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Abstract

As artificial intelligence and robotics progress further and faster every day, designing and building a

conscious computer appears to be on the horizon. Recent technological advances have allowed engineers

and computer scientists to create robots and computer programs that were previously impossible. The

development of these highly sophisticated robots and AI programs has thus prompted the age-old ques-

tion: can a computer be conscious? The answer relies on addressing two key sub-problems. The first is

the nature of consciousness: what constitutes a system as conscious, or what properties does conscious-

ness have? Secondly, does the physical make-up of the robot or computer matter? Is there a particular

composition of the robot or computer that is necessary for consciousness, or is consciousness unaffected

by differences in physical properties? My aim is to explore these issues with respect to deep-learning com-

puter programs. These programs use artificial neural networks and learning algorithms to create highly

sophisticated, seemingly intelligent computers that are comparable to, yet fundamentally different from, a

human brain. Additionally, I will discuss the required actions we must take in order to come to a consensus

on the consciousness of deep learning computers.
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1 Introduction

It seems that, from birth, you have come across an immense number of objects and people. In your earliest

years, you have almost always had the luxury of being surrounded by others to guide and assist you.

Though it is unclear exactly how you were guided in the development of concepts, you were most likely

always exposed to help in categorizing and recognizing the various objects you came into contact with.

Your parents or guardians may have shown you a ball while telling you the object was a ball. Over time,

you developed an idea of what a ’ball’ is. Using these newly developed rules about the world, you gained

the ability to categorize objects by type, such as ’ball.’ Regardless of exactly what role other people had in

helping you learn concepts and distinguish between objects, it is true that you received help.

Now imagine a situation in which you are born alone and do not have access to such assistance. Think

of yourself as a genius newborn, in the sense that you can reason well, but you know nothing. While you

can think rationally, there is nobody to help you come to conclusions or correct you when your conclusions

are wrong. It is up to you alone to decide what a ’ball’ is, and which objects are balls. Surely, this task seems

daunting and difficult.

In essence, this is what unsupervised, deep learning computers have done. For example, Le et al.,

of Stanford University, have developed a deep learning computer program that is capable of identifying

aspects of an image, such as the face of a cat, and categorizing and grouping images of cats together [21]. It is

quite impressive that a computer is capable of accurately organizing images, but it is even more impressive

that it is able to organize the images without labels on the images, human interference or guidance, or even

prior knowledge of cats.

Any system, be it a human or a computer, that can consistently complete a task that requires making

judgments and applying rules seems to be, at some level, intelligent (though this may be a controversial

claim). I do not want to focus on the debate over intelligence here, as I believe a far more controversial

claim is that such a computer is conscious. After all, it seems like the computer could be conscious. It does

what many conscious things do. The computer may even do things in a similar way; that is, it may learn

from examples and essentially teach itself what a cat is (or at least what an image of a cat is). And maybe

there is something about the computer that can explain how it can do all of that, and maybe that something
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is consciousness. But perhaps the computer is not conscious. Perhaps there is a perfectly acceptable and

sufficient explanation for the computer’s behavior that does not rely on the computer being conscious.

These ideas and questions are what I am concerned with. More specifically, I want to explore how

three different theories of consciousness, functionalism [22] (including Daniel Dennett’s Multiple Drafts

Model [12]), Ned Block’s physicalist ”hybrid” theory of consciousness [6], and Giulio Tononi’s modified

functionalist Integrated Information Theory [32], relate to deep learning, and how deep learning relates to

those theories. Depending on which of these three theories of consciousness is accepted, we come to differ-

ent conclusions, based on varying forms of support, about the consciousness of a deep learning computer.

Yet, interestingly, there appears to be a weak, but definite, form of agreement between the theories on the

topic of computer consciousness.

The question of computer consciousness also has varying implications on both philosophy and com-

puter science. If a computer is considered conscious, then there are ethical concerns, such as turning off

computers, that need to be deliberated on and addressed. Conscious computers would also change the

study of the philosophy of mind, as we would need to include computers in the discussion of the mind in

a way that regards them as conscious, not just a candidate for consciousness, so to speak. We would need

to view consciousness in a way that includes both animals and computers, as well as other systems, not just

animals. The field of computer science would also be affected significantly. What would it mean to build,

program, and turn on a computer? Is it at all like having a child? Should we change our programming

standards and practices in light of the computer being conscious? How will a conscious computer affect

artificial intelligence development? While the focus of this paper will not be on these specific questions,

but rather the plausibility of a conscious deep learning computer, their answers and considerations could

surely be influenced by the conclusions I will make.

In the next section, I will examine deep learning computer algorithms, as well as machine learning, in

general. Then, I will describe the three theories of consciousness mentioned above, as well as the potential

validity of each theory, though I will not make any definite conclusions in that section. In the third chap-

ter, I will synthesize the two preceding sections and discuss deep learning programs’ ability to satisfy the

conditions of consciousness, as outlined by the three theories. This will include any judgments on whether
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deep learning computers can be viewed as conscious beings. Next, I will illustrate the advantages that

Integrated Information Theory has over the other two theories, ultimately suggesting that IIT should be

accepted instead of the others. This will not be a definitive defense of IIT, as IIT still has weaknesses, but

minimally, I hope to show that the views of Block and Dennett are not attractive options for a theory of

consciousness. I will also briefly investigate the ”science of consciousness” and methods we may be able to

use in order to advance the field of consciousness.

2 Machine Learning and Deep Learning Algorithms

As the result of recent advancements in technology, the popularity of machine learning algorithms and

techniques in computer science has increased. Scientists’ ability to simulate and represent difficult logical

operations, such as ”exclusive or,” has made machine learning applicable and fit for use in more interesting

and challenging problems. However, in the midst of all the excitement, the true definition of machine learn-

ing, and a true understanding of what machine learning systems are used for, is occasionally overlooked,

omitted from conversation, or otherwise skewed.

2.1 Machine Learning

When one hears the term ’machine learning’ for the first time, it is most likely accompanied by ideas of

futuristic, intelligent robots. And that response is normal. After all, the phrase does seem to imply that ma-

chines are learning, as humans do, and are therefore, advanced, thinking computers. And while that would

be technologically impressive and interesting, that is not the reality of machine learning. Instead, machine

learning would be best defined as an interdisciplinary field, involving computer science and mathematics,

in which programs and algorithms are used to complete a specific task by way of ”learning.” Specifically,

a computer that ”learns” is meant to improve its ability to complete some task. One formal definition of

machine learning that is generally accepted states that a ”program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E [23].” For example, imagine a particular program was designed to play
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chess. The task T is playing chess, and the performance P is the program’s ability to win games of chess, or

the percentage of games won. If the program’s win percentage increases as the result of playing games of

chess (the computer’s experience E), then the program can be said to be a learning program.

The ”learning” feature of these sorts of computer systems is quite useful, and in some cases necessary,

in the completion of many different problems. However, machine learning algorithms are not appropriate

for any assignment. Normally, machine learning algorithms are only practical when the task to be com-

pleted is one that can be done by applying generalities derived from examples [15]. A computer’s ability to

generalize from specific examples is extremely beneficial. Just as humans are able to identify certain objects

as chairs by viewing numerous instances of particular chairs and developing the general form of a chair,

machine learning systems are capable of forming sets of general rules and analyzing information and data

with those rules. Therefore, machine learning algorithms are widely applied to the fields of data mining

and data analysis, where there is far too much information for humans to process manually.

There are two common types of machine learning algorithms: supervised learning and unsupervised learn-

ing. The basic difference between these two kinds of machine learning is the computer’s access to the cor-

rect ”answer.” For example, if an algorithm is being applied to data about irises, and the task is to correctly

classify each instance as one of three types of irises, then the type of learning would be supervised, since

the data being used by the computer includes the class type for each instance. In essence, this allows the

computer to ”check” its answers as it works, thus allowing it to learn which attributes are important and

which rules are good rules to follow. More generally, the purpose of supervised learning is to identify and

”learn the relationship between the input x and output y. [2]” This makes supervised learning well-suited

for problems of classification and association between features and classes. As a result, supervised learning

is widely used for questions of prediction, or determining which class an input instance x will belong to,

based on which classes similar instances belong to [2]. The other form of machine learning is unsupervised

learning. In cases of unsupervised learning, the input data is not accompanied by the known correct output.

