Examining Self-Modifying Code

By

Andrew Ivarson

* sk ok ok sk ok ok sk ok

Submitted in partial fulfillment
of the requirements for
Honors in the Department of Computer Science

UNION COLLEGE

June 2015

ABSTRACT

IVARSON, ANDREW Examining Self-Modifying Code. Department of Computer Science June
2015.

ADVISOR: Matthew Anderson, John Spinelli

Self-modifying code is used for both good and bad. Software companies useitasa
means of hiding a program's internals. This can allow them to prevent hackers from
“cracking” the authentication on their software. Self-modifying code is also used in
malware to avoid being detected by malware analysts and anti-virus software. Itis created
when programs write to their own instruction memory space. The power of
self-modifying code comes from being difficult to analyze, because traditional analysis tools
don’t account for changing instruction space. In this project, we implement an algorithm
proposed by Anckaert et al.[1] to track self-modification. This algorithm can be used to
generate a new type of control flow graph which represents a conservative estimate of all
possible execution paths of a program. We implement this algorithm with the goal of
identifying its strengths and weaknesses. We also produce visualizations of the resulting
control flow graphs that show both positive and negative aspects of this algorithm. Using
our visualizations, we have identified levels of sophistication the code in a program can
possess for a useful visualization to be generated. We have defined sophistication in code to
be related to the amount of jump and write instructions, and programs that have more
complex sequences of interrelated jumps and writes yield far less useful graphs. On the
other hand, programs that contain simple sequences of jumps and writes, or none at all, are

easily visualized to the full understanding of the program’s internals.

Table of Contents:

Introduction

Related Work and Background
Implementation

Results and Evaluation
Conclusion and Future Work
References

Appendix

N R W=

Andrew Ivarson, Class of 2015.

pp. 1

pp. 2

pp. 16
pp. 24
pp. 31
pp. 33
pp. 34

1. Introduction
Self-modifying code has been used in malware since the 1990s [2]. It is a broad domain

which encompasses several sub-domains, but in general, self-modifying code is code that
changes itself as it runs. This is accomplished in several ways, such as writing to instruction
memory, dynamically compiling code, and representing code as dynamic pointers to parts of
memory other than instruction memory. Of these three methods, this paper is concerned with
the first: writing to instruction memory.

Self-modifying code is a powerful means of hiding a program’s internals, because it is
particularly difficult to determine behavior by reading through the instructions [1]. When a
program uses self-modifying code, its actual properties are unknown until the self-modification
happens. Before running such code, it could appear harmless, only to modify itself into
exhibiting harmful behavior. In this project, the code in question is the code that is found in
executable files: binary code. Here, this code is interpreted as assembly instructions.

This type of code has also been used in positive moral cases. Self-modifying code has
been used in programming for hardware that had a limited amount of memory. It was used to
optimize code for this type of limited-memory hardware [1]. Essentially, instructions over-wrote
themselves instead of having more instructions that occupy more spaces in memory.
Self-modifying code, in this case, allowed programmers for this type of hardware to write larger
programs than were otherwise possible. It is also commonly used to protect software from
being reverse engineered [3, 4].

In this paper, we are concerned with analyzing executable files containing self-modifying
code. We describe our novel implementation that is based on a theoretical model in 4 Model of

Self-Modifying Code [1]. Applications of our work could be of two forms. One, in diagnosing

malicious software which uses self-modifying code, and a second in maintaining and debugging

of non-malicious software that uses self-modifying code.

2. Related Work and Background

Much research has been done in developing tools to analyze binary files in order to identify
malware. There are many subtasks to identifying malware in a general sense. These tasks include
code factorization, disassembly, analysis using heuristics based on patterns of known malicious
behavior, and many others [5]. Overall, to accomplish these subtasks, there are two general

approaches to analyzing malware.

Static Analysis

Static Analysis is an attempt to analyze a file without executing it. The main application
that we are concerned with is in attempting to trace all possible edges in a program. By edges, we
mean to calculate each possible instruction that could follow any given instruction. If we create
this list of all possible edges, then a superset of all possible traversals through the program will
be represented by this set of all edges.

Because when one uses static analysis one does not run the program, the analysis does
not need to perform each instruction, therefore it can perform much more quickly than an
approach that needs to process and execute each instruction. The efficacy of static analysis
alone has decreased over time [5], because it has become commonplace to obfuscate binary files

to the point where a program’s initial static disassembly is nothing like the code it actually

executes [5]. Because of its diminishing efficacy, analysts must carefully identify problems that

can be solved using static analysis.

Dynamic Analysis
Dynamic Analysis is analyzing a binary file by running it and observing the results of

executing instructions. The field of developing these tools as seen enormous growth as the

complexity of malware has increased [6], and is divided into two subfields:

Simulated Dynamic Analysis

Simulated dynamic analysis is running executable files within a simulated environment.
Essentially, these tools involve building a simulation of an operating system that runs on a
simulation of a processor. Difficulties in this approach mainly stem from precision of simulation.
Instruction sets, such as x86, have a massive number of legal instructions, and processors each
have specific behaviors for handling errors in instructions. Malware, now, is often written to
attempt to detect simulated dynamic analysis systems. If the malware manages to detect a
simulator, it can change itself to not exhibit malicious behavior. Malware can detect simulators
by issuing instructions that cause the processor to produce incorrect results, often due to
hardware bugs. Because processors are such large, complex systems, these bugs are difficult for
simulator writers to account for. Malware authors have the considerably easier task of identifying
and exploiting these edge cases. Simulators need to accept billions of possible instructions
(which is a lowball, considering instruction words are often 64 bits long), they often do not

account for edge-case behaviors like these bugs and are therefore detectable by malware.

Virtualized Dynamic Analysis

Virtualized dynamic analysis is a newer approach than simulated dynamic analysis.
Virtualized dynamic analysis was created by processor companies (such as Intel) releasing
virtualization software. This software enables instructions to be run within a controlled
environment, but on the hardware itself. This controlled environment can allow analysts to, for
example, step through each instruction individually, and because the processor actually runs the
instruction, none of the edge-case behavior found in Simulated dynamic analysis applies [7].
Ether [7], for example, is a tool to analyze malware using virtualization, and it boasts 100%
success of transparency on a set of 25,000 recent malware samples, all of which attempted to
detect simulation.

The shortcoming of dynamic analysis is the speed. Simulating an entire processor, or
stepping through a million-instruction binary file takes a considerable amount of time. Literature
[6] suggest that the most effective analysis approach combines both static and dynamic analysis.
Such an approach could exploit both the speed of static analysis and the fine granularity of

dynamic analysis.

0x0: INC #aebx INC ¢.ebx g
0x2: PUSH %aebx
Ox4: BEQ “ebx “seax 0x0 v
Ox8: MOVE %oeax 0(%ecx) o
0Oxe: JMP 0x0 PUSH %ehx
v
BEQ #tebx %eax 0x0

.

MOVE %aeax 0(%ecx)

.

JMP 00 —

Figure 1: An example of source code (left) and its corresponding CFG (right)

Background

Our research is an implementation based on a solution to a static analysis problem - the
static analysis of self-modifying code. The goal for this type of static analysis is to build a
control flow graph (CFG) of the binary file. A graph, here, is a set of nodes and edges. An edge
is a directional indication of which nodes may follow which nodes. Nodes, here, are basic
blocks: an instruction or sequence of instructions that occupy adjacent memory addresses. A
control flow graph is a flowchart which represents all possible edges among the instructions in a
program. In Figure 1, the CFG represents a non-self-modifying program, and thus it clearly
represents all possible paths through the program. The problem [5] with drawing CFGs of
programs with self-modifying code is that there is no point in which a static image of the binary
file reveals all of the instructions that are run. This results in over-written instructions never
being accounted for in the final image by all tools [6].

Anckaert et al [1] have proposed a solution to this problem by suggesting a
State-Enhanced Control Flow Graph (SE-CFG) which is a conservative visualization for a

program. An SE-CFG stores all possible instructions including all possible versions of those that

are overwritten. No tools are capable of building this style of CFG, therefore in this work we
have implemented a tool to build SE-CFGs. This model is conservative by considering each
possible instruction a valid node following an edge leading to that memory address.

In a traditional CFG, a node is a basic block. Basic blocks are sequences of instructions
that are always executed in succession, and are in adjacent memory locations . For example, in
Flgure 1, INC %ebx and PUSH %ebx could be put together to form a basic block, because
PUSH %ebx is always executed after INC %ebx. Edges indicate which instructions lead to
which instructions. An SE-CFG expands this definition of a node to also account for the memory
address. A node is still a basic block, but the graph arranges these nodes according to their
addresses. This allows for instructions beginning at the same address to be clearly recognized as
over-written instructions. Edges maintain the same definition as in a traditional CFG. This
expanded definition of a CFG allows the graph to show more than one instruction at a given
memory address, and combined with the algorithm and data structures specified in Anckaert et
al’s paper these SE-CFGs can be constructed to represent self-modifying programs.

We will now demonstrate the SE-CFG in greater detail using Anckaert et al’s example.
This example shows their process of how a program is analyzed to generate an SE-CFG. To

explain their example, we will begin by explaining their instruction set.

Assembly Binary Semantics
movh value to Oxc6é wvalue to |set bvte at address to to value value
inc reg 0x40 req increment register reg
dec reg 0x48 req decrement register reg
push reg Oxff reg push register reg on the stack
jmp to 0x0c to jump to absolute address fo

Figure 2: The instruction set used in Anckaert et al’s example program'

Note the instruction set in Figure 2. It is based on x86, and has general-purpose
instructions found in any typical modern instruction set: an instruction, MOVB, to write to
memory, instructions INC and DEC to change register values, an instruction, PUSH, to push to
the stack and an instruction, JUMP, to transfer execution. We make the assumption that the only
instructions that can affect the state of program memory are MOVB instructions. We make this
assumption with the goal of the algorithm in mind: the algorithm statically analyzes binary files
to produce a graph of traversals through the program which contains self-modifying code.
Because the basis for nodes are basic blocks, the only instructions that affect the shape of the
graph are jump instructions (create discontinuities in the traversal) and instructions that write to
memory (creating new instructions). The other three instructions (INC, DEC, and PUSH) are,
for all intents and purposes, syntactic sugar to make the example program look more realistic,
because none of them affect the state of program memory or of the control flow. INC, DEC,

PUSH, and MOVB instructions can all be

' [1] page 2

Address

0x0
0x3
0x5
0x8
Oxa
Oxc

Assembly Binary
movb Oxc O0x8 |c6 Oc 08
inc Jebx 40 01
movb Oxc O0xb |c6 Oc 05
inc Jedx 40 03
push Jecx ff 02
dec Jebx 48 01

Figure 3: Anckaert et al’s example program?

put in basic blocks. JUMP instructions, on the other hand, transfer execution to non-adjacent

memory locations. This means that they cause the algorithm to create edges and additional nodes

on the graph.

