Analysis of the PeerRank Method for Peer Grading

Joshua Kline

Advisors: Matthew Anderson and William Zwicker

Benefits of Peer Grading

- Reduces time instructors spend grading
- Provides faster feedback for students
- Increases student understanding through analysis of others

Potential Issues with Peer Grading

Issues:

- Students may be unreliable graders
- Inexperience in grading
- Lack of understanding of material
- Students may not care about grading accurately

Ways to Address:

- Make inaccurate graders count less toward final grade
- Provide graders with an incentive to grade accurately

PeerRank

- Algorithm developed by Toby Walsh
- Two factors in final grade:
- Weighted combination of grades from peers
- Individual's own accuracy in grading others
- Same linear algebra foundations as Google PageRank
- Original application: Reviewing grant proposals

$$
A=\left[\begin{array}{llll}
A_{a, a} & A_{a, b} & A_{a, c} & A_{a, d} \\
A_{b, a} & A_{b, b} & A_{b, c} & A_{b, d} \\
A_{c, a} & A_{c, b} & A_{c, c} & A_{c, d} \\
A_{d, a} & A_{d, b} & A_{d, c} & A_{d, d}
\end{array}\right]
$$

PeerRank

- Start with "initial seed" grade vector $\overrightarrow{X^{0}}$
- Average of grades received
- PeerRank equation is evaluated iteratively until fixed point is reached
- $\overrightarrow{X^{n+1}} \approx \overrightarrow{X^{n}}$

$$
X_{i}^{0}=\frac{1}{m} \sum_{j} A_{i, j}
$$

$$
\begin{aligned}
& X_{i}^{n+1}=(1-\alpha-\beta) \cdot X_{i}^{n} \\
& \quad+\frac{\alpha}{\sum_{j} X_{j}^{n}} \cdot \sum_{j} X_{j}^{n} \cdot A_{i, j} \\
& \quad+\frac{\beta}{m} \cdot \sum_{j} 1-\left|A_{j, i}-X_{j}^{n}\right|
\end{aligned}
$$

Problems with PeerRank

- Walsh's Assumption: A grader's accuracy is assumed to be equal to their grade
- Unrealistic assumption?
- No way of specifying "correctness"

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Correct Result: [1,1,0,0,0]

Problems with PeerRank

- Walsh's Assumption:

A grader's accuracy is assumed to be equal to their grade

- Unrealistic assumption?
- No way of specifying "correctness"
- May produce incorrect results

Correct Result: [1,1,0,0,0] Actual Result: [0,0,1,1,1]

Project Goal

Modify and adapt the PeerRank algorithm so that it can better provide accurate peer grading in a classroom setting

Incorporating "Ground Truth"

- Recall: There is no way of specifying "correctness" in PeerRank.
- In education, there is a notion of "ground truth" in assignments
- Right answer vs. wrong answer
- Correct proof
- Essay with strong argument and no errors
- Ground truth is normally determined by instructor

Incorporating "Ground Truth"

- Goal: Give the instructor a role in the PeerRank process that influences the accuracy weights of the students

Incorporating "Ground Truth"

- Goal: Give the instructor a role in the PeerRank process that influences the accuracy weights of the students
- Solution:
- The instructor submits their own assignment for which they know the correct grade
- Each student grades the instructor's assignment, and their grading error determines their accuracy
- Students do not know which assignment is instructor's
- Use these accuracies to produce a weighted combination of the peer grades

Our Method vs. PeerRank

PeerRank:

- Accuracy equal to grade
- Walsh's assumption applies
- Iterative process
- Final grades are fixed point

$$
\begin{gathered}
X_{i}^{0}=\frac{1}{m} \sum_{j} A_{i, j} \\
X_{i}^{n+1}=(1-\alpha-\beta) \cdot X_{i}^{n} \\
+\frac{\alpha}{\sum_{j} X_{j}^{n}} \cdot \sum_{j} X_{j}^{n} \cdot A_{i, j} \\
+\frac{\beta}{m} \cdot \sum_{j} 1-\left|A_{j, i}-X_{j}^{n}\right|
\end{gathered}
$$

Our Method:

- Accuracy determined by accuracy in grading the instructor
- Walsh's assumption no longer applies
- Non-iterative
- Final grades are a weighted average of the peer grades, weighted by the accuracies

$$
\begin{aligned}
A C C_{i} & =1-\left|A_{I, i}-X_{I}\right| \\
\vec{X} & =\frac{1}{\|\overrightarrow{A C C}\|_{1}}(A \cdot \overrightarrow{A C C})
\end{aligned}
$$

Majority vs. Minority Case

- Recall: If a group of incorrect students outnumber a group of correct students, the wrong grades are produced by PeerRank.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Correct Result: [1,1,0,0,0]
Actual Result: [0,0,1,1,1]

Majority vs. Minority Case

- Recall: If a group of incorrect students outnumber a group of correct students, the wrong grades are produced by PeerRank.
- What if the instructor submits a correct assignment in our system?