Instead, the computer is tasked with finding its own description of the input data [2]. This means that the

computer will not truly know what it is looking at, or looking for, but will instead identify patterns within

the data so that it knows which instances are similar to other instances.
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For the purpose of this paper, I will not explicitly focus on one type of learning over the other, as the

supervision feature is contingent on the data being used. But it should be noted that unsupervised learning

algorithms are more interesting, in the sense that they are capable of finding high-level conceptual patterns

in data. The fact that task-specific information is not necessary means unsupervised learning is applicable

to larger, more diverse types of data. Moreover, unsupervised learning algorithms parallel human and

animal learning more closely. Humans and animals are still given guidance and feedback when learning

concepts, though that is not always the case, especially in older organisms. That is, it is less common for an

adult, rather than a child, to be shown and taught what a chair is through examples and training.

Computer learning has played a significant role in recent advancements in the fields of robots and artifi-

cial intelligence. The auto-learning nature of machine learning programs has relieved artificial intelligence

researchers of much of the burden of determining exactly how the human brain functions. Instead, they

have implemented relatively simple machine learning algorithms1 that complete a task without having

to be told how to do it. And just like everything that initially seems simple and straightforward, there

is much more to machine learning in AI than merely allowing the computer to learn what to do. While

machine learning researchers do not have to know every detail and aspect of how the task should be com-

pleted, they do still have to identify what the important elements, or features, of the problem are. Different

approaches, algorithms, and architectures have been created and used to tackle the various problems of

artificial intelligence. One particular method of implementing a machine learning algorithm is the use of

artificial neural networks.

2.2 Artificial Neural Networks

Artificial neural networks have greatly advanced the field of artificial intelligence. Neural networks have

allowed researchers to develop computers and machines that can succeed in completing impressive tasks,

such as recognizing handwriting, speech, and faces. These problems require processing large amounts of

complicated data, which neural networks are well-suited for. Thus, neural networks are considered one of

the more effective machine learning methods, and one of the most commonly used, as well [28] [23]. Due

1These algorithms are not necessarily objectively simple, but they are simple in comparison to the complexity of an algorithm that
explicitly explained how to complete a task
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to their popularity and success, and the connections neural networks have to biology and deep learning, I

will focus on them as the primary method of machine learning.

Basically, artificial neural networks are sets of individual units that are each capable of taking some

input, processing it, and producing some new output [23] [28]. These separate units are analogous to the

independent neurons of the biological animal brain. In fact, the entire concept of artificial neural networks

was motivated by the structure and basic functionality of the human brain [23]. The brain consists of an

incredible number of special cells called neurons. These discrete neurons are interconnected to other neu-

rons, creating a vast complex we know as ’the brain.’ Yet, despite the overall intricacy of the brain, it is

able to complete difficult tasks, while handling large amounts of data, at quick speeds. For instance, an

average person can recognize another person on the order of 10−1 seconds [23]; this is too fast for us to

notice at all. This speed is even more surprising and amazing when we account for the fact that each neu-

ron has a switching time, or the time it takes for it to be agitated and complete a process, of roughly 10−3

seconds [23]. Therefore, it seems as though the actual process of analyzing all of the visual data pertain-

ing to somebody’s face and producing a judgment about it, i.e. you are looking at your mother, cannot be

much more than a few hundred steps [23]. Biologists and neuroscientists have taken this information to be

evidence that general brain function is comprised of many parallel processes [23]. A simple representation

is that the information sent to the brain is distributed to various neurons and all of the individual neurons’

outputs are collected and accumulated to form one coherent output. The creators of artificial neural net-

works have sought to mirror that theory. The basic principle of allocating small pieces of the large set of

data to individual processing units has been retained.

Perhaps the best way to begin understanding the basics of how artificial neural networks function is to

look at the simplest version of a neural network: a single perceptron. A perceptron is an extremely basic

neural network which consists of a single artificial neuron. This ”neuron” is just a mathematical function

designed to yield output based on input [28]. As is shown in Figure 1, the neuron takes in some set of

inputs i1 , i2 , ..., in , each carrying some weight, which can vary depending on the source of the input. The

weights of all the inputs are then summed. The neuron’s processing function is activated, or triggered,

when the inputs’ total weight exceeds a set threshold, which, like the weights, can vary among neurons.
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Figure 1: A representation of a single perceptron neuron.

If the threshold is exceeded, then the neuron handles the inputs’ weight sum and emits an output [28].

The perceptron model is the general model used for neurons in typical neural networks today. Modern

neural networks connect sets of these neurons. However, there are different ways in which these neurons

can be linked together. Two popular methods are feed-forward networks and recurrent networks. While

both of these architectures are similar, in that they consist of layers of artificial neurons, there exist a few

fundamental differences between them.

Feed-forward neural networks are comprised of links between neurons that all point in the same di-

rection. This means that the initial raw input enters the preliminary layer of neurons, is handled in some

way, and the output from those neurons is sent through to the next stage. In other words, information

is always fed, or passed, in the same direction [28]. As Figure 2 illustrates, the links between groups of

neurons never go backward, so a neuron does not encounter the same data more than once. One could

think of a feed-forward network as an assembly line in a car factory. The beginning of the line receives

some material that does not resemble a car, but as it moves along the conveyor belt, parts are added and

assembled until, at the end of the line, it is a complete car. During this process, however, the car can only

move in one direction; since it cannot go back to a previous position, it is important that the individual

workers or machines complete their task adequately, timely, and correctly. Failure to do so would affect the

entire process. Similarly, each neuron in a feed-forward network needs to function correctly. Errors made

at early stages will adversely affect the output of the network. In the case of matching information for the
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Figure 2: A common, basic feed-forward network. Notice that the links between the neural layers all point
in the same direction. The neurons’ output in each layer, except for the final layer, acts as input for the
neurons in the next layer.

purposes of recognition, early errors will be compounded on as the information continues through the net-

work, eventually resulting in mismatching and inaccuracies in recognition [36]. Data could theoretically be

processed twice by a single neuron, just as the seats could be reinstalled in a car if they were not finished

the first time, but the information would have to complete a traversal of the entire network first, and then

be fed into the beginning again, thus making it inefficient and costly.

On the other hand, and as the name suggests, recurrent neural networks link neurons in more than one

direction. The network in Figure 3 is an example of a simple recurrent neural network with bidirectional

neural links. The result of this design is that outputs are fed back into the network as inputs, creating a

loop [28]. This means that unlike feed-forward networks, where the only internal state is that of the inputs’

weights, the activation threshold of a neuron in a recurrent neural network is potentially dependent on

previous inputs. Thus, recurrent network neurons are capable of, and in fact, require, support for short-

term memory [28]. For example, imagine a single neuron responsible for simply calculating the sum of the

weights of three inputs, i1, i2, i3, where the neuron receives the inputs one at a time. If the neuron was in a

feed-forward network, then it would receive input i1, add its weight, e.g. 1, to the total (presumably 0), and

output that total: 1. When inputs i2 and i3, with weights 2 and 3, respectively, are received, their weights

are added to the total and outputted. However, the total would be ”reset” each time and the overall output

would be 3. However, a neuron in a recurrent network would be able to hold on to the necessary total

weight. This means that the weights of inputs i2 and i3 would be added to totals 1 and 3, respectively, and
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Figure 3: A simple recurrent neural network. In this network, there is a backward link between the final
output layer and the hidden layer, allowing data to be fed back into the hidden layer, as well as out of the
entire network.

the final output of the neuron would be 6. This characteristic of recurrent networks, that is, the associative

memory capabilities of the neurons, make recurrent networks more intriguing with respect to studying

models of the brain. I will discuss recurrent networks further, later in this chapter.

There are more variations that can be made to neural networks than simply the direction the infor-

mation flows. Take, for example, feed-forward networks2. Commonly, feed-forward neural networks are

composed of layers of neurons, where a layer is simply a collection of neurons (a network) that represent

a level of abstraction, or a step in the overall process. These layers are arranged in a manner such that the

input into a neuron, or layer of neurons, comes only from the neuron, or layer of neurons, immediately

preceding it in the direction of the data flow [28].