In the example program in Figure 3, we first observe that self-modification occurs and

that there are no jumps. A CFG of this program would, therefore, look like:

A) movb Omc OxB
B) inc ‘%ebx
C) movb Oxc Ox5
D) inc ‘%edx
E) push %ecx
F) dec ‘“s=hx

In this diagram, instructions are labeled with letters rather than addresses. Note that there

are no JUMP instructions, so the entire program can be put in a single basic block. Because of

this, appears to be just a sequence of instructions. If we consider the memory overwrite in

instruction A, we will consider the following diagram:

2[1] page 3
3 [1] Figure 1

1|A) movb Oxc OxB — A) movbh Oxc OxB

B) inc %ebx

C) movb Omc Ox5

D) inc ‘%edx 2| B) inc %ebx

E) push %ecx 3|(c) movb Oxc Ox5

F) dec “%ebx

G) jmp 0x3

E) push %ecx
F) dec %ehx

Note that in addition to the last diagram, we now have a second diagram, and numbers
have been added next to instructions A, B, and C. These numbers indicate that instructions A, B,
and C are the first three instructions executed when the program is run. The three-stemmed arrow
between the two diagrams indicates that the graph changes after instruction A is executed. This
change is because an instruction has been overwritten. Line A overwrites instruction D into this
new instruction, G. Instruction G jumps to instruction B. It accomplishes this self-modification
by writing the value Oxc to the address 0x8. Instruction D starts at address 0x8, so its opcode is
changed from 0x40 to Oxc, while its data byte, 0x3, remains the same. Oxc is the binary opcode
for JUMP in this instruction set, so the instruction changes to jmp 0x3. This makes it a jump to
the second instruction, B. The graph then, because we are still considering a traditional CFG,
change instruction D into instruction G. Numbers /, 2, and 3 in this diagram indicate the order of
execution for the first three instructions. Now we will consider instruction C, another

self-modifying instruction.

4 [1] Figure 1

1|A) movb Oxc Ox8 — A) movh Oxc 08 A) movh Oxc Ox8

B) inc %ebx : 1

C) movb Oxc 0x5 : 5|B) inc ‘%ebx

D) inc ‘%edx 2 | B) inc %ebx 6 |H) jmp Oxc

E) push %ecx 3|Cy movb Oxc Ox5 p—

F) dec %ebx G) jmp Ox3 4|6G) jmp O0x3
E) push %ecx E) push %ecx
F) dec %ebx 1

(a) (b) (c)

Figure 4: (a) the initial CFG; (b) the CFG after considering instruction A’s self-modification; (c)
the CFG after considering instruction C’s self-modification.’

In Figure 4, we note the self-modification in instruction C. Instruction C overwrites the
address 0x5 with the value Oxc. From the our last self-modification, we note that this changes the
opcode of the instruction to jmp. This makes the instruction at 0x5, whose second bit is 0xc, jmp
Oxc. This is a jump to the last instruction in the program, instruction F. CFGs (a), (b), and (c)
from Figure B2c are, again, traditional CFGs that do not keep track of overwritten code.
Anckaert et al then introduce the SE-CFG, which keeps track of all versions of each instruction.

Figure 5 synthesizes the three CFGs shown previously, by showing all of the possibilities
in one graph. It demonstrates the original static image (A, B, C, D, E, F executed in succession)
as well as the other considerations determined in the previous paragraphs. It shows that
instruction H and C both existed at one point, as well as instructions D and G both existing at
some point, but this graph does not have any information in it that explains how instructions C
and H, and D and G are related unless we refer back to the memory map when the example is

introduced. Anckaert et al now propose data structures and an algorithm to use these data

5 [1] Figure 1
10

structures to produce an SE-CFG, which has properties to represent all possible instructions,

including those which are only possible after original instructions are overwritten.

A) movb O OxB

i
B) inc %ebx

H) jmp Omc C) movb O 05

1 L
D) inc %edx @) jmp 0x3
E) push %ecx

1
F) dec =ebx

Figure 5: An SE-CFG of the running example®
The first data structure that Anckaert et al introduce is the CodeByte, which stores all possible
values that a given address in memory can have for one program. For example, address 0x5 (the
first byte of instructions C and H in Figure 5) in our running example can have the values 0xc6
(when it is a MOVB instruction) and Oxc (when it is a JUMP instruction). Therefore, the
CodeByte representing address 0x5 contains the values 0xc6 and Oxc.

Anckaert et al then propose an algorithm to construct a list of CodeBytes which
represents an entire program as CodeBytes. In this algorithm, which we will refer to as AMB for
the remainder of the paper, an executable file is recursed over until all possible traversals are
identified.. It first states how to initialize the CodeByte list, simply iterating through the
program’s instruction memory address space adding a CodeByte for each address. It then adds

the address’s corresponding value to the CodeByte. An image of the CodeBytes of this example

6 [1] Figure 2
11

just after they are initialized is, therefore, just a list of addresses with one corresponding value
stored for each address. AMB then recurses over input program adding new values to be
associated with these addresses from the initial CodeByte list. Because AMB’s full purpose is to
gather enough information to produce an SE-CFG, it also keeps track of control flow changes,
and assigns each instruction it encounters a list of other instructions that it can lead to. For
example, instruction B in Figure 5 can lead to both instruction C and instruction H, so AMB
keeps track of both of these possibilities to be represented in the graph. Now we will explain the
algorithm line by line. Refer to Figure 6 throughout this explanation. The while loop at line 1
begins the computational process. The condition on the while loop refers to changes in
instruction memory. The new instruction memory writes refer to the results of MOVB
instructions, and those whose results have not yet been written to the CodeBytes. If a MOVB
instruction’s result is already stored in CodeBytes, new information is not written to the

CodeByte. How changes to CodeBytes are processed is discussed later in AMB.

1 while (new instruction memory writes are occurring)

2 CodeBytes.setAllUnvisited()

3 recurse(start_address)

4 proc recurse(addr):

5 if (addr.isvisited()) then return

6 addr.setVisited()

7 for each: instruction starting at addr

8 handleInstruction(instruction, addr)

9 proc handleInstruction(instruction, addr):

10 if instruction is a MOVB instruction

11 CodeBytes[addr].add(val written by instruction)
12 instruction.targets.add(next address)

13 recurse(next address)

14 else if instruction is a JUMP instruction

15 instruction.targets.add(target of instruction)
16 recurse(target of instruction)

17 else

18 instruction.targets.add(next address)

19 recurse(next address)

Figure 6: The AMB algorithm

12

The first instruction in the while loop, CodeBytes.setAllUnvisited(), is how the
recursive algorithm figures out its base case to end its recursions. Each time an address in
memory is visited by AMB, it is marked as visited. I[f AMB encounters a visited instruction, then
it returns. This is shown in line 5. Each time an instruction is reached for the second time, the
recursion ends and AMB checks for new writes. If new writes occurred, then it recurses again,
otherwise it ends.

In the recursive function, AMB parses actual instructions and handles information for
CodeBytes. Recursive begins by checking the base case: if the current instruction is visited, then
return. It then marks the current address as visited and continues with nested for loops.

The outermost for loop iterates over every possible instruction that can start at the current
address. In the running example, since the base address of the first instruction is 0xc6, we know
that the instruction must be a MOVB, because 0xc6 is the opcode for MOVB. Because the
CodeBytes have, at this point, only been initialized, the only possible instruction to start is MOVB
Oxc 0x8. Now, the handlelnstruction function saves CodeByte data, saves control transfer
data, and initiates the next recursion.

First, AMB iterates over all possible CodeByte writes that the current instruction ins can
perform. In the example, ins can only perform one write, assigning the value Oxc to the address
0x8. As this is the only write, the instruction in the for loop is only executed once. This
instruction, codebyte[w].add(v) adds the value Oxc to the CodeByte storing the information for
address 0x8. Now that a write instruction has occurred, the CodeBytes list has changed. Where it
used to have only one possible value for address 0x8, it now has two: it’s original value, and the

value written by the movb instruction just discussed.

13

Now Recursive is called on the next address, 0x0 + 2, because movb is a 3-byte
instruction in this instruction set. Because this first instruction caused a new change to the
CodeBytes, even after the recursion ends from finding a visited instruction, the entire program
will be recursed over again to check for more changes that could be caused by the change in the
first recursion. Eventually, the algorithm will output a set of complete CodeBytes, containing all

possible values for all possible bytes of memory:’

Ox0 Oxl1 Ox2 Ox3 Oxd Ox5 Oxb Ox7 OxB Ox9 Oxa Oxb Oxc xd
c6 |Oc |08 |40 | 01 [c6 |Oc | O5 (40 |03 | £f |02 |48 | 01

o | [oe |

The point of filling this data structure is to better inform the SE-CFG, so that it contains
important information about the state of program memory when each instruction is executed.
Below is an enhanced SE-CFG of the running example that contains all of the information from
the CodeBytes as well as the graph derived earlier.

Figure 7 contains every instruction as well as the corresponding CodeBytes for each
instruction. For example, instruction A has the CodeBytes {0x0: [0xc6], 0x1: [0xOc], 0x2: [0x8]}
attached to it. Instructions H and C share the Codebytes {0x5: [0xc6, 0x0c], 0x6: [0xOc]}, so

these CodeBytes are linked to both instructions in Figure 7.

" [1] Figure 4
14

C) movb Oxc 0x5

*(0x8)==40 .H.w““'mfgﬂxe)==3c

D) inc %edx —— 40 G) jmp Ox3
E) push %ecx Oc F
§ 0x9
Oxc
1
Oxd
F) dec %ebx A

Figure 7: An SE-CFG that includes the contents of instruction memory as well as instructions
that correspond to the contents of instruction memory.*

This representation is past the point that our research attempts to recreate Anckaert et al’s
approach. We find this representation too cluttered. We aim to synthesize Figure 7 with Figure 5

to produce a less cluttered representation.

8 [1] Figure 6
15

3. Implementation

We have implemented this model in Java. Our main goal was to expand the test cases
described in the paper, and create a data-driven extensible implementation. In our approach we
have three goals which come from the nature of Anckaert et al’s paper: it is a theoretical
framework, not a description of a specific implementation. Our goals are built to expand AMB

from a theoretical model to an implementation.

Our goals are:
1. Program examples

We aim to be able to demonstrate the idea using several, programmatically generated
examples.To address this, the implementation needs to allow users to write their own programs.
Our implementation provides a way to write and input binary files. This allows us to test AMB
on instruction sets we develop, and future researchers to expand on ours. These programs are

limited to the instruction sets, that we will now discuss.

