 2 suggests that 
the URW algorithm has a greediness “sweet-spot”. 
Once the algorithm gets too greedy, it struggles to 
make a smooth playlist.  The boxes in the matrices 
in Figure 3 are shaded based on similarity.  The dark 
band indicates high similarity. 

Greediness
Figure 3: Similarity Matrices

Figure 2: Average Adjacent Similarities

    Our goal was to determine the effectiveness of 
the Start-End algorithm and to improve it. We 
established that the algorithm is not effective and 
that the URW is a significant improvement.

Results & Conclusion 
     A flaw in the Start-End algorithm prevented us 
from collecting results. Every song in the playlist 
must have a non-zero similarity to  both the start 
song and then end song. This is a very restrictive 
factor because this limits the number of songs we 
can choose from.  Our data set, while large enough 
for the URW algorithm, was not large enough to 
work with the Start-End algorithm. 