Just as it is helpful to begin understanding the basics of neural networks by examining the single per-

ceptron, grasping the concepts of feed-forward network layers starts with the simplest form: single layer

2Although I mentioned that recurrent networks are generally more interesting in terms of brain modeling and studying intelligence,
I am giving more attention to feed-forward networks due to their wide-spread use in computer learning and their relatively simpler
structure. Many of the basic concepts that apply to feed-forward networks can be easily extrapolated to recurrent networks.
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networks. Until this point, I have been describing feed-forward networks primarily as those with multiple

layers, or stages. That is, information is passed from one neuron to another. But that is not the only type of

feed-forward network that exists. A simpler, earlier version was the single-layer network. These types of

networks are immensely similar to the perceptron discussed above; in fact, the only genuine difference is

that the system is made up of a number of artificial neurons, rather than just a single one. But a single-layer

feed-forward network still produces output directly from the input, just as the single perceptron network

does [28]. In other words, input is fed into the network and output is yielded after just one iteration of

neuronic activity. Intuitively, single-layer feed-forward networks do not seem entirely useful. As illus-

trated by the factorial problem above, a network that is only able to process data once, even if it can be

distributed amongst a large number of neurons, will have limited applicability. In terms of Boolean func-

tions, single-layer feed-forward networks, as well as single perceptron networks, are only able to complete

conjunctive, disjunctive, and negative functions [23] [28]. In order for any one of these problems to be done,

the data only needs to be examined once, and the correct answer can be given. More complex functions,

such as exclusive disjunctive functions, which require at least two stages of basic Boolean functions, can-

not be completed with just one iteration, regardless of the number of neurons. Imagine the car example

again. If, instead of an assembly line, every phase of car assembly were done concurrently, the car would

not be completed. Rather, you would have a number of partially assembled car pieces. Similarly, complex

tasks cannot be done in single-layer feed-forward networks; the output would be incomplete. Luckily, the

solution to this problem is fairly straightforward, at least conceptually.

By creating a neural network with more than one layer of neurons, more Boolean functions can be

managed, even exclusive disjunction. This has been known, in the theoretically sense, for decades [28].

However, putting such a principle into practice proved to be a major difficulty in the field of machine

learning. But eventually, researchers devised a way of creating appropriate feed-forward neural networks

that passed output from one neuron as input to another neuron. The key component to multi-layer feed-

forward networks are the hidden layers of neurons, specifically, the way in which neurons link to the next

layer. Hidden neuron layers are simply layers whose output is only available to other neurons and is not

given as output of the network as a whole [23]. The layers in these networks are typically structured in a
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manner such that the information direction is acyclic [23]. The neurons of a particular hidden layer feed

their respective outputs as inputs to the next layer of neurons. The aspect of these neural networks that

is considered ”learning” is the process of deciding how much weight, that is, how much importance each

input has on the final output, to assign to each input and the links between neurons [23].

Before delving into general neural network learning algorithms and weighting rules, allow me to briefly

return to discussing recurrent networks. Recall that recurrent neural networks share many of the same

fundamental properties as feed-forward networks. They still consist of neurons with activation thresholds,

and take in input and produce output. However, the output they produce does not necessarily have to

go on to the next layer of neurons. Instead, a neuron’s output can feed into a neuron that is ”behind” it,

or even back into the neuron that it came from. The Hopfield network is a well-understood version of a

recurrent network, though it is not the only type that is used. In these sorts of systems, the direction in

which information moves is both forwards and backwards, and the weights of the inputs are equal for

each neuron (as I will explain below, this differs from feed-forward networks). Also, recall the neurons

in recurrent networks support memory. That is, the current state of the neuron is affected by previous

inputs and affects future outputs. When some input i enters a neuron, i’s weight is added to the activation

threshold total. Regardless of whether or not the activation threshold was met, that total is ”remembered”

and the next input is processed in the context of the neuron’s new state (with the activation threshold total

at 1 rather than 0, for example) [28]. In terms of the functionality of Hopfield networks, this memory allows

for the network to respond to new stimuli that resemble the stimuli used to train the network. For example,

if photographs were used to train the network, and the new input was a section of one of the training

photographs, then the neurons in the network would be activated in a sequence, or pattern, such that

the original training photograph is recreated. Since different ”parts” of the photograph are stored in each

neuron, the correct ”traversal” of the network will result in collecting all of the pieces of the photograph [28].

Additionally, multi-layer Hopfield networks have been used for tasks such as object recognition [36]. Young

et al. created a multi-layer Hopfield network, where each layer of the network was a single layer Hopfield

network responsible for a particular task. The overall purpose of the network was to match pictures of

objects with known training objects. The researchers used a method by which separate layers processed
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information concurrently and at different resolutions (either coarse or fine visual elements were analyzed).

This method allowed the computer to recognize images in a manner that a single-layer network, or even

multi-layer feed-forward network, would be incapable of with the same level of performance.

Hopefully, I have explained the basic and common structures of neural networks sufficiently enough

to provide more details about how neural networks work. I briefly mentioned the idea of weights and

thresholds above, but I did not describe where those values come from, or how they affect the system. To

do so, I will return to the single perceptron network, since the algorithms used for perceptrons are pertinent

to neural networks with many neurons and multiple layers [23]. Single perceptron networks are simple to

understand, and the problems they are used for are normally not too complex. Therefore, determining the

correct weights to assign to the inputs, such that the neuron functions correctly and the output is error-free,

is a relatively simple problem to solve.

The most basic way to find satisfactory weights is to use a pseudo-guess-and-check method, i.e. choos-

ing a random weight and modifying it when the perceptron makes a mistake on the training data. The

weight is adjusted according to the perceptron training rule. Under this rule, the weight is changed in rela-

tion to the input, can be done using the following formula: δw = n(t − o)x, where w is the weight, n is a

constant (normally small), t is the target output, o is the actual output, and x is the input [23]. While the

perceptron training rule is generally successful in finding weights, it has its disadvantages. The primary

defect of the perceptron training rule is that it struggles to find an adequate weight if the training data is

not linearly separable [23]. Linear separability simply refers to the ability to split the data, according to the

output, on a graph. For example, imagine a soccer game with two outcomes, ’win’ and ’loss.’ And say

Figure 4 is a plot of the results, with ’wins’ being squares and ’losses’ being crosses, with respect to goals

scored on the x-axis and goals allowed on the y-axis. The results are said to be linearly separable, since the

results can be cleanly separated. In other words, data is not linearly separable just in case that there is no

clear and ultimate dividing line between the data; when this is the case, there does not exists a line that can

be drawn on the graph, such that there are not some number of all possible outputs on either side of the

line. In order to solve this puzzle, another method, called the delta rule can be applied. The true motiva-

tion and underlying concept of the delta rule is gradient descent. And since the delta rule is, more or less,
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Figure 4: An example of linearly separable data. The two outcomes can be divided such that all outcomes
on either side of the line are alike.

an application of gradient descent, and gradient descent is more widely used in neural network learning,

particularly in the popular back-propagation algorithm, gradient descent is the true focus [23].

Before discussing gradient descent, it would be helpful to explain the process of back-propagation. The

crucial aspect of the back-propagation algorithm is its ability to ”go back into the network” and propagate

the observed, total error over the neurons in the multiple layers. After the network is created, the training

data is iterated over the network many times, using small, random weights, initially [23]. After each itera-

tion of the network, the entire network’s output error, E, is calculated. Then, using a portion of that error

E, the error, e, of a specific neuron is calculated, and the weights are adjusted appropriately, starting from

the output layer and working backwards to the first input layer [28]. More specifically, the algorithm finds

the error for the whole network and derives the error for an individual (hidden) neuron, h, by summing

the output error for every output influenced by neuron h. The weight is altered such that it reflects h’s

responsibility for the network output error [23]. Generally, this leads to small incremental weight changes,

and so the training data may have to iterate over the network thousands of times [23]. Despite this potential

16



disadvantage, it is still an effective way for the neural networks to learn accurate weighting rules, for both

feed-forward and recurrent neural networks.