2. Instruction Set Examples

Similar to 1, because it is a theoretical paper, only one program is shown. This limits the
results in the paper to the instruction set used in the example. To address this, our
implementation allows users to define their own instruction sets. Our implementation provides
a way to create instruction sets limited by what we define as an abstract syntax, a syntax to
represent a generalization of possible syntaxes. This abstract syntax represents all possible

instructions that this algorithm can analyze. Because the algorithm is only concerned with

16

tracking instructions that write to memory and instructions that change control flow, the abstract
syntax contains only three possible types of instructions: write instructions, jump instructions,
and skip instructions. These instructions are sufficient for reporting on the AMB approach
because they are the only types of instructions that AMB’s approach is concerned with. The only
instructions addressed in the algorithm are write instructions and control flow change
instructions (ie, jumps), so the rest can be considered instructions to be skipped over by the

algorithm, or skip instructions.

A write instruction is an instruction that writes to the instruction memory of the program.
Instructions that change valuables in the general working memory of a program, like
registers or RAM, are not counted as write instructions. This is because of how we have
defined syntax for write instructions. They can never take dynamic information as input
(such as the stack, registers, or RAM), so none of this dynamic information can affect
write instructions.

A jump instruction is an instruction that goes to a target address. It can be the next
address, it can be before the current address, or it can be after the current address. This
is how we define an instruction that changes the control flow of the program.

A skip instruction is any type of instruction not named above. This includes instructions
that perform actions such as stack manipulation, heap manipulation, register

manipulation, ALU operations, NOPs, setting and checking register flags, etc.

17

We will now define an instruction set. This implementation defaults to the most simple
instruction set given the problem this is addressing. This instruction set contains the following

instructions:

Instruction Set: Basic.is

opcode #Bytes name abstract syntax
00 3 MOVB WRITE

01 2 INC SKIP

02 2 IMP GOTO

In the table above, Basic.is is defined as an instruction set made up of three instructions.
The first instruction, whose opcode is 00, is named MOVB. 1t is, according to the abstract
syntax, a write instruction. This means that it writes a value into memory. The only memory
that can be written to in this implementation is instruction memory, all instructions that write
outside are considered invalid. If we can find interesting results using their simplistic example,
we believe future researchers can find even more interesting results by expanding instruction sets

to entire assembly languages and, therefore, being able to input actual executable files.

Note that the instruction set definition above has no possible semantic detail other than
the abstract syntax. It doesn’t, for example, allow users to change the order of the data bytes. We
have decided to make semantics of our instruction sets entirely internal, and do not allow
customization of instruction semantics. Below, find the semantics for the Basic.is instruction

set:

MOVB AA BB- assign the value AA to the location BB

18

INC XX - increment a register XX
JMP XX - jump to location XX

The semantics of all instruction sets including a WRITE instruction (such as MOVB), a
GOTO instruction (such as JUMP), and a SKIP instruction (such as INC) will be identical.
WRITE instructions will always use the first byte after the opcode as the value to be written, and
the second byte after the opcode as the location to write to. All GOTO instructions will use the
first data byte as the target location. The decision to limit instruction sets this way is, again, due
to an attempt to maintain the simplicity of the example. This inhibits future work and would
require significant source code changes to expand instruction sets beyond these simplistic
semantics.

Given an instruction set, then, our implementation parses programs written for these

instruction sets, analyzes the program using the AMB algorithm, and creates a visualization.

3. Visualizations

In the paper, Anckaert et al [1] do not describe a programmatic means of building their graphs.
Their main contribution to the field of binary analysis is introducing the SE-CFG, and they only
propose a way to build the data structure that this graph could depend on. To address this, the
implementation must programmatically generate visualizations based on the results of the AMB

Algorithm.

Given our goals for expansion, we have designed an implementation with three main tasks:

19

1) Parse

a) Import an instruction set defined by the user

b) Convert input binary files into assembly code according to the instruction set
2) Analyze the file using the AMB Algorithm

a) Generate the data structure defined in the paper, CodeBytes

b) Generate a data structure we have created, the InstructionByte, which we will

explain later.

3) Visualize results of the analysis

a) Draw a graphic representation of the data structures generated in step 2.

Instruction Set

Binary File Parser AMB

| cheEytes Instructmn Bytes |

SE-CFG v—{ Visualizer

Figure 8: A flowchart of the input and output from each component of our implementation. First,
the parser is given Binary Code and an Instruction Set. The parser then sends Hex Dump to
AMB, which sends CodeBytes and InstructionBytes to the Visualizer. Finally, the Visualizer
outputs an SE-CFG.

Figure 8 represents these three tasks visually. We will now examine these steps more closely
through an example. For our input instruction set, we will use Basic.is, and the following
example binary code:

SampleProgram.bin:

01 01
00 02 01
01 01

Parse:

20

To parse a program, our implementation refers to the specified instruction set. In this
case, the instruction set is Basic.is. Given this instruction set, it parses each token as a 2-digit
hexadecimal number. For the ease of writing programs, we have written our parser to analyze
line-by-line, instead of merely parsing 2-digit hexadecimal tokens. It parses these line-by-line
instructions into a string of 2-digit hexadecimal tokens, so that they are not analyzed with any
preconceived assumptions about what is allowed in the original program. Illegal instructions are,
for example, legal in the original program. It is up to the AMB step to identify which instructions
are impossible, and only up to the parser to prepare a hex dump and send instruction set

information on.

AMB Analysis

The implementation begins the analysis process by initializing the data structures:
CodeBytes and InstructionBytes. The CodeBytes are initialized as a list. Each index in this list
contains information that the memory address referred to by index contains. For
SampleProgram.bin , then, the initial CodeBytes list is: [0x1, 0x1, 0x0, 0x2, 0x1, 0x1, 0x1].
Note that this list does not contain the visited flags, as defined in the Background section. The
first object in the list, 0x1, is the first byte in memory, the opcode of the INC instruction, which
is 0x1. The second is 0x1, the address of the register in the first instruction. Then 0x0, the

opcode of the MOVB instruction.

An initial look at the CodeBytes reveals the following instructions:

INC Ox1
MOVB 0x2 0Ox1
INC Ox1

21

Each of these indices in the CodeBytes list, in reality, contains a list. The point of
CodeBytes is to be able to track multiple possible values for each memory address. During the
remaining of the analysis process these CodeByte indices will be added to as self-modifying
code is encountered.

An InstructionByte is defined as a base address, a list of all possible instructions
beginning at that base address, as well as a list of all memory locations targeted by all of these

instructions. The first InstructionByte is initialized as:

0x0: [INC 0x1]
Targets: []

The list of InstructionBytes is, then, initialized as as list of these given whatever addresses and
instructions are in the program.

Note that Figure 9, our algorithm, is slightly different from the AMB algorithm. The
choices we have made to change this algorithm are due to unclarity in the original algorithm for
implementation. In Anckaert et al’s explanation of the algorithm, they do not refer to an
equivalent data structure of the InstructionByte.

proc main()
while (new instruction memory writes are occurring)
CodeBytes.setAllUnvisited()
recurse(start_address)
proc recurse(addr):
if (addr.isvisited()) then return
addr.setVisited()
for each: instruction starting at addr
handleInstruction(instruction, addr)
proc handleInstruction(instruction, addr):
if instruction is a MOVB instruction
CodeBytes[addr].add(val written by instruction)
instructionBytes[addr].targets.add(next)

oooNOOTUVPE,WNREDO

N R
NP O

22

13 recurse(next address)

14 else if instruction is a JUMP instruction

15 instructionBytes[addr].targets.add(target)
16 recurse(target)

17 else

18 instructionBytes[addr].targets.add(next)
19 recurse(next address)

Figure 9: Our (slightly modified) AMB algorithm

They discuss instructions and codebytes, but do not describe a precise means of storing these
instructions in parallel to the CodeBytes. This is the motivation for introducing
InstructionBytes, and requires a change to the algorithm to account for them, instead of Anckaert
et al’s instructions.

Given our initialized set of CodeBytes and InstructionBytes, the algorithm begins at address 0x0

and computes the full set of CodeBytes and InstructionBytes.

Visualizations:

The visualize step is an attempt Anckaert et al’s example graphs from Figure 5 and
Figure 7. This visualization and their visualization both uses a top-bottom layout, with the first
memory address at the top, and last memory address at the bottom. Both visualizations also put
instructions with the same base address on the same horizontal line. = Anckaert et al’s
visualization uses a different scheme for drawing new instructions on overwritten base addresses.
They maintain the original instructions in the center column, while putting new instructions to
the left and right of the center. Our visualization keeps the original instruction on the far left,
and it adds new instructions to the right of old instructions. We have implemented this
visualization using Java’s Swing library, and example graphs will be discussed in the results

section. We originally considered using other libraries, such as Graphviz [9] and other tools

23

using the DOT language, but found the Swing library a more efficient use of time. Given more
time, Graphviz would be ideal.

We have discussed our implementation and design decisions for running the AMB
algorithm on user-written programs, using user-written instruction sets. Next, we discuss our

results and evaluation.

4. Results and Evaluation

The results of this implementation will be judged based on the accuracy of the
visualizations. If the visualizations produce correct SE-CFGs of the input programs then the
implementation is considered correct. Additionally, our results will demonstrate positive and

negative aspects of AMB.

We will begin by demonstrating a simplistic example program. This program is three
increments to a register. CodeBytes never need to be updated here, and AMB does not need to
recurse more than once because to memory never occur.

Figure 10 shows predictable results. There should be no edges other than from one
instruction to the next because there are no jumps, and there should not be any additional

instructions because there are not any writes.

24

0x0: INC 0x1

0x2: IﬁC Ox1 e
Ox0: INC 0x1
0x2: INC 0x1 e
Oxd: INC 0Ox1 | 0x4 INCOxI ®

Figure 10: An example program (left) and its visualization (right) to be visualized and run
through AMB

0x0: INC 0x1 e INC OX__Z. e

A

0x2: MOVB 0x2 0x1 °

Oz ING Ox1
0x2: MOVB 0x? Ol .(-'
Oxd: ING 0x1 0x5: INC 0x1 s

Figure 11: Example program number two (left), with no jumps and a single write instruction.
Also its SE-CFG (right)

The program in Figure 11 should result in one instruction being added due to write
instruction. The write instruction adds the value 0x2 to the CodeByte holding the data for 0x1.
Again, Figure 11°s visualization is a predictable result. MOVB 0x2 0x1 should result in there
being two versions of the second byte of the first instruction, which is shown in the graph. Again,
the graph also correctly shows the control flow.