\(\left[\begin{array}{lllll|l}1 \& 1 \& 0 \& 0 \& 0 \& -
1 \& 1 \& 0 \& 0 \& 0 \& -
0 \& 0 \& 1 \& 1 \& 1 \& -
0 \& 0 \& 1 \& 1 \& 1 \& -
0 \& 0 \& 1 \& 1 \& 1 \& -
\hline 1 \& 1 \& 0 \& 0 \& 0 \& 1\end{array}\right]\) orrect Result: $[1,1,0,0,0,1]$

Majority vs. Minority Case

- Recall: If a group of incorrect students outnumber a group of correct students, the wrong grades are produced by PeerRank.
- What if the instructor submits a correct assignment in our system?

$$
\begin{aligned}
& \begin{array}{l}
{\left[\begin{array}{lllll|l}
1 & 1 & 0 & 0 & 0 & - \\
1 & 1 & 0 & 0 & 0 & - \\
0 & 0 & 1 & 1 & 1 & - \\
0 & 0 & 1 & 1 & 1 & - \\
0 & 0 & 1 & 1 & 1 & - \\
\hline 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
\text { orrect Result: }[1,1,0,0,0,1]
\end{array} \\
& \text { Accuracies: [1,1,0,0,0,1] }
\end{aligned}
$$

Majority vs. Minority Case

- Recall: If a group of incorrect students outnumber a group of correct students, the wrong grades are produced by PeerRank.
- What if the instructor submits a correct assignment in our system?

Implementation

- Algorithms for PeerRank and our method implemented in Sage
- Based on Python
- Additional math operations, including matrices and vectors
- Graphing packages

$$
X_{i}^{0}=\frac{1}{m} \sum_{j} A_{i, j}
$$

$$
\begin{gathered}
X_{i}^{n+1}=(1-\alpha-\beta) \cdot X_{i}^{n}+\frac{\alpha}{\sum_{j} X_{j}^{n}} \cdot \sum_{j} X_{j}^{n} \cdot A_{i, j} \\
+\frac{\beta}{m} \cdot \sum_{j} 1-\left|A_{j, i}-X_{j}^{n}\right|
\end{gathered}
$$

def GeneralPeerRank(A, alpha, beta):

$$
\mathrm{m}=\mathrm{A} . \text { nrows () }
$$

$$
\text { Xlist }=[0] * m
$$

$$
\text { for i in range }(0, m) \text { : }
$$

$$
\text { sum }=0.0
$$

$$
\text { for } j \text { in range }(0, m) \text { : }
$$

$$
\text { sum }+=A[i, j]
$$

$$
X_{-} i=\operatorname{sum} / m
$$

$$
\text { Xlist[i] }=X_{-i}
$$

$$
X=\text { vector (XIIst) }
$$

fixedpoint = False
while not fixedpoint:
oldX = X

$$
X=(1-a l p h a-b e t a) * X+\backslash
$$

$$
(\text { alpha/X.norm }(1)) *(A * X)
$$

$$
\text { for i in range }(0, \mathrm{~m}) \text { : }
$$

$$
\text { X[i] }+=\text { beta }-\
$$

$$
(\text { beta/m)*((A.column(i)- }
$$

oldX). norm(1))

$$
\text { difference }=\text { X - oldX }
$$

if abs(difference) < 10**-10:
fixedpoint = True
return X

Simulating Data

- Real grade data is not easily accessible
- Data was simulated using statistical models
- Ground truth grades drawn from bimodal distribution
- Accuracies drawn from normal distributions centered at grader's grade
- Peer grades drawn from uniform distributions using ground truth grade and accuracies

Experiments

- Experiments consisted of generating class/grade data and comparing the performance of PeerRank and our modified version against the ground truth grades.
- Variables:
- Class size
- Grade distribution means, standard deviations
- Percentage of students in each group
- Accuracy distribution

- Correct Grades standard deviation

Reducing Connection Between Grade and Accuracy

- Recall: The original version of PeerRank assumes that the grader's grade is equal to their grading accuracy.
- Unrealistic assumption?
- Our method does assume any connection between grade and accuracy.
- How do the two versions compare as we reduce the connection between grade and accuracy?
- We can model this reduction by increasing the standard deviation around the graders' grades when drawing their accuracies.

Reducing Connection Between Grade and Accuracy

Standard
Deviation
$=0.02$

Avg. Error
Reduction
<0.1\%

- Correct Grades
- Grades from Our Method
- PeerRank Grades

Reducing Connection Between Grade and Accuracy

Standard
Deviation
$=0.10$

Avg. Error Reduction
~0.2\%

- Correct Grades
- Grades from Our Method
- PeerRank Grades

Reducing Connection Between Grade and Accuracy

Standard
Deviation
$=0.10$

Avg. Error Reduction
~0.2\%

Standard
Deviation
$=0.50$
Avg. Error
Reduction
~2.3\%

- Correct Grades
- Grades from Our Method
- PeerRank Grades

Reducing Connection Between Grade and Accuracy

Standard
Deviation
$=0.10$
Avg. Error Reduction ~0.2\%

Standard Deviation
= 1.0
Avg. Error
Reduction
$\approx 4.0 \%$

- Correct Grades
- Grades from Our Method

PeerRank Grades

Conclusions

- When grading accuracy is strongly correlated with the grader's grade (Walsh's assumption), our method produces grades extremely close to PeerRank.
- When grading accuracy is unrelated to the grader's grade, our method produces more accurate grades than PeerRank.

Future Work

- Implementation of a "partial grading" scheme
- Ignore missing grades?
- Fill in missing grades based on known grades?
- Best way of dividing the class?
- Additional methods of integrating ground truth
- Instructor grades a certain number of students with a high accuracy score

Questions?