In the case of recurrent networks being trained with back-propagation, it is easiest to think of each

iteration through the network as being a separate copy of the network, where the output is fed into another

copy rather than back into itself. By visualizing recurrent networks in this manner, they begin to take

the shape of a feed-forward network. The back-propagation algorithm is then applicable to the recurrent

network in the same way it is in the feed-forward network. The final weight adjustment of the entire

network can be thought of as the mean weight adjustments from the copies of the network [23]. Back-

propagation is a bit more difficult to implement on recurrent networks than it is on feed-forward networks,

but it is still possible, which is beneficial to the field of artificial intelligence.

Plainly put, the basis of gradient descent is error minimization. The use of gradient descent allows the

algorithm to find input weights the lead to the minimum error in a set of possible outcomes. In order to do

so, the algorithm takes the error in the output and calculates small adjustments in the input weights until

the error is reduced. Figure 5 shows a visualization of the ”hypothesis space” for a particular problem. The

two axes, w0 and w1 illustrate possible weights for some input, while the vertical axis, E, represents the

training error (the error experienced in the output from the training data). Notice the shape of the error

Figure 5: A visual representation of the hypothesis space for an arbitrary problem.

surface, or the plotted error values experienced when certain weights, w0 and w1 are used. This visually

shows the effects various weights have on the accuracy of the output. The key feature, though, is the
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minimum error, which will be achieved for some input weights. The gradient descent algorithm aims to

find that global minimum of E by modifying the weight value on the appropriate axis such that it descends

along the error surface until the minimum error is reached [23].

While the gradient descent algorithm is important in single perceptron networks, it is also useful as a ba-

sis for learning algorithms designed for large, multi-layer neural networks. Typically, multi-layer networks,

and networks with many neurons, use gradient descent, via the back-propagation algorithm, to determine

the weights of inputs (though other methods do exist). But there is an obstacle that is faced when finding

the appropriate weights in networks with a large number of neurons, and the obstacle is that of size; the

hypothesis space is vast in these types of networks. Recall the error surface and hypothesis space for the

single perceptron above. That was representative of one neuron with two input weights. It should be clear

how searching through a hypothesis space and error surface that depicts all potential weights for all of

the neurons in a multi-layer network is can be problematic. Another issue gradient descent encounters on

multi-layer networks is that of local minima [23]. The error surfaces for these networks can contain multi-

ple local minimums, since there are multiple outputs (one for each neuron or layer of neurons) and thus,

the error, E, is the sum of all of the individual outputs [23]. It is plausible, then, that the algorithm moves

towards one of these local minimums rather than the global minimum, as there is no way to decipher which

minimum is being descended upon.

An additional difficulty one faces with a multi-layer network is determining the error in the hidden

layers. In a single perceptron network, or even a single-layer network of any type, calculating the error is

easy, since the input is known and the direct output is known. The mistakes that are observed are clearly the

fault of a particular neuron. In a multi-layer neural network, however, there are hidden layers of neurons.

The outputs of these layers are unknown. Furthermore, the training data does not provide the information

necessary to assess the accuracy of these output, even if they could be retrieved [28]. Imagine a feed-forward

network with just two layers. Although we know what the inputs are and what the final outputs are, there

is no manner by which to explicitly observe the error in the output from the first layer, which is used as

input to the second layer of neurons. This is because that information is rarely, if ever, included the data; all

that is known is the final output, not any intermediate outputs. So in terms of adjusting weights, it is not
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evident whether the first layer made an error, which skewed the final output, or the neurons in the second

layer received correct information, but made a mistake that led to the ultimate error, or even if there were

inaccuracies in both layers of neurons. Depending on which of these scenarios is the case, weights will be

have to be modified differently. Yet, despite the complications I have just mentioned, back-propagation,

using gradient descent, appears to be practically useful and accurate in determining input weights.

2.3 Deep Learning

To put it simply, deep learning is a subfield of machine learning. The term ”deep learning” is just used

to describe algorithms of a certain structure. It is natural, then, for deep learning to share many of the

same principles and characteristics of general machine learning. However, the difference between a deep

learning system and a general machine learning system lies in the architectural differences between the

two. And naturally, these architectural dissimilarities have an effect on the approaches and applications of

deep learning machines.

In principle, deep learning is not much different from other types of data mining and machine learning

techniques. The overall goal and purpose of a deep learning program is to complete a task and improve

performance as the result of some experience. Just as with data mining tasks, the algorithms analyze in-

put and identify patterns and correlations within the raw data. Then, the algorithms apply those learned

relationships to new, novel input and produce some output that it believes to be accurate and correct. As

I stated above, these deep learning algorithms are structured differently than more tradition algorithms,

and therefore, can be utilized in different ways. Of course, deep learning machines can still tackle the same

problems as other machine learning algorithms, and with similar levels of success [3]. Yet, a unique aspect

of their structure allows them to be successful in other areas, such as vision and language processing in AI.

Deep learning systems are essentially larger implementations of artificial neural networks. More specif-

ically, deep learning systems differ from most other types of neural network-based machine learning sys-

tems in that the depth of these networks, or the number of layers and levels of single networks (comprised

of individual neurons), is great, thus yielding the name deep learning [3].

As I explained in the previous section, the development of artificial neural networks has been a major
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breakthrough in the field of artificial intelligence. Deep neural networks make completing particularly

difficult and complex problems in AI possible. The networks break down huge puzzles and large amounts

of information and handle them through multiple levels of abstraction [3]. When dealing with high-level

abstractions, such as face and hand-writing recognition, these networks are crucially important. Humans

do not yet have a great enough understanding of how the brain works to make it possible to explicitly tell

the computer which precise features are significant in each task [3]. In fact, it is unknown to researchers

exactly how, and what, the machines are learning, even though individual aspects of the algorithms are

understood. That said, machine learning researchers normally have an understanding that is substantial

enough to be able to point the program in the right direction. Yet, some researchers do not even provide the

computer with that information. For example, in the case of recognizing and classifying handwritten digits

and faces, Claus Neubauer simply used raw images (in some cases, the data was normalized by size and

shade) as input and allowed the algorithm and convolutional network to find the necessary patterns and

determine which particular aspects of the image were important [25]. Of course, this is perhaps an extreme

case of machine learning, but it illustrates the power of these networks.

But why has deep learning become popular? What explicit advantages, other than what I have already

alluded to, do researchers gain from using deep neural networks instead of the more traditional, shallow

networks? In essence, shallow networks of only one or two neuron layers do not provide the modeling

or representational power needed to solve complex, real-world problems. Deeper neural networks allow

computers to successfully accomplish high-level tasks, such as linguistic and visual processing. Consider-

ing the biological inspiration for neural networks and the fact that deep learning is simply an application

of neural networks, it is not surprising that the motivation for deep learning also came from biology and

neuroscience. Many processes that human brains complete with relative ease, such as vision and speech,

have been shown to be hierarchical in structure [11]. Deep neural networks have been designed with the

purpose of replicating this hierarchical structure and the behavior and capabilities of humans.

However, deep networks were not successful from their conception; the reproduction of human-like

neural structures and abilities was not achieved by simply adding more hidden layers. As the networks

grew larger, researchers were once again confronted by the issue of weighting. While the back-propagation
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was an acceptable and popular method for determining input weights in shallow networks, it proved to

be inadequate for networks with many layers. Recall the issue of local minima in the shallow, two-layer

network and the possibility of descending into a local minimum rather than the global minimum. As

hidden layers are added to the network, the number of local minima increases, and the likelihood of be-

coming trapped in a local minimum that is a poor representation of the overall error also increases [11].

This undesirable feature of using back-propagation and gradient descent on deep networks has had two

effects. The first is a general avoidance of using deep neural networks for machine learning. But I will

ignore this consequence, since my focus is on the use of deep neural networks. The second consequence

of the weight learning problem has been positive, and has led to the development of other strategies and

designs for learning. These new designs have been a recent breakthrough in artificial intelligence research,

as they have allowed machines to accomplish the high-level tasks mentioned above. Two well-established

and effective deep networks that have been used are Deep Belief Networks (DBNs), Convolutional Neural

Networks (CNNs). These designs, as well as most others that have been successful for deep learning, have

a shared driving principle: ”guiding the training of intermediate levels of representation using unsuper-

vised learning, which can be performed locally at each level [3].” This means that the network is trained

(the appropriate weights are calculated and adjusted) one layer at a time, rather than all at once as is the

case with back-propagation.