Now we move onto more complex examples. The visualizations are meant to be

conservative. This has been maintained since the Figure 6. The definition of being conservative

25

we use here is to always draw an arrow to each possible instruction at the target address. Instead
of storing which exact instruction our instructions lead to, we only store their target addresses. In
Figure 12, we see a huge example of this conservative approach producing a large, complex
graph. This program is a contrived attempt to have AMB recurse into itself as many times as
possible. It does not infinitely recurse, but every time a write instruction occurs, it alters the write
instruction that will happen in the next recursion through the code. We classify the programs in
Figure 10 and Figure 11 has having a low level of sophistication, because they either do not

self-modify, or only cause a small change to instruction memory. This results in very few edges

being added to the graph.
Qxl: MOVE D25 Oxe
Ox3: MOVE Oxe Oxb
QxE: MOVE Dxbk Ox28
Ox%: MOVE Ox8 O0xh
Qo MOVE Q0x& Ox2
0x0:

0x3: ‘
—0
il b
0x6: MOVB 0xb Oxe ‘
e
,,,,,,,,,,,,,, —
(== _— b — —
0x9: MOVB 0x8 0x5/._LN MOVB 0x8 Oxe MOVB 0x8 0xb MOVB 0x8 0x8 ‘
— = — N ———— N\,
Oxc: MOVB 0x50x2 ‘ MOVB 0x5 0x5 o ‘ MOVB 0x5 058 o ‘ MOVBOx50xe o | MOVB 0x5 0%

Figure 12: A third example program (above) and its SE-CFG (below). The edges
highlighted in blue’ indicate actual path of execution.

Now that we have demonstrated success in visualizing basic behavior, we will move on

to more complex examples. Figure 12 is such an example. Here, we have a program of five

® Note that in Figure 12, as well as all future figures, we have hand-drawn the highlighted
execution path for the sake of reading comprehension.

26

instructions, none of which are jumps, create a graph of 19 nodes and 60 edges. In fact, the graph
never jump back to the beginning, so we know that only one of the instructions at each of these
addresses is ever executed. The fact that each of these instructions has an edge leading to each
instruction in the following memory address is due to our conservative estimate: we do not
consider the state of memory at the time of each instruction. Instead, we consider all possible
states of program memory. We classify the program in Figure 12 has having a high level of
sophistication because each MOVB instruction causes another MOVB instruction to behave
differently. This causes AMB to add many nodes and edges to the graph, because the outermost

while loop in AMB must iterate several times.

0x0: JMP 0x3 IMP 0x2
>

»

0x2: VIRUS

0x0: JMP 0x3 0x3: MOVB 0x2 0xl
0x2: VIRUS

0x3: MOVE 0x2 0x1

Ox6: JMP 0x0 0x6: JMP 0x0

Figure 13: Another program and its SE-CFG. The edges highlighted in blue indicate actual path
of execution.

For Figure 13, AMB is expected to output two instructions at address 0x0, because the
second byte is overwritten by instruction 0x3. The two instructions at 0x0 should be: JIMP 0x3
and JMP 0x2, because the MOVB instruction stores the value 0x2 to the second byte of the jump
instruction. Then, because of the instruction 0x6: JIMP 0x0, the VIRUS code becomes reachable.

The program in Figure 13 is of a moderate level of sophistication. The MOVB instruction causes

27

AMB to add one node and three edges to the graph, and does not cause AMB to iterate the
outmost while loop several times. This is because the MOVB instruction does not modify a
MOVB, but instead modifies a JUMP.

The visualization in Figure 13 demonstrates what we hope to observe from the program
in. There are now two possible instructions at address 0x0, and the JMP instructions both have
edges going to their respective targets. This graph demonstrates and allows a reader to derive

how the

0x0: JMP 0x2 IMP 0x4
ta.."" "

.

0x2:

TMP 0x4

0x4:

MOVE 0x4 0x1

0x7: MOVB 0x0 0x3

OxD: JMP 0Ox2
Ox2: JMP Oxd
Oxd: MOVE Oxd Ol | gxa:
Ox7: MOVE Ox0 Ox3
Oxa: MOVE 0x7 Ox3

Oxd: JMP Dx0 Oxd: | IMP 0x0

Figure 14: Another example program and its SE-CFG. The edges highlighted in blue
indicate actual path of execution.

MOVB 0x7 0x3

VIRUS code is reachable, by comparing the initial state of byte 0x1, 0x3, to the latter state of
Ox1, 0x2. The target of the final jump instruction, 0x0, has two instructions. Two arrows are
drawn because of how we define our conservative estimate: JUMP instructions do not consider
the current state of instruction memory to determine their possible targets. Rather, they consider
all possible states of instruction memory, as determined by AMB building the CodeBytes and

InstructionBytes.

28

Next, consider Figure 14. AMB adds three nodes and five edges. Its actual path of
execution is much easier to work out than Figure 12, and this is because the complexity of the
MOVB instructions is quite low. When MOVB instructions do not change other MOVB
instructions, the number of outer while loop iterations is significantly lower. This is the factor

that ramps up the complexity of the graphs and exploits the conservatism of AMB.

Oxl: MOVE Ox5 Oxe
0x3: MOVE Oxe Oxb
OxE&: MOVE Oxb Ox8
OxB: MOVE Ox8 0Ox5
Oxc: MOVE Ox5 Ox2
Oxf: JMP 0x0

0x0:

0x3:

0x6:

0x9: MOVB 0x8 0xb

—

Oxc:

0xf: [JMP 0x0

Figure 15: A slightly modified and more complex version of Figure 12. The actual path of
execution is indicated in Blue and Red. Blue is the path of the first iteration, and the Red is the
path that then iterates infinitely.

Figure 15, which is only different from Figure 12 because of the final JUMP instruction,

The added instruction does not add significant complexity to the graph. AMB adds one node and

29

six edges, but this does not require the outer while loop to iterate anymore than it did for Figure

12. Adding the JUMP instruction also does not significantly complicate the path through the

program. The path of the first iteration remains unchanged, and the second iteration is the same

as all future iterations.

0x0:

0x3:

0x6:

0x9:

Oxc:

Oxf:

MOVB 0x11 0Oxe
S

Ox0: HMOVB OxBE Oxll

Ox3: MOVB Oxll Oxe

Oxe: MOVB Oxe Oxb

Ox%: MOVB Oxb OxB

Oxc: MOVB OxB 0xb

Oxf: MOVB OxbE OQx2
Rﬂ)V??iﬁEﬁi.”

x11 0x8
,———7.

_—

MOVB 0xe 0xb

MOVB 0

—

MOVB 0xe 0x5 MOVB 0xe 0x11
.
MOVB 0xb 0x8 ‘ MOVB 0xb 0xe
el
,,,,,,,,,, A

MOVB 0x8 0x5

OVB 0x8 0xb

MOVE 0x5 0x2 . ‘

MOVB 0x5 0x5 °

_—

MOVB 0x5 0x8 °

e
MOVB 0x5 Oxe ®

Figure 16: A final example program and SE-CFG. By adding another MOVB instruction to
Figure 12 and shifting all other instructions, we have decreased the number of nodes and edges.

30

In Figure 16, our final example program, we demonstrate that simply adding MOVB
instructions does not increase the complexity of the SE-CFG. Figure 12 has one fewer
instructions, and AMB calculates 19 nodes and 60 edges. Figure 16 has an extra MOVB
instruction, and AMB calculates 19 nodes and 47 edges. This supports our claim that MOVB
instructions affect the complexity of the graph that AMB calculates, but it indicates that the
complexity of the self-modification done by the MOVB instructions has a stronger influence
than the raw number of MOVB instructions. The complexity of self-modification is a result of
how many versions of each MOVB instruction can exist. If a more versions of a MOVB
instruction, A, can exist, then each of those versions of instruction A can then create more
versions of other MOVB instructions. This causes the outer while loop of AMB to do more

iterations.

5. Conclusion and Future Work

We have implemented Anckaert et al’s algorithm to perform static analysis on binary
files containing self-modifying code. We have used the results of this algorithm to construct a
new type of control flow graph, a state-enhanced control flow graph, which accounts for all
possible states of instruction memory as well as all possible data paths through the program. We
have tested our implementation on several example programs and demonstrated our
implementation to produce accurate results which reveal positive and negative aspects of
Anckaert et al’s algorithm. On the positive side, our visualizations have demonstrated successful
visualizations of programs that would otherwise be difficult to represent with a control flow
graph, such as Figures 12, 13, 14, 15, and 16. On the negative side, our visualizations have

demonstrated the extreme growth to the graph that the conservative decisions made by the

31

algorithm, as shown in Figures 12, 14, 15, and 16. We have concluded that the conservative
estimate taken is ideal only when simpler self-modification occurs. Programs in which MOVB
instructions modify other MOVB instructions, thereby causing other MOVB instructions to be

modified, create SE-CFGs which obscure the data path more than reveal it.

Future work will include improvements to Anckaert et al’s conservative estimate, with
the goal of removing the vast majority of impossible edges and nodes, as in Figure 12. We hope
to apply optimization to remove code that is either unreachable from the onset, or code that is
created through write instructions but cannot ever be executed. This can be accomplished by
always keeping track of the current state of instruction memory as the algorithm traverses the
program. In a way, our proposed solution here is a synthesis of static and dynamic analysis.
Being able to perform both, and any level of synthesis between the two would also be hugely
beneficial. This will allow for the targets of jump instructions to always be identified statically.
Additionally, future work should include expanding our instruction sets to the point where

analysis and SE-CFG representation of actual binary files (such as malware) code can be done.

32

6. References

[1] B. Anckaert, M. Madou, and K. De Bosschere. 2006. A model for self-modifying code. In
Proceedings of the 8th international conference on Information hiding (IH'06), Jan L.

Camenisch, Christian S. Collberg, Neil F. Johnson, and Phil Sallee (Eds.). Springer-Verlag,
Berlin, Heidelberg, 232-248.

[2] The Leprosy-B virus (1990) http://familycode.atspace.com/lep.txt. Visited May 10, 2014.

[3]1 D. Aucsmith. Tamper resistant software: an implementation. Information Hiding, LNCS,
1174:317-333, 1996

[4] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto. Exploiting
selfmodification mechanism for program protection. In Proc. of the 27th Annual International
Computer Software and Applications Conference, pages 170181, 2003.