This type of weighting method was initially introduced in 2006 by Hinton, Osindero, and Teh [16]. The

team developed a type of deep recurrent network called a Deep Belief Network, which solved the problems

that back-propagation ran into with deep networks. As Figure 6 shows, DBNs are deep neural networks

with layers of Restricted Boltzmann Machines (RBMs), which is another type of neural network . This de-

sign choice means the problem of training a deep network is effectively reduced to the problem of training

an RBM [16]. These Restricted Boltzmann Machines are capable of unsupervised learning [3] by way of

Gibbs sampling [16]. As a result, the correct output does not have to be included in the training data, which

increases the applicability of DBNs. However, RBMs are not always capable of flawlessly modeling the

training data, that is, learning the ideal weights, so modifications must be made to the DBN to heighten

the accuracy of the network. Hinton et al. employed a greedy algorithm3 that trains the DBN one layer

3A ”greedy algorithm” is a type of algorithm that aims to solve the larger problem by solving smaller problems first. In other
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Figure 6: In this example of a simple Deep Belief Network, layers h3 and h2 represent the Restricted Boltz-
mann Machine. The links between the layers are non-directed, as the neurons find suitable weights accord-
ing to the weights in the other layer. The other layers, h1 and v are trained based on the model built in the
RBM.

at a time [16] [3] [1]. This algorithm trains the ”lower level” input-layer RBM in an unsupervised manner,

which yields a set of weight values. The output from the initial layer is then used as input for the next

layer, which is trained using an unsupervised learning algorithm. This is repeated until the entire DBN

has been initialized with weight values [3]. At this point, back-propagation can be applied to the DBN in

order to make the learning more accurate [1]. But in this case, back-propagation is more successful on deep

networks because each layer is already weighted relatively correctly. The probability of descending a poor

local minima is decreased because a particular weight is already close to optimal.

Not only does this method make learning on deep networks merely possible, but it improves efficiency,

as well. Applying back-propagation on its own can require thousands of iterations over the network. By

training each layer individually and using back-propagation after that initial training, rather than as the

words, an algorithm of this sort finds the best solution for the entire task by finding the best solutions for each sub-task in the order
that they are encountered.

22



initial training, the network does not need to be traversed over as many times. In fact, training on a Deep

Belief Network could, theoretically, be a one step process [1].

Another important type of deep learning structure is the Convolutional Neural Network (CNN). Like

DBNs, these networks are deep, multi-layer networks. But unlike DBNs, CNNs can be trained in a tradi-

tional manner, such as back-propagation [3], since they are feed-forward networks. As is characteristic of

neural networks, CNNs were motivated by biology, specifically, the human visual system [3] and its hier-

archical structure. It is natural, then, that CNNs have been applied to image and pattern recognition tasks

with great success. Convolutional Neural Networks are commonly composed of five to eight connected

layers of neurons, making training with random initial weights immensely difficult. Despite this difficulty,

CNNs have been generally successful in vision and image related tasks.

Figure 7: This Convolutional Neural Network pools the output of each layer such that the abstraction of
the original input image is greater in each layer. Therefore, the number of neurons necessary to represent
the image lessens as you traverse the network.

Convolutional Neural Networks rely on the principle of decreasing the number of learning parameters,

via filtering, in each layer of the network [1]. This reduction in the quantity of parameters results in fewer

connections between neurons, which improves the effectiveness of back-propagation training [1]. Gener-

ally, CNNs contain two types of neuron layers: convolutional layers and subsampling, or pooling, layers.

The basic idea behind CNNs is that neurons in one layer are associated with neurons from another layer.

Also, the neurons in a particular layer are representative of a certain area of the image; the location of
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the neurons is significant [3]. Output from each layer is pooled before being fed to the next layer of neu-

rons, where it is filtered, pooled and given to the next layer [20]. The specific method of pooling typically

changes depending on the project, as it is a feature designed by the researchers [1]. Figure 7 demonstrates

the pooling principle of CNNs. The abstraction level is increased in each layer, so the number of neurons

decreases.

And while it is not yet fully understood why CNNs are successful when more traditional deep networks

are not, there are a few hypotheses. One reason that CNNs do so well is the relatively low number of inputs

for each neuron. This would mean that the weight adjustments made during back-propagation would not

diminish over so many layers of neurons [3]. Another hypothesis, which could work in cooperation with

the low input hypothesis, is that the general hierarchical structure is well-suited for vision tasks. This is

supported by research that has shown CNNs with random weights in the initial layers perform better on

vision tasks than a fully-connected network that has been trained[3]. Further support for this hierarchical

hypothesis is biology; CNNs are based on the human visual system’s structure, so a replication of that will

probably work well for visual tasks.

As I have explained different and important concepts and architectures in deep learning, I will examine

the three theories of consciousness I mentioned earlier: the Multiple Drafts Model, physicalism, and Inte-

grated Information Theory. Although I will not explicit apply these theories to deep learning computers

until Chapter 4, the particular conclusions may become apparent over the course of the next chapter.

3 Theories of Consciousness

Sometimes, it can be frustrating to traditional scientists, as well as those new to philosophy, that topics in

philosophy are not as explicitly empirically testable as topics in physics or chemistry may be. The answers

to questions of testing new hypotheses and theories is often less clear-cut and defined in philosophy. And

so it should be of no great surprise that there is noteable disagreement about the answers to questions such

as, ”What is the nature of consciousness?” and, ”What makes some thing conscious?”

As we have seen in the previous chapter, there is substantial variation within deep learning, primar-

ily with respect to the architectures and structures of the networks. Deep learning, and machine learning
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in general, is comprised of distinctive algorithms, implementations, and motivations. In many ways, the

philosophical subject of consciousness is similar to deep learning. However, one of the differences between

the two lies in the testability of each field’s respective solutions. When developing a deep learning algo-

rithm or technique, and the subsequent deep learning program, one can assess the accuracy and correctness

of the program by simply applying it to some task, such as identifying faces in images or categorizes hand-

written letters. This can give the researchers immediate and definite feedback about whether or not that

particular algorithm or program is a good one. Unfortunately, philosophers are not lucky enough to expe-

rience such immediate justification. When discussing the nature of consciousness and what the necessary

properties of consciousness are, the process of checking the validity and truthfulness of the proposed an-

swers and theories is more difficult.

It seems natural, then, that new theories of consciousness have been developed and presented since the

topic’s conception, just as different deep learning algorithms and architectures have been developed and

presented. But while two philosophers may disagree about the plausibility or validity of some theory T ,

there have generally been no ways to resolve the disagreement and completely dismiss the T in the way

one could dismiss a poor network design in the field of deep learning. Thus, theories of consciousness

have continually been presented and modified without ever fully eliminating prior theories. And for that

reason, deciding on which theories to use to examine deep learning can be an arduous task. That said, let us

turn towards three influential theories of consciousness: a form of traditional functionalism [22] and Daniel

Dennett’s Multiple Drafts Model [12], Ned Block’s physicalist, ”hybrid theory of consciousness,” [6] and

Giulio Tononi’s modified functionalist Integrated Information Theory [32]. These three theories all attempt

to achieve the same aim of explaining consciousness, but they do so in interestingly contrasting manners.

Furthermore, they each carry unique implications about what makes some thing conscious. For the interest

of this paper, that thing is a deep learning computer.

3.1 Functionalism and the Multiple Drafts Model

It would be incorrect to say that functionalism is a single theory of consciousness. It would be more accu-

rate to view functionalism as a category or school of theories of consciousness. There are many different
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philosophical theories that share important characteristics, and perhaps these characteristics could be at-

tributed to some single view called ”functionalism,” but, in reality, each theory differs in enough significant

ways that it would be wrong to state that any given theory is functionalism, rather than stating that a

given theory is a functionalist theory. One particular thesis of this sort is Daniel Dennett’s Multiple Drafts

Model (MDM), which he has developed over the course of his career and most explicitly presented in his

book Consciousness Explained [12]. But in order to fully understand the Multiple Drafts Model, and how

it is a functionalist theory of consciousness, an examination of traditional functionalism, as a doctrine, is

necessary.

To put it plainly, functionalism is the view that mental states are just functional states [4]. Any mental

state, such as being in pain or seeing red, is equivalent to the functions and causal relationships that the

state has within a system [5]. That is, to say what it is to be in a certain mental state is just to say what that

state’s responses (outputs) to certain stimuli (inputs) are, in terms of the functional role of that state [22].

A common and simple example is pain. Functionalism maintains that being in a state of pain just is being

disposed to a state P such that P ’s relationship with other states is functionally equivalent to the pain states

that one would be in when in experiencing pain. Such ”pain functions” may include producing states of

anxiety, causing the person to stop and avoid the actions that are believed to cause the pain, or provoke a

the pained person into saying ’ow.’ Normally, mental states may differ in some ways, but are said to be

of the same type when they share the same functional properties. For example, the mental state of feeling

pain from stubbing my toe and the mental state of feeling pain from touching a hot pan may have different

properties specific to each pain, such toe vs. hand, low severity vs. high severity, dull vs. burning, etc. Yet,

there is something about both states that makes them both pain states. Functionalism posits that the shared

property between the two is a functional property [4]. Both states produce the same behavior and serve the

same functional role within the system that they occur.

Due to this principle of functionalism, a single functional state, that is, a state that describes a mental

state in non-mental terms, can be realized in more than one way [5]. The realization of a system is the manner

by which the system is constructed. A system S that honks a horn when it is hit with a bat can be realized in

various ways. S can be a series of pulleys and ropes, or it could be a series of hydraulic pistons and gears,
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or an electronic computer with an electronic G-force sensor, or it could even be a biological animal like a

human. In any of these cases, if we were to describe the mental state of pain as that state whose functional

role is honking a horn when hit, then, according to functionalism, all four of these different realizations of

S can be said to be in pain. Each realization of S produces the same output (honking a horn) in response to

the same input (being hit with a bat). Since functionalism characterizes the mental state of pain in terms of

these inputs and outputs, they can all be said to have the state of pain [5] [7].

This is, of course, an incredibly simplistic and vague explanation of functionalism, which some function-

alists may take issue with. But for the purpose of identifying the functional nature of Dennett’s Multiple

Drafts Model, I believe it to be sufficient. Even with such an unembellished functionalist view, one can

begin to imagine how one might prefer functionalist theories of consciousness, especially in the face of two

consequences of other views: liberalism and chauvinism. Functionalists commonly argue that liberalism and

chauvinism are undesirable ramifications of behaviorism and physicalism, respectively, that functionalist

theories avoid [7].

Liberalism is an objection functionalists generally have to behaviorism. Behaviorism can be seen as a

simplified version of functionalism that attributes mental states, such as pain, to any system that emits a

certain output when given a certain input [7]. This differs from the basic form of functionalism I outlined

above in that the system does not have to be the same, internally, to be in the same state. The issue function-

alists commonly have with behaviorists, and the point at which the two views diverge, is that behaviorism

tends to ascribe mental states to objects and systems that do not, and cannot, have mental states in real-

ity [7]. For example, imagine a great actor that can act in pain on cue. When he acts as if his leg has been

broken, it is entirely believable to observers; there is no discernible difference between the actor acting like

he broke his leg, and him actually breaking his leg. When tapped on his leg, the actor acts as if his leg has

just been broken. In this case, a behaviorist would say the actor actually is in pain, and thus, has a mental

pain state, since he behaves as though his leg is broken (which is considered painful by almost all people)

after it is hit. A functionalist would disagree, however. Functionalism maintains that the actor can only

be regarded as having a mental pain state when he both behaves as if he is in pain (produces cries and

moans) and has the appropriate internal desires and functions. In other words, the actor’s internal states

27



would have to react appropriately, such as nerve firings and a true desire to avoid further contact on his

leg. Without an internal desire to produce an output, a system does not have a certain mental property [7].

Similar to how functionalism deviates from the behaviorism on the basis of liberalism, it rejects pure

physicalism on the basis of chauvinism. Physicalism, in this sense, is the idea that all mental states, such as

pain or seeing the color red, are identical and equal to the physical state a system is in at the time of experi-

ence (again, this is a highly simplified description) [7]. The issue many functionalists have with physicalism

is that physicalism does not grant mental properties to systems that do, in the eyes of functionalism, have

mental properties (and minds), in reality [7]. Since functionalism relies on internal desires and mental states

to avoid the problem of liberalism, it makes sense that it would reject a theory that eliminates mental states

and internal desires.

But there is a problem here. How can a functionalist avoid liberalism and chauvinism simultaneously

and still offer a satisfying account of consciousness? It seems as though if a functionalist is willing to ac-

cept, and in fact, require, the existence of mental states in order to avoid liberalism, then in what capacity,

and for what purpose, does behavior and function matter? If internal desires and mental states are the

necessary factor in consciousness, then why not simply posit that? Likewise, if a functionalist is going to

evade chauvinism by appealing to the fact that mental states do exist and one cannot ignore them, then it

seems again that functionalism is ignoring function and behavior. In essence, functionalism seems to assert

that a system has mental states, and consciousness, when the system has mental states, and therefore, con-

sciousness. Anything else, or less, leads us to chauvinism or liberalism. So how this problem be reconciled?

Daniel Dennett believes that his Multiple Drafts Model can, either directly or indirectly, solve this issue

while retaining the key principles of functionalism.

Due to the great influence Rene Descartes’ idea of Cartesian dualism has had in the way we think of

the relationship between the mind and the body, we have a natural inclination to think of our perceptions

as being serial. That is, the sequence of experiences we have is the same as the sequence of ”arrival” of

the stimuli. The order that stimuli enter the system (our brain) is the same order that we experience the

stimuli. This idea relies on some central mark or boundary that stimuli must reach to be experienced.

Daniel Dennett refers to this view of how humans and similar systems process information the ”Cartesian

28



Theater.” This view of conscious experience remains persuasive and attractive simply because it seems

to us as though experiences and events occur in this manner in our daily lives [12]. But when the brain

is observed at the microscopic level, over an incredibly short period of time, the Cartesian Theater view

begins to run into trouble. Mostly, empirical findings suggest that a single, chronologically-based point in

the brain, through which all stimuli must pass in order to yield consciousness, is highly implausible, if not

completely non-existent.

A famous example is the ”phi phenomenon.” In this case, two dots are flashed in quick succession

and relatively close together in a patient’s visual field. Rather than experiencing two dots in two separate

locations on the screen, the patient experiences a single dot moving back and forth. And when the two dots

are of different colors, say the first dot is red and second is green, the patient experiences something rather

interesting. The patient initially experiences a red dot, which begins moving just as before. However, while

in the middle of its [imaginary] transit, the dot turns from red to green. The common question to this result

is, ”How is it possible for the patient to experience a color change before the second dot has been flashed?”

Under the Cartesian Theater view, this seems impossible without some predictive capabilities in the brain.

Therefore, the color change that is experienced must be experienced after the green dot has been flashed

and the patient has processed the green dot. However, Dennett believes this is wholly wrong, and to think

about a solution in such a way is incorrect. To do so, one would have to accept one of two theories about

consciousness and information processing: Orwellian and Stalinesque revisions.

The Orwellian revision method alludes to the Ministry of Truth of George Orwell’s novel 1984. Similar

to way the Ministry of Truth rewrote history and denied the truth of what actually happened, the Orwellian

method posits that our brains rewrite our memory and erase the old version of an event, so that we are not

aware that any revision has been made. In the phi phenomenon case, the patient would experience the red

dot and then experience the green dot. Realizing that the two experiences do not cooperate well enough,

the Orwellian mechanism would rewrite the experience to be that of a red dot moving and changing into a

green dot, and erase any memory of experiencing two separate dots [12].