[5] K Roundy and B. Miller. 2013. Binary-code obfuscations in prevalent packer tools. ACM

Comput. Surv. 46, 1, Article 4 (July 2013), 32 pages. DOI=10.1145/2522968.2522972
http://doi.acm.org/10.1145/2522968.2522972

33

http://familycode.atspace.com/lep.txt

[6] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. 2008. A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44, 2, Article 6 (March 2008), 42
pages. DOI=10.1145/2089125.2089126 http://doi.acm.org/10.1145/2089125.2089126

[7] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. 2008. Ether: malware analysis via hardware
virtualization extensions. In Proceedings of the 15th ACM conference on Computer and
communications security (CCS '08). ACM, New York, NY, USA, 51-62.
DOI=10.1145/1455770.1455779 http://doi.acm.org/10.1145/1455770.1455779

[8] S. Chae, A. Majumder, and M. Gopi. 2012. HD-GraphViz: highly distributed graph
visualization on tiled displays. In Proceedings of the Eighth Indian Conference on Computer
Vision, Graphics and Image Processing (ICVGIP '12). ACM, New York, NY, USA, , Article 43,
8 pages. DOI=10.1145/2425333.2425376 http://doi.acm.org/10.1145/2425333.2425376

7. Appendix

/**

* Paints a control flow graph given a Program analyzed by the AMB
Algorithm

*

* @author Drew Ivarson

* @version May 21, 2015

*/

import java.awt.Graphics2D;

import java.awt.Font;

import java.awt.Graphics;

import java.awt.Rectangle;

import java.awt.Color;

import java.awt.RenderingHints;

import java.util.Arraylist;

import java.awt.geom.AffineTransform;

import static java.awt.geom.AffineTransform.*;

34

http://doi.acm.org/10.1145/2089125.2089126

import java.lang.Math.*;

import javax.swing.JFrame;
import javax.swing.JPanel;

public class GraphPainter extends JPanel

{

private Program p;
private ArraylList<InstructionByte> inBytes;

public static final int VERTICAL_CENTER = 15;
public static final int HORIZ_CENTER = 70;
public static final int VERTICAL_START = 70;
public static final int HORIZONTAL_START = 100;
public static final int VERTICAL_DIST = 100;
public static final int HORIZ_DIST = 250;

public GraphPainter(Program pl, ArraylList<InstructionByte> insBytes)

{
p = pl;
inBytes = insBytes;

public void paint(Graphics g)
{
Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint (RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
Font font = new Font("Serif", Font.PLAIN, 25);
g2.setFont(font);
g.setColor(Color.BLACK);
ArraylList<ArrayList<ArraylList<Integer>>> points =
makeLinks(inBytes);
for (int i = @; i < inBytes.size(); i++)
{
int vertPos = 70+ i*VERTICAL_DIST;
InstructionByte cur = inBytes.get(i);
Integer address = cur.getAddress();
g2.drawString("ex" + Integer.toHexString(address) + ":", 10,
70+ i*VERTICAL_DIST);
ArrayList<ConcIns> curConcs = cur.getInstructions();

for (int j = @; j < curConcs.size(); j++)
{
int horizPos = 100 + j*HORIZ_DIST;
g.setColor(Color.BLACK);
g.drawRect(horizPos - 30, vertPos - 30, 200, 50);
if (curConcs.get(j).isIMP())
g.setColor(Color.CYAN);
else if (curConcs.get(j).isMod())
g.setColor(Color.YELLOW);
else
g.setColor(Color.LIGHT_GRAY);
g.fillRect(horizPos - 30, vertPos - 30, 200, 50);
g.setColor(Color.BLACK);
/**
for (int k = 2; k < points.get(i).get(j).size(); k+=2)
{
g.setColor(Color.BLACK);
/**
System.out.println("points.get(" + i + ").get("
j+ ").get(" + k
+ ")" o+
points.get(i).get(j).get(k));

int yl1 = points.get(i).get(j).get(9);
int x1 = points.get(i).get(j).get(1);
int y2 = points.get(i).get(j).get(k) + 5;
int x2 = points.get(i).get(j).get(k+1) + 10;
/**
System.out.println("\nDrawing: " + i +

"\nx1 = " + x1 +

"\nyl = " + yl1 +

"\nx2 = " + x2 +

"\ny2 = " + y2);

g2.drawOval(x1 - 1, y1 - 1, 15, 15);
g.setColor(Color.GRAY);

g2.drawLine(x1 + 6, y1 + 6, X2, y2);
g2.drawLine(x1 + 5, y1 + 7, x2 - 1, y2 + 1);
g.setColor(Color.BLACK);

//g2.filloval(x2 - 1, y2 - 1, 15, 15);
g.setColor(Color.GRAY);

*/

//System.out.println("\nPoints: + points);
//for each instructionByte
for (int i = 0; i < points.size(); i++)
{
g.setColor(Color.BLACK);
int vertPos = 70+ i*VERTICAL_DIST;
InstructionByte cur = inBytes.get(i);
//g2.drawString("0x" + cur.getAddress() + ":", 10, 70+
i*VERTICAL_DIST);
ArraylList<ConcIns> curConcs = cur.getInstructions();
//System.out.println("\npoints.get(" + i + ")" +
points.get(i));
//for each concrete instruction
for (int j = @; j < points.get(i).size(); j++)
{
int horizPos = 100 + j*HORIZ_DIST;
/**
g.setColor(Color.BLACK);
g.drawRect(horizPos - 30, vertPos - 30, 200, 50);
if (curConcs.get(j).isIMP())
g.setColor(Color.CYAN);
else if (curConcs.get(j).isMod())
g.setColor(Color.YELLOW);
else
g.setColor(Color.LIGHT_GRAY);
g.fillRect(horizPos - 30, vertPos - 30, 200, 50);
g.setColor(Color.BLACK);
*/
//System.out.println("points.get(" + i + ").get(" +
// j+ ") + points.get(i).get(j));

for (int k = 2; k < points.get(i).get(j).size(); k+=2)

{
g.setColor(Color.BLACK);

37

/**
System.

points.get(i).get(j).get(k));
*/
int y1
int x1
int y2
int x2

out.println("points.get(" + i + ").get(" +
j+ ").get(" + k
+ Il)ll +

points.get(i).get(j).get(09);
points.get(i).get(j).get(1);
points.get(i).get(j).get(k) + 5;
points.get(i).get(j).get(k+1l) + 10;

//int arrowHeadx1l, arrowHeadyl, arrowHeadx2,

arrowHeady2;
if (y2 < yl1)
{
y2+= 35;
}

int triSize = 8;

int[] xPoints

int[] yPoints

new int[3];

new int[3];

if (x1 < x2 && yl < y2)

{
xPoints[@] = x2 + 3;
yPoints[0@] = y2 + 3;
xPoints[1] = x2;
yPoints[1l] = y2 - triSize;
xPoints[2] = x2 - triSize;
yPoints[2] = y2 + 3;
//arrowHeadxl = x2;
//arrowHeadyl = y2 - triSize;
//arrowHeadx2 = x2 - triSize;
//arrowHeady2 = y2;

}

else if (x1 > x2 && yl < y2)

{
xPoints[@] = x2 - 3;
yPoints[@] = y2 + 3;
xPoints[1l] = x2 + triSize;
yPoints[1] = y2 + 3;
xPoints[2] = x2;

38

yPoints[2] = y2 -
//arrowHeadx1
//arrowHeadyl
//arrowHeadx2
//arrowHeady?2

}

triSize;

X2;
x2 - triSize;
x2 + triSize;
y2;

else if (x1 > x2 && yl1 > y2)

{
xPoints[0]
yPoints[0]
xPoints[1]
yPoints[1]
xPoints[2]
yPoints[2]
//arrowHeadx1
//arrowHeady1l
//arrowHeadx2
//arrowHeady?2

Il
e
N

1

y2 -
X2
y2
X2;
y2 +

+

nmn nu
i n
+

}

35
35
triSize;
35

triSize;

x2 + triSize;
y2;
X2;
y2 + triSize;

else //x1 < x2, y1 > y2

{

X2 +
y2 -
X2
y2 +
X2;
y2 +

xPoints[@]
yPoints[9]
xPoints[1]
yPoints[1]
xPoints[2]
yPoints[2]
//arrowHeadx1
//arrowHeady1l
//arrowHeadx2
//arrowHeady?2

}
/**

System.out.println("\nDrawing: + 1+

"\nx1 = "
\nyl = "
"\nx2 = "
"\ny2 = "

*/
//g2.filloval(x1 - 1,

35
35
triSize;
35

triSize;

x2 - triSize;
y2;
X2;
y2 + triSize;

+ X1 +

+ yl +
+ X2 +
+y2);

yl - 1, 15, 15);

39

g.setColor(Color.GRAY);
g2.drawLine(x1 + 6, y1 + 6, X2, y2);
g2.drawLine(x1 + 5, y1 + 7, x2 - 1, y2 + 1);

g.setColor(Color.BLACK);
g2.fillPolygon(xPoints,yPoints,3);

//g2.filloval(x2 - 1, y2 - 1, 15, 15);
g.setColor(Color.GRAY);

¥
int y1 = points.get(i).get(j).get(9);
int x1 = points.get(i).get(j).get(1);
g.setColor(Color.BLACK);
g2.filloval(xl - 1, y1 - 1, 15, 15);
g2.drawString(curConcs.get(j).toString(), horizPos - 25,

vertPos);
g.setColor(Color.GRAY);
¥
}
/**
for (int i = @; i < points.size() ; i++)
{

for (int j = 2; j < points.get(i).size()-1; j++)

{
int ARR_SIZE = 4;

int x1 = points.get(i).get(1);

int yl1 = points.get(i).get(0);

int x2 = points.get(i).get(j+1);

int y2 = points.get(i).get(j);

System.out.println("\nDrawing: " + i +
"\nx1 = " + x1 +
"\nyl = " + yl1 +
"\nx2 = " + x2 +
"\ny2 = " + y2);

g2.drawLine(x1, y1, x2, y2);
//double dx = x2 - x1;

//double dy = y2 - y1;

//double angle = Math.atan2(dy, dx);

//int len = (int) Math.sqrt(dx*dx + dy*dy);

//g2.drawLine(@, 0, len, 0);

//AffineTransform at =
AffineTransform.getTranslateInstance(x1l, yl);

//at.concatenate(AffineTransform.getRotateInstance(angle));
//g2.transform(at);