In the case of a Stalinesque revision method, the brain simply creates and fills in an experience that

makes sense. The method, which hints at Joseph Stalin’s infamous show trials, advances the idea of a pre-
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conscious editor in the brain that receives the first experience of the red dot, then the second experience

of the green dot. Given these two experiences, the editor creates and inserts an intermediary experience

that connects the red and green dots, and sends the entire sequence of experience to the brain’s stream of

consciousness [12]. Despite the attractiveness or intuitiveness of either the Orwellian or Stalinesque revision

methods, Dennett concludes that we have no good reason to accept either of these theories of revision over

the other. The problem with both methods is the appeal to a time before awareness for revision to occur

and central point for consciousness for information to pass through. This means both revision methods are

grounded in the idea of the Cartesian Theater.

The Multiple Drafts Model rejects the Cartesian Theater model and replaces it with a model in which

the brain processes information and input in a parallel manner. Furthermore, the information is continually

available for editing and revision [12]. This parallel processing works in tandem with the idea that stimuli

are not immediately experienced; the interpretation of inputs takes some amount of time. During this

time, that is, between the initial arrival of the stimuli and the conscious awareness of the experience, the

information can be edited and changed. Another characteristic of the Multiple Drafts Model is that once

some input is processed in a specific location in the brain, the information is available to the entire system

and conscious stream. There is no central point the processed information must be sent to in order to enter

the stream of consciousness [12].

But where do we get our experience of consciousness from? How do all of these bits of processed input

and information yield a stream of consciousness? Dennett concedes that these questions are still open,

and MDM does not explicitly address these concerns. However, he does maintain that the collection and

availability of these information bits yields something that is like a single stream of consciousness, and that

the only reason it is not considered an actual single stream is its multiplicity; ”at any point in time, there

are multiple ’drafts’ of narrative fragments at various stages of editing in various places in the brain” [12].

Returning to the phi phenomenon, the Multiple Drafts Model does not appeal to any ”retrospective,

content creation.” There is nothing to ”fill in,” nor is there a time or space to do the filling in. The brain does

not construct new experiences in order to explain the real, ”old” ones. Instead, experiential information is

merely edited and the new edition is made available to the ”stream” of consciousness, thus, effecting sub-
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sequent behavior. In fact, it would be a waste of time and power for the brain to intercept every experience

solely for the purpose that it may have to be edited. The Multiple Drafts Model allows the brain to edit only

the information that is necessary to make sense of some experiences. If no editing is necessary, no time or

processing power is wasted [12].

Recall that one of the objections I raised to functionalism was that its relationship to the problems of

chauvinism and liberalism was peculiar. Dennett responds to this notion by arguing that the non-existence

of qualia, the term normally used to denote phenomenal qualities, removes it entirely from the discussion of

consciousness. Dennett takes ’qualia’ to simply mean the way things look, smell, feel, etc. By this definition,

qualia, in some sense, refers to our experiential mental states. But Dennett does not believe that qualia exist.

In philosophy, the discussion of qualia is normally a discussion of epiphenomenal qualia. The problem is,

the definition of ’epiphenomenal’ is that of being an effect, but having no effect in the physical world [13].

Thus, there is no way of identifying epiphenomenal qualia, for identification would require some effect that

is identifiable (additionally, identification would itself be an effect) [13]. When some person states that he

has epiphenomenal qualia, that he is experiencing some phenomenal qualities, he is saying this in spite of

qualia having no effect on him; there is no evidence, for himself or another person, that his experience has

epiphenomenal qualia. He would, and could, therefore, say he has qualia just in case that he does not have

qualia. It follows that qualia, and thus, mental states and experience, cannot play a part in the discussion

of consciousness because there is no evidence for, nor a way of determining, the existence of those states

and properties. All that remains are judgments that one’s experience ”has” qualia, and any functional or

behavioral effects that such judgments carry [13].

In this way, Dennett’s position seems to be closer to that of pseudo-behaviorism, in that he does not

believe qualitative mental states play a role in consciousness (in fact, he denies their existence altogether).

But he is not a true behaviorist, in the sense that he does not totally denounce mental states, or that their

perception can have some functional or behavioral role in consciousness. For Dennett, it is fine for a person

or system to have mental states and qualia, though Dennett would deny that a person or system could, for

such mental states and qualia are neutral in the discussion of consciousness. Dennett is far more concerned

with judgments of qualia, and the role such judgments have within a system.
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It should be clear how Dennett’s form of functionalism is exempt from the chauvinism vs. liberalism

problem that traditional functionalism faces. However, his claim that mental states and qualia do not exist

is not uncontroversial. One theory of consciousness that would reject Dennett’s qualia neutrality is Ned

Block’s ”Hybrid Theory of Consciousness,” which actually insists that qualia, and phenomenal properties

and experience, are an essential part of consciousness.

3.2 A Physicalist Theory of Consciousness

While functionalism may be attractive to some because of its more traditional and intuitive notions, such as

reliance on judgments about qualitative experience (this seems to be similar to the idea that consciousness

is ”awareness”), there are some philosophers that believe this is not all that conscious experience is; there

is something more to being conscious, namely, phenomenal experience, or qualia.

Take, for example, Ned Block’s ”hybrid” or ”mongrel” theory of consciousness (as he has not officially

named his theory, I derived this name from his description of consciousness for the purpose of this paper).

This is a theory that generally seems to challenge functionalism in its premises, conclusions, and implica-

tions, though it is not clear that the two theories are mutually exclusive. Block’s hybrid theory relies on his

assertion that consciousness, as we normally speak and think of it, is actually a hybrid of two forms of con-

sciousness: phenomenal consciousness (P-consciousness) and access consciousness (A-consciousness) [6].

In the past, it had been suggested that consciousness is simply experiential. When some thing, S, is said

to have consciousness, it means there is something that it is like to be S [24]. There is something it is like to

be each of us. I can imagine what it would be like to be you, have your experiences, think your thoughts,

etc. If there is no way to describe what it is like for S to be S, then we cannot say that S has conscious mental

states. This excludes certain objects, such as robots and basic organisms, from being considered conscious,

since we cannot imagine, or even attribute to them, a sense of what it is like to be them. But Block does not

agree that consciousness is purely this idea of subjective experience and ”what it is like-ness,” so to speak.

Instead, he accepts the basic premise that there is something that it is like to be a conscious being, and calls

that premise phenomenal consciousness [6]. In contrast to the Multiple Drafts Model, Block maintains that

judgments and functions do not sufficiently explain phenomenal consciousness and experience.
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As P-consciousness is roughly synonymous to phenomenal experience, it naturally follows that P-

conscious states are those mental states that occur when we have experiences, such as seeing, hearing,

tasting, and feeling sensations. Block wants to extend P-conscious states to also include those states that

relate to thoughts, wants, and emotions [6]. Whether or not such states should be considered P-conscious

states is arguable, but for the time being, I will grant Block their inclusion.

In the case of A-consciousness, forming a clear definition is not as easy and straightforward as it was for

P-consciousness. Just as P-conscious states are representations of experiential properties, A-conscious states

can be described as mental states that are available to a system’s rational processes. However, this availabil-

ity should not be confused with ”reportability” [6]. That is, a state can be an A-conscious state even in cases

in which the subject cannot report on any information. For example, a dog, which could be assumed to be

conscious to some degree, should not be deprived of having A-consciousness simply on the basis that he

cannot verbalize, or tell us about, the A-representation. While being able to report on an A-representation

may be the most practical method of concluding whether or not a subject is A-conscious, it is not the only

method. In the case of the dog, it seems clear that the dog does have A-conscious states when he is able

to recognize his owners or navigate his way around the house. Presumably, there are P-conscious states

that are representations of his experiences of his owners’ faces and the floor plan of the house (as well as

numerous other experiences). When he sees his owner, or turns a corner, an A-representation is ”accessed,”

thus providing the dog with the information he needs to perform the next appropriate action. A simplified

manner of thinking about A-consciousness is that it is loosely synonymous with the way people, includ-

ing Dennett, usually think of and use the term ’conscious.’ It is rather common to hear people attribute

consciousness to something or someone when that thing or person exhibits a sense of awareness. It is im-

portant not to confuse A-consciousness with the colloquial definition of the word conscious, but the two

concepts are similar enough that comparing them can provide a better understanding of A-consciousness.