//g2.fillPolygon(new int[] {len, len-ARR_SIZE,
len-ARR_SIZE, len},

// new int[] {@, -ARR_SIZE, ARR_SIZE, 0}, 4);
}
¥
*/
}
public void paintGraph()
{
JFrame f = new JFrame();
f.getContentPane().add(new GraphPainter(this.p, this.inBytes));
f.setSize(1000, 200 + 150*inBytes.size());
f.setVisible(true);
}

private ArraylList<ArraylList<ArraylList<Integer>>>
makeLinks (ArrayList<InstructionByte> inBytes)
{
ArraylList<ArraylList<ArraylList<Integer>>> points = new
ArrayList<ArraylList<ArraylList<Integer>>>();
//Make an index for each instructionbyte
for (int i = @; i < inBytes.size(); i++)
{
ArraylList<ArraylList<Integer>> instrBytes = new
ArrayList<ArraylList<Integer>>();
//Make an entry within each instructionbyte for each
//Concrete Instruction
for (int j = @; j < inBytes.get(i).getInstructions().size(); j++)
{
ArraylList<Integer> targets = new ArraylList<Integer>();
//Entries within each ConcIns for each target

41

//First two are the start (x,y), rest are targets
for (int k = @; k < inBytes.get(i).getTargets().size(); k++)
{
targets.add(VERTICAL_START + (15 - VERTICAL_CENTER) +
i*VERTICAL_DIST);
targets.add(HORIZONTAL_START + HORIZ_CENTER + 75 +
j*HORIZ_DIST);
//System.out.println("\naPoints: " + aPoints);

//now find all targets
for (int 1 = 0; 1 < inBytes.size(); 1++)
{
for (int p = @; p <
inBytes.get(l).getInstructions().size(); p++)

{
if
(inBytes.get(1l).isTargetOf(inBytes.get(i).getTargets().get(k)))
{

targets.add(VERTICAL_START + (-5 -
VERTICAL_CENTER) + 1*VERTICAL_DIST - 10);

targets.add(HORIZONTAL_START - 25 +
p*HORIZ_DIST);

//System.out.println("aPoints: +

aPoints);
}
}
}
}
instrBytes.add((ArrayList)targets);
}
points.add(instrBytes);
}

//System.out.println("\npoints:
return points;

+ points);

private void drawArrow(Graphics gl, int x1, int x2, int y1, int y2)

{
Graphics2D g

(Graphics2D)gl.create();

int ARR_SIZE

4;

42

double dx = x2 - x1;

double dy = y2 - yi1;

double angle = Math.atan2(dy, dx);

int len = (int) Math.sqgrt(dx*dx + dy*dy);

AffineTransform at = AffineTransform.getTranslateInstance(x1, yl);

at.concatenate(AffineTransform.getRotateInstance(angle));
g.transform(at);

g.drawLine(x1, x2, yl1, y2);

g.fillPolygon(new int[] {len, len-ARR_SIZE, len-ARR_SIZE, len},
new int[] {@, -ARR_SIZE, ARR_SIZE, @}, 4);

import java.util.Arraylist;

/**
* Contains static methods for most parts of the AMB algorithm

* @author Drew Ivarson
* @version 2/8/2015

public class AMB

{

private InstructionSet inSet;
private Program p;
private ArraylList<InstructionByte> insBytes;

public AMB(Program p, InstructionSet inSet)

{

this.p = p;

this.inSet = inSet;

insBytes = new ArraylList<InstructionByte>();
}

public Program getProgram()
{

43

return p;

public InstructionSet getInstructionSet()

{

return inSet;

public void analyze()

{

}

int oldAmountOfData = getAmountOfData();
int newAmountOfData = oldAmountOfData;
do

{

p.markAllUnvisited();

oldAmountOfData = newAmountOfData;
//System.out.println("In the outer loop");
recurse(9);

newAmountOfData = getAmountOfData();

} while (newAmountOfData > oldAmountOfData);
//System.out.println(p);
parseAllInstructionBytes();

printInsBytes();

GraphPainter painter = new GraphPainter(p, insBytes);
painter.paintGraph();

private int getAmountOfData()

{

/**

ArraylList<CodeByte> bytes = p.getBytes();
int data = 9;
for (int i = @0; i < bytes.size(); i++)
{
data += bytes.get(i).getValues().size();

}

return data;

44

*
*/
public void recurse(int begin)

{
if (begin == -1)
return;
if (begin >= p.getBytes().size())
return;

if (p.getBytes().get(begin).visited())
return;

p.getBytes().get(begin).markVisited();
for (int i = @; i < p.getBytes().get(begin).getValues().size();
i++)
{
handleInstruction(begin,
p.getBytes().get(begin).getValues().get(i));
¥
for (int i = @0; i < p.getBytes().get(begin).getTargets().size();
i++)
{
recurse(p.getBytes().get(begin).getTargets().get(i));
}
}

private void handlelInstruction(int base, int op)
{
AbstractInstruction abs = inSet.getAbstractSyntaxFromOP(op);
if (abs == AbstractInstruction.WRITECONST)
{
for (int k = 0; k <
p.getBytes().get(base+l).getValues().size(); k++)
{
int value = p.getBytes().get(base+l).getValues().get(k);
for (int 1 = 0; 1 <
p.getBytes().get(base+2).getValues().size(); 1++)
{

int addr =
p.getBytes().get(base+2).getValues().get(1l);

45

if
(!p.getBytes().get(addr).getValues().contains(value))

{
p.getBytes().get(addr).addValue(value);

}

}

int target = base+3;
if (target >= p.getBytes().size())

{
if (p.getBytes().get(base).notATarget(-1))
p.getBytes().get(base).addTarget(-1);
}
else
{
if (p.getBytes().get(base).notATarget(target))
p.getBytes().get(base).addTarget(target);
}
}
else if (abs == AbstractInstruction.WRITEREL)
{

for (int k = 0; k <
p.getBytes().get(base+l).getValues().size(); k++)
{
int value = p.getBytes().get(base+l).getValues().get(k);
for (int 1 = 0; 1 <
p.getBytes().get(base+2).getValues().size(); 1++)
{
int offset =
p.getBytes().get(base+2).getValues().get(1l);
p.getBytes().get(base+offset).addValue(value);
}

¥
int target = base+inSet.getNumBytesFromOpcode(op);

if (target >= p.getBytes().size())

{ if (p.getBytes().get(base).notATarget(-1))
p.getBytes().get(base).addTarget(-1);

¥

else

{

46

if (p.getBytes().get(base).notATarget(target))
p.getBytes().get(base).addTarget(target);
}
}
else if (abs == AbstractInstruction.GOTOCONST)
{
for (int k = 0; k <
p.getBytes().get(base+l).getValues().size(); k++)

{
int target = p.getBytes().get(base+l).getValues().get(k);
if (target > p.getBytes().size())
{
System.out.println("Invalid jump attemptint got goto:
" + target);
continue;
}
else if (p.getBytes().get(base).notATarget(target))
p.getBytes().get(base).addTarget(target);
}
}
else if (abs == AbstractInstruction.GOTOREL)
{

for (int k = 0; k <
p.getBytes().get(base+l).getValues().size(); k++)
{
int target = base +
p.getBytes().get(base+l).getValues().get(k);
if (target > p.getBytes().size())

{
System.out.println("Invalid jump attemptint got goto:
" + target);
continue;
}
else if (p.getBytes().get(base).notATarget(target))
{
p.getBytes().get(base).addTarget(target);
}
}
¥
else if (abs == AbstractInstruction.SKIP)
{

int target = base + inSet.getNumBytesFromOpcode(op);
if (target >= p.getBytes().size())

47

if (p.getBytes().get(base).notATarget(-1))
p.getBytes().get(base).addTarget(-1);

}
else
{
if (p.getBytes().get(base).notATarget(target))
p.getBytes().get(base).addTarget(target);
}
}
else
{}
}
/**

* Takes an arraylist of Codebytes that represents a set of data bits
for an instruction.
*
* Using the size of the list of codebytes, it returns a list of a list
of integers.
* The outermost list represents all possible combinations of the
codebyte values.
* The innter lists are the specific combinations
*
*/
private ArraylList<ArrayList<Integer>> getDataBits()
{
ArraylList<CodeByte> bytes = p.getBytes();
ArraylList<ArraylList<Integer>> toRet = new
ArrayList<ArraylList<Integer>>();
switch (bytes.size())
{
case 1:
{
for (int i = 9; i < bytes.get(9).getValues().size(); i++)
toRet.add(new
ArraylList<Integer>(bytes.get(0).getValues().get(i)));
¥
case 2:
{
ArraylList<Integer> current = new ArraylList<Integer>();
current.add(0);
current.add(®@);
for (int i = @; i < bytes.get(0).getValues().size(); i++)

48

for (int j = @0; j < bytes.get(1).getValues().size();

J++)
{
current.set (0, bytes.get(0).getValues().get(i));
current.set(1l, bytes.get(1).getValues().get(j));
toRet.add(new ArrayList<Integer>(current));
}
}
¥
case 3:
{
ArraylList<Integer> current = new ArrayList<Integer>();
current.add(®@);
current.add(@);
current.add(@);
for (int i = 0; i < bytes.get(0).getValues().size(); i++)
{
for (int j = @; j < bytes.get(1l).getValues().size();
j++)

{
for (int k = 0; k <
bytes.get(2).getValues().size(); k++)
{
current.set(0,
bytes.get(0).getValues().get(i));
current.set(1,
bytes.get(1).getValues().get(3));
current.set(2,
bytes.get(2).getValues().get(k));
toRet.add(new ArrayList<Integer>(current));

}
}
}
¥
default:
{}
by
return toRet;
¥
/**
* Given:

49

* A base address, an opcode, a list of CodeBytes, and an instruction
set, this function:

*

* Produces an InstructionByte which encapsulates all possible
combinations of the given opcode

* with the data codebytes.

*/

private InstructionByte parseDataBits(int baseAddr, int opcode)
{
ArraylList<CodeByte> bytes = p.getBytes();
InstructionByte ins = new InstructionByte(baseAddr);
ArraylList<ArrayList<Integer>> allData = getDataBits();
for (int i = @; i < allData.size(); i++)

{
ins.addInstruction(new ConcIns(opcode, allData.get(i)));
¥
return ins;
}
/**

* Produces a list of instructionbytes based on the instruction set and
list of codebytes

* associated with this object

*

* @return list of instructionbytes

*/

private void parseAlllnstructionBytes()

{

ArraylList<CodeByte> bytes = p.getBytes();

for (int i = @; i < bytes.size(); i++)

{
//System.out.println("Now looking at CodeByte: " +

bytes.get(i));

if (bytes.get(i).isInstructionBase())
{

InstructionByte current = new InstructionByte(i);
insBytes.add(current);
current.setTargets(bytes.get(i).getTargets());

for (int j = 0; j < bytes.get(i).getValues().size(); j++)
{

50

int op = bytes.get(i).getValues().get(j);
int numBytes = inSet.getNumBytesFromOpcode(op);
if (numBytes == 1)

{
current.addInstruction(new ConcIns(op));
}
else if (numBytes == 2)
{

for (int k = @; k <
bytes.get(i+1l).getValues().size(); k++)
{
ConcIns cCurrent = new ConcIns(op,
bytes.get(i+1l).getValues().get(k));

cCurrent.addDisasm(inSet.disassemble(cCurrent));
current.addInstruction(cCurrent);
//current.addInstruction(cCurrent);

}
}
else if (numBytes == 3)

{

for (int k = @; k <
bytes.get(i+1l).getValues().size(); k++)
{
//System.out.println("K: " + k);
for (int 1 =90; 1 <
bytes.get(i+2).getValues().size(); 1++)
{
ArraylList<Integer> data = new
ArrayList<Integer>();
//System.out.println("L: " + 1);
//System.out.println("i + 1: " +
bytes.get(i+1l).getValues());
//System.out.println("I + 2: " +
bytes.get(i+2).getValues());
data.add(o,
bytes.get(i+1).getValues().get(k));
data.add(1,
bytes.get(i+2).getValues().get(l));
ConcIns cCurrent = new ConcIns(op,
data);

51

cCurrent.addDisasm(inSet.disassemble(cCurrent));
current.addInstruction(cCurrent);

}

else
{
System.out.println("Apparently we've
encountered a > 3 bytes instruction. Interesting");

}

else

1}

/**
* Recursively goes through the algorithm
*
* @param the program
* @param the instruction set
* @return a list of instruction bytes
*/
public static ArraylList<InstructionByte> recAlgorithm(Program p,
InstructionSet inSet)
{
ArraylList<InstructionByte> ins = new ArraylList<InstructionByte>();
ArraylList<CodeByte> bytes = p.getBytes();
for (int i = @; i < bytes.size(); i++)
{
bytes.get(i).markUnvisited();
}
int next = nextInstruction(bytes, @, inSet);
return ins;

private static int nextInstruction(ArraylList<CodeByte> b, int start,
InstructionSet inSet)

52

b.get(start).markVisited();
ArraylList<ConcIns> instructions = new ArraylList<ConcIns>();
int next = start;
for (int i = 0; i < b.get(start).getValues().size(); i++)
{
int numBytes =
inSet.getNumBytesFromOpcode(b.get(start).getValues().get(i));

InstructionByte ins = disassemblelInstruction(next, i, b, inSet,

numBytes);
System.out.println(ins);

}

return next;

private static InstructionByte disassembleInstruction(int start, int
startval, ArraylList<CodeByte> b, InstructionSet inSet, int numBytes)
{
InstructionByte ins = new InstructionByte(start);
int opcode = b.get(start).getValues().get(startVal);
ArraylList<Integer> data = new ArrayList<Integer>();
data.add(0);
data.add(90);
if (numBytes == 3)
{
for (int i = 9; i < b.get(start+l).getValues().size(); i++)
{
data.set(@, b.get(start+l).getValues().get(i));
for (int j = 0; j < b.get(start+2).getValues().size();

j++)

System.out.println("Second data bit: +

b.get(start+2).getValues().get(j));
data.set(1l, b.get(start+2).getValues().get(j));
ins.addInstruction(new ConcIns(opcode, data));

}
}
}
else if(numBytes == 2)
{

for (int i = 9; i < b.get(start+l).getValues().size(); i++)
{

53

data.add(b.get(start+l).getValues().get(i));
ins.addInstruction(new ConcIns(opcode, data));
data = new ArraylList<Integer>();

return ins;

/**
* Fills in CodeBytes of program p by searching for rewrites
*

* @param p the Program
* @param inSet the instruction set
*/
public void calcByteVals()
{
int stepper = 1;
for (int i = 0; i < p.getBytes().size(); i+= stepper)

{
for (int j = 0; j < p.getBytes().get(i).getValues().size();
j++)
{
int opcode = p.getBytes().get(i).getValues().get(j);
stepper = inSet.getNumBytesFromOpcode(opcode);
String current = opcode + " ";
current += p.getBytes().get(i+1).getValues().get(9);
if (stepper == 3)
{
current += " " +
p.getBytes().get(i+2).getValues().get(0);
}

//System.out.println(current);
AbstractInstruction abs =
inSet.getAbstractSyntaxFromOP (opcode);
if (abs == AbstractInstruction.WRITECONST)
{
for (int k = @; k <
p.getBytes().get(i+l).getValues().size(); k++)
{
int value =
p.getBytes().get(i+l).getValues().get(k);

54

for (int 1 = 0; 1 <
p.getBytes().get(i+2).getValues().size(); 1++)
{
int addr =
p.getBytes().get(i+2).getValues().get(1l);
p.getBytes().get(addr).addValue(value);

}
}
}
else if (abs == AbstractInstruction.WRITEREL)
{

for (int k = @; k <
p.getBytes().get(i+l).getValues().size(); k++)
{
int value =
p.getBytes().get(i+l).getValues().get(k);
for (int 1 =0; 1 <
p.getBytes().get(i+2).getValues().size(); 1++)
{
int offset =
p.getBytes().get(i+2).getValues().get(l);

p.getBytes().get(i+offset).addValue(value);

}

}

}

else if (abs == AbstractInstruction.GOTOCONST)
{

}

else if (abs == AbstractInstruction.GOTOREL)

{

}

else

1}

}

private void printInsBytes()

{

for (int i = @; i1 < insBytes.size(); i++)

{

55

System.out.println(insBytes.get(i) + "\n\n");

import java.util.Arraylist;

/**

*

An instruction byte has:

a base address

a list of instructiosn starting at that base address
@author Drew Ivarson

@version 2/9/2015

¥ %X ¥ ¥ %

*/
public class InstructionByte
{
// instance variables - replace the example below with your own
private int address;
private ArraylList<ConcIns> instructions;
private ArrayList<Integer> targets;

/**
* Constructor for objects of class InstructionByte
*
* @param base the base address
*/
public InstructionByte(int base, ConcIns ins)
{
address = base;
targets = new ArraylList<Integer>();
instructions = new ArraylList<ConcIns>();
instructions.add(ins);

}

public InstructionByte(int base)

{
targets = new ArraylList<Integer>();
address = base;

56

instructions = new ArraylList<ConcIns>();

public boolean isTargetOf(int target)
{

return (this.address == target);

/%%

* Add an instruction to the set of instructions
*

* @param ins the new instruction
*/
public void addInstruction(ConcIns ins)

{

instructions.add(ins);

public void setTargets(ArraylList<Integer> tars)

{

targets = tars;

public ArrayList<Integer> getTargets()
{

return targets;

/**
* Gets the list of instructions
*

* @return the list of instructions
*/
public ArraylList<ConcIns> getInstructions()

{

return instructions;

/**
* Gets the base address
*

57

* @return the address
*/
public int getAddress()
{

return address;

public String toString()
{
String toRet = "";
for (int i = @; i < instructions.size(); i++)

{

if (i > 9)
{
toRet+= " | ";
}

toRet += instructions.get(i).toString();

toRet+= "\nTargets: ";
String targetAddage = "";
for (int i = @; i < targets.size(); i++)
{
if (targets.get(i) == -1)
{
}
else
{
if (1 > 9)
targetAddage += ", ";
targetAddage+= targets.get(i);

¥
if (targetAddage.equals(""))

toRet+= "None, end of program.";
else
toRet+= targetAddage;

return "Base Address: " + address + "\n" + toRet;

import java.util.Arraylist;
/**

* Contains an address and list of possible values
*
* @author Drew Ivarson
* @version 2/8/2015
*/
public class CodeByte
{
private boolean visited;
private int address;
private ArraylList<Integer> values;
private ArraylList<Integer> targets;

/**
* Constructor for objects of class CodeBytes
*/
public CodeByte(int add, int val)
{
visited = false;
address = add;
values = new ArraylList<Integer>();
values.add(val);
targets = new ArraylList<Integer>();
}
public void addTarget(int addr)
{
targets.add(addr);
}

public ArraylList<Integer> getTargets()
{

return targets;

}
public void markVisited()
{
visited = true;
}

public void markUnvisited()

{

visited = false;

public boolean visited()

{
return visited;
}
public void addValue(int val)
{
if (!values.contains(val))
values.add(val);
else
return;
}
/**

* Getter method for a codebyte, gives the list of values
*

* @return values ArraylList<Integer> of values

*/
public ArraylList<Integer> getValues()
{

return values;
}
public boolean notATarget(int addr)
{

return !targets.contains(addr);
}
public boolean isInstructionBase()
{

return !targets.isEmpty();
}

public String toString()

{
String toRet = "CodeByte @ : " + Integer.toHexString(address) +

"\nValues: ";
for (int i = @0; i < values.size(); i++)
{

toRet += Integer.toHexString(values.get(i)) + ", ";

}
if (!targets.isEmpty())

toRet += "\nTargets: ";
for (int i = @; i < targets.size(); i++)
{

toRet += Integer.toHexString(targets.get(i)) + ", ";

b
toRet += "\n";
return toRet;

import java.util.Arraylist;
/**
* A concrete instruction has an opcode, data bytes, and a disassembly
*
* @author Drew Ivarson
* @version 2/8/2015
*/
public class ConcIns
{
// instance variables - replace the example below with your own
private int opcode;
private ArraylList<Integer> data;
private String disassembly;

/**
* Constructor for objects of class ConcIns
*/
public ConcIns(int op, ArraylList<Integer> dataStuff)

{
if (dataStuff.isEmpty())

{

data = new ArraylList<Integer>();

}

else

{

data dataStuff;

¥
opcode = op;
disassembly = "";

61

}

public ConcIns(int op)

{
data = new ArraylList<Integer>();
opcode = op;
disassembly = "";

}

public ConcIns(int op, int nData)

{

data = new ArraylList<Integer>();
data.add(nData);
opcode = op;

op = disassembly.substring(@, disassembly.indexOf(" "));

disassembly = "";
}
public int getOP()
{
return opcode;
}
public boolean isJMP()
{
String op = "";
try
{
¥
catch (Exception E)
{
return false;
¥
//System.out.println("isIMP, op:
return op.equals("IMP");
}
public boolean isMod()
{
String op = "";
try
{

op = disassembly.substring(@, disassembly.indexOf(" "))

)

62

}
catch (Exception E)

{

return false;

¥
//System.out.println("isMod, op:
return op.equals("MOVB");

n

+ 0op);

}
public ArraylList<Integer> getData()
{
return data;
}
public void addDisasm(String dis)
{
disassembly = dis;
}
public String toString()
{
if (opcode == 3)
return "VIRUS";
else if (disassembly.equals("") && !data.isEmpty())
return opcode + " " + data;
else if (disassembly.equals(""))
return opcode + " " + data;
else
{
return disassembly;
¥
}

import java.util.Arraylist;
/**

* A program is a list of codebytes
*

* @author Drew Ivarson

* @version 2/8/2015

*/

public class Program

{

63

private ArraylList<CodeByte> bytes;

/**

* Constructor for objects of class Program
*/

public Program(ArrayList<CodeByte> cb)

{

// initialise instance variables

bytes = cb;
}
public void markAllvisited()
{
for (int i = @; i < bytes.size(); i++)
{
bytes.get(i).markVisited();
}
}
public void markAllUnvisited()
{
for (int i = @; i < bytes.size(); i++)
{
bytes.get(i).markUnvisited();
¥
}
/**
* Gets the list of codebytes
*
* @return the list of codebytes
*/

public ArraylList<CodeByte> getBytes()
{

return bytes;

public String toString()

{
String toRet = "";

for (int i = @0; i < bytes.size(); i++)
{

toRet += bytes.get(i).toString() + "\n";
}

return toRet;

import java.nio.file.*;
import java.util.Arraylist;

/**

* Given the name a file, parses it into an ArraylList of codebytes

*

* @author Drew Ivarson
* @version 2/8/2015

*/

public class InputParser

{

public static Program parseProgram(String name)

{

ArraylList<String> fileDump = new ArrayList<String>();
Path path = FileSystems.getDefault().getPath(name);

System.out.println("Path: " + path);
try
{
fileDump = (ArraylList<String>)Files.readAllLines(path);
System.out.println(fileDump);
¥
catch (Exception E)
{
System.out.println(fileDump + "\nException: " + E);
System.out.println("File reader error");
¥

int addrCount = 0;

String row = "";

ArraylList<CodeByte> program = new ArrayList<CodeByte>();
for (int i = @; i < fileDump.size(); i++)

{

row = fileDump.get(i);
row = row.replaceAll(" ", "");
//System.out.println(row);

65

while (!row.equals(""))

{
CodeByte current = new CodeByte(addrCount,
Integer.parselnt(row.substring(@, 2), 16));
program.add(current);
row = row.substring(2, row.length());
addrCount++;
}
¥
Program p = new Program(program);
return p;
}
}
/**

* Write a description of class main here.
*

* @author (your name)

* @version (a version number or a date)
*/

import java.util.Arraylist;

import java.util.Scanner;

public class main

{

public static void main(String[] args)

{

Scanner sc = new Scanner(System.in);

String name = "blahhhh";

System.out.println("Welcome to the CFG Maker (someday...)");

System.out.println("The current instruction set is:\n\n");

InstructionSet inSet =
InstructionSetParser.parselnstructionSet("InstructionSets/InstrSeto.txt");

System.out.println("\n\n");

System.out.print("Enter file name, new to change instruction
sets, or quit to quit: ");

//System.out.println(inSet);

name = sc.nextLine();

System.out.println();

while (!name.equals("quit"))

{

66

if (name.equals("new"))
{
System.out.print("Enter new instruction set name,\nor
nothing if you don't want to change: ");
name = sc.nextLine();
inSet = InstructionSetParser.parselnstructionSet(name);
System.out.println(inSet);
System.out.print("Enter file name, new to change
instruction sets, or quit to quit: ");
name = sc.nextLine();
System.out.println();

}
else
{
Program p = InputParser.parseProgram(name);
// System.out.println(p);
// System.out.println("---Calculating
CodeByte Variants---\n\n");
// AMBAlgorithm.calcByteVals(p,
inSet);
// ArraylList<InstructionByte> instr =
AMBAlgorithm.recAlgorithm(p, inSet);
// System.out.println("---CodeByte
Variants:\n");
// System.out.println(p);

AMB thing = new AMB(p, inSet);
thing.analyze();
//System.out.println(thing.getProgram());

System.out.print("Enter file name, new to change
instruction sets, or quit to quit: ");

name = sc.nextlLine();

System.out.println();

import java.nio.file.*;
import java.util.*;

/**
67

*
*
*
*

*/

Given a file, gives back an InstructionSet object

@author Drew Ivarson
@version 2/8/2015

public class InstructionSetParser

{
/

* %

* Given a file, returns an instruction set

*

* @param filename the name of the file
* @return the instrucion set described by the file

*/

public static InstructionSet parselnstructionSet(String filename)

{

16);

"))

InstructionSet ins = new InstructionSet();
ArrayList<String> file = new ArraylList<String>();
Path path = FileSystems.getDefault().getPath(filename);

try

{

}

file = (ArraylList) Files.readAllLines(path);

catch (Exception e)

{

System.out.println("File reader error");

for (int i = 0; i < file.size(); i++)

{

System.out.println(file.get(i));
int opcode;

int numBytes;

String name;

AbstractInstruction abs;

String line = file.get(i);
opcode = Integer.parseInt(line.substring(®, line.indexOf(" ")),

line = line.substring(line.indexOf(" ") + 1, line.length());
numBytes = Integer.parseInt(line.substring(®, line.indexOf("

68

line = line.substring(line.indexOf(" ") + 1, line.length());
name = line.substring(@, line.indexOf(" "));

line = line.substring(line.indexOf(" ") + 1, line.length());
String absStr = line.substring(@, line.length());

if (absStr.equals("WRITECONST"))
abs = AbstractInstruction.WRITECONST;
else if (absStr.equals("WRITEREL"))
abs = AbstractInstruction.WRITEREL;
else if (absStr.equals("GOTOCONST"))
abs = AbstractInstruction.GOTOCONST;
else if (absStr.equals("GOTOREL"))
abs = AbstractInstruction.GOTOREL;
else if (absStr.equals("SKIPORGOTOCONST"))
abs = AbstractInstruction.SKIPORGOTOCONST;
else if (absStr.equals("SKIPORGOTOREL"))
abs = AbstractInstruction.SKIPORGOTOREL;
else
abs

AbstractInstruction.SKIP;

ins.add(new Instruction(opcode, numBytes, name, abs));

return ins;

/**
* This represents the 6 possible abstract behaviors of any assembly
language

WRITECONST - Write constVal to constAddr
WRITEREL - Write cosntVal to OFFSET
GOTOCONST - Go to constAddr
GOTOREL - Go to OFFSET
* SKIPORGOTOCONST - Branch statement that is either a SKIP or is a
GOTOCONST
* SKIPORGOTOREL - Branch statement that is either a SKIP or is a GOTOREL
*
* @author Drew Ivarson
* @version 2/8/2015
*/

public enum AbstractInstruction
{

WRITECONST, GOTOCONST, WRITEREL, GOTOREL, SKIP, SKIPORGOTOCONST,
SKIPORGOTOREL

}

An instruction is an assembly instruction. It has 4 fields:

1. int opcode - binary representation of its name
2. int number_of_bytes - the number of bytes long it is including the

* 3. String name - its disassembled name
* 4, AbstractInstructrion absSyntax - its representation given the
abstract syntax defined in the file
* @author Drew Ivarson
* @version 2/8/2015
*/
public class Instruction
{
// instance variables - replace the example below with your own
private int opcode;
private int number_of_bytes;
private String name;
private AbstractInstruction absSyntax;

/**
* @param op opcode
* @param numBytes number of bytes
* @param name the name
* @param absIns the abstract instruction
*/
public Instruction(int op, int numBytes, String name,
AbstractInstruction absIns)

{
opcode = op;
number_of_bytes = numBytes;
this.name = name;
absSyntax = absIns;

}

/**

70

* Gets the opcode
*

* @return opcode the opcode
*/

public int getOP()

{

return opcode;

/**
* Gets the number of bytes
*

* @return int number of bytes
*/

public int getNumBytes()

{

return number_of bytes;

/**
* Gets the name
*

* @return the name

*/
public String getName()
{

return name;

/**
* Gets the abstract syntax
*

* @return the AbstractInstruction

*/
public AbstractInstruction getAbsSyntax()
{

return absSyntax;

/**
* ToString in the form of:
* name: NAME, opcode: xx, number of bytes: x, Abstract Syntax:
absSyntax

*/
public String toString()

{
return "Name: " + name + ", opcode: " + Integer.toHexString(opcode)
+ ", number of bytes: " + number_of_ bytes
+ ", AbstractSyntax: " + absSyntax;
}
}
/**

* An instruction set is an object that defines the instructions that any

program can have.
*

* @author Drew Ivarson
* @version 2/8/2015
*/

import java.util.Arraylist;

public class InstructionSet

{

private ArraylList<Instruction> instructions;

/**
* Constructor for objects of class InstructionSet
*/

public InstructionSet()

{

instructions = new ArraylList<Instruction>();

/**
* Add an instruction
*

* @param Instruction ins the instruction
*/
public void add(Instruction ins)

{

instructions.add(ins);

72

public String getInstrNameFromOP(int op)

{
String toRet = "not found";
for (int i = @; i < instructions.size(); i++)
{
if (instructions.get(i).getOP() == op)
toRet = instructions.get(i).getName();
}
return toRet;
}
/**

* Given the opcode, gets the number of bytes
*

* @param opcode

* @return numBytes

*/
public int getNumBytesFromOpcode(int opcode)

{
if (instructions.isEmpty())

return 9;
else
{
for (int i = @; i < instructions.size(); i++)
{
if (instructions.get(i).getOP() == opcode)
return instructions.get(i).getNumBytes();
¥
return 0;
}

public String disassemble(ConcIns ins)

{

String toRet = + getInstrNameFromOP(ins.getOP());

for (int i = @; i < ins.getData().size(); i++)

{

toRet+= " Ox" + Integer.toHexString(ins.getData().get(i));

73

return toRet;

/**
* @iven an opcode, gets the name
*

* @param opcode the opcode
* @return name the name

*/
public String getNameFromOpcode(int opcode)
{
if (instructions.isEmpty())
return "OPCODE NOT FOUND";
else
{
for (int i = @; i < instructions.size(); i++)
{
if (instructions.get(i).getOP() == opcode)
{
return instructions.get(i).getName();
}
}
¥
return "OPCODE NOT FOUND";
}
/**

* @iven the opcode, gets the abstract form
*
* @param the opcode
* @return AbstractInstruction
*/
public AbstractInstruction getAbstractSyntaxFromOP(int opcode)
{
if (instructions.isEmpty())
return AbstractInstruction.SKIP;
else
{
for (int i = @; i < instructions.size(); i++)

{

74

if (instructions.get(i).getOP() == opcode)

{ return instructions.get(i).getAbsSyntax();
}
¥
}
return AbstractInstruction.SKIP;
}
public String toString()
{
String toRet = "";
for (int i = @; i < instructions.size(); i++)
{
toRet += instructions.get(i).toString();
toRet += "\n";
}
return toRet;
}

75