So fine, there are these two forms of consciousness, A-consciousness and P-consciousness. But what

is the relevance of making such a distinction? Why is it insufficient to simply accept Nagel’s notion of

what consciousness is and chalk it all up to experience? The A/P distinction allows us to consider another

problem related to consciousness: how the mind is structured or realized.
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There are generally two sides to the debate about realizations of the mind. The biological view holds

that the actualization of a system matters in terms of the mind and consciousness. John Searle, for exam-

ple, could be seen as an advocate of the biological approach. He was of the opinion that an artificial thing

could think and be conscious only if it shared key causal and organizational characteristics that are found

in organic human brains [29]. His view, which was a physicalist view, stated that consciousness and inten-

tionality in thoughts and actions are derived from causal processes found in developed animal brains. It is

only through replicating the structure and processes of these (already assumed conscious) brains that one

could theoretically create a conscious, thinking machine.

The other view, denoted as computational, is one we are already familiar with, as it can also be called

behaviorism. To briefly reiterate, behaviorism regards consciousness in terms the production of output

based on some input. Similarly, information processing can summarize the computational view of the mind,

in that the mind can be characterized and explained by how information is handled. A computationalist,

or behaviorist, does not believe the structure or make-up of some thing has an effect on the presence or

absence of a conscious mind. Again, if system P performs and behaves in the same manner as a conscious,

”mind-having” being does, then P is said to be conscious; it does not matter if P is a human with an organic

brain or a robot with electric circuits. In relation to A-consciousness and P-consciousness, if A-conscious

states are the same as P-conscious states, then the computational approach would be correct. This would

mean that qualitative experience, P-consciousness, is nothing more, and is no different from, one’s ability to

use information in rational processes. However, if it is the case that A-consciousness and P-consciousness

truly are distinct from each other, then it would follow that the realization of the thing in question does

matter, for some realizations may not permit either A-consciousness or P-consciousness.

The natural question to ask at this point may be, ”Are access consciousness and phenomenal conscious-

ness distinct?” But I think it is equally important to question how we can determine if they are independent

or not. Ultimately, there are two ways one could go about this task. The first is to plainly examine and

identify any differences in the very nature and properties of A-consciousness and P-consciousness. The

second, perhaps a bit more difficult, is to establish and analyze instances of A-consciousness being present

without P-consciousness, or P-consciousness being present without A-consciousness, in the real world.
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One difference between the two forms of consciousness is that A-consciousness is functional, while P-

consciousness is not. That is, A-conscious states are identified by their role, or function, within some system.

If a mental state S is not used in reasoning or rational thought, then S is not said to be an A-conscious state.

P-conscious states, on the other hand, do not rely on such contingent use. A mental state S is P-conscious

just in case that S is a mental state with content ”inside” of it. S does not need to be used in the way that

it does in order to be A-conscious; S merely needs to exist at all (in fact, it is highly difficult to imagine a

mental state without any content or information).

Another dissimilarity between access and phenomenal consciousness is that P-consciousness can be

described as having a ”type.” There is something about an experience of pain, or hearing a violin, that

every other experience of pain or hearing a violin has. It is this property that makes a particular experience

an experience of pain or hearing a violin. This property can be labeled as a P-conscious type, and so, two

P-conscious states are of the same type when they share some intrinsic property or properties.

A-consciousness, on the other hand, cannot be said to have such types, or at least, there is only one type

of A-consciousness: A-consciousness itself. When a state or representation X is said to be A-conscious, it is a

result of the fact that X is being used in rational thought and behavior at the time T 1 that X is being labeled

A-conscious. It could be the case that five seconds later, at time T 2 , X is no longer being accessed. At

time T 2 , X is no longer A-conscious. Analogously, when one uses a hammer in construction, the hammer

has the property of ’usefulness;’ the hammer is in a ”useful state.” And when one uses a saw, that saw is

also useful, and thus, in a ”useful state.” While both tools are useful, it would be wrong to claim that they

are the same kind of useful (e.g. cutting things and hammering nails). Yet, they share the same property

of ’usefulness.’ A-conscious states, then, may be accessed differently, and be representationally different,

but the fact that they are being accessed at all, in some way, makes them A-conscious states. Ultimately, it

would be incorrect for one to say either that P-conscious states only come in one flavor, P-conscious, or that

A-conscious states come in various forms (to illustrate the falsehood of such a claim, I cannot think of two

different forms of A-consciousness to use as an example).

But maybe there are people that do not find these differences to be entirely satisfying. Perhaps, they are

much more convinced by real, non-theoretical examples of the A/P distinction. Fortunately, such examples
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can be provided. Let us first consider A-consciousness without P-consciousness.

There is a phenomenon called blindsight that occurs when a subject has experienced brain damage that

affects his visual processing. As a result, his visual field contains blind spots. However, the interesting

aspect of blindsight is that patients are capable of accurately ”guessing” what has been flashed in those

blind spots, despite not being able to actually see anything. Now, this regular blindsight situation is not

an example of A-consciousness without P-consciousness, since there are no states that can be said to be

A-conscious. Whether or not there is some state that is a representation of the information in the blind spot,

the patient is unaware of such a state and, as far as he is concerned, he is simply making a guess about what

is there. There is no state that is intentionally being accessed for the purpose of determining what is in the

blind spot. Furthermore, there is no P-conscious state either. Since the patient cannot see in the blind spots,

there is no experience of seeing something in the blind spots, and therefore, no phenomenal information.

This absence of P-consciousness helps to explain the absence of any A-consciousness, since the patient’s

rational faculties clearly are not able to use information that does not exist; there is no information to be

made available.

But now consider something similar to blindsight where the patient is somehow able to realize there is

something in his blind spots that he is not seeing and therefore, makes a guess, with the same amount of

accuracy, about what is there. Block calls such a situation superblindsight. A superblindsight patient would

suddenly become aware that there is something in front of him that he is not seeing, and would proceed

to make a guess about what it is, much in the same manner as a regular blindsight patient. This sudden

awareness is not explainable in phenomenal terms, since there is still no visual experience, but there is now

A-consciousness. The patient somehow knows that there is information he is not experiencing visually, and

that perception of missing information is A-conscious, as it is available to, and used in, his rational decision

to make a guess about what is in the blind spot.

Perhaps, in an attempt to deny any independence between A-consciousness and P-consciousness, a

functionalist could object to this superblindsight scenario on the grounds that it does not exist, which Block

admits. It could be true that the reason superblindsight does not exist in reality is due to the fact that it

is not possible, and the impossibility is due to the fact that A-consciousness and P-consciousness are not
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actually distinct concepts, but instead, forms of the same concept. It seems rather ad hoc for Block to admit

that blindsight, which is a real phenomenon, does not constitute an example of A-consciousness without

P-consciousness, and for us to present an example of A-consciousness without P-consciousness, we must

imagine a situation that does not actually occur.

Block, and other advocates of the A/P distinction, may have a response to this objection that is similar to

an argument for immaterialism. They could state that the mere fact that we can imagine superblindsight is

that A-consciousness and P-consciousness are conceptually different; there is nothing that prohibits us from

being able to imagine one occurring without the other. There is no logical inconsistency or impossibility

that prevents us from thinking about one without the other, and so there is no logical necessity between the

two. But another way of responding to the objection to superblindsight is to avoid the problem altogether

and turn to an example of P-consciousness without A-consciousness that has empirical backing. Hopefully,

an example of this type will be more convincing to those hesitant about accepting the A/P distinction,

which would ultimately refute the idea that perceptual experience is vital in consciousness.

While Block believes it is helpful to imagine a scenario in which a conscious being’s rational capabilities

have been removed as the result of brain damage, there is actual empirical evidence of P-consciousness

without A-consciousness. The first piece of evidence that can be presented comes from the observation of

neural activity in the presence of visual stimuli. Experiments on patients show that stimuli of a short time

duration or of weak enough strength, invoke neural activity without the patient’s awareness of any such

stimulation [34]. In other words, there is some sort of experience of the visual stimuli, as evidenced by

the brain’s response to it, but there is no knowledge or consciousness (in the colloquial sense) of it. Recall

that P-consciousness is experience and A-consciousness is (roughly) awareness of experience or availabil-

ity in rational processes. In the case just mentioned, there is a response to the visual stimuli in the brain,

which would suggest P-consciousness4. The brain, though perhaps not the mind, is having an experience

of seeing something, and there is a corresponding brain state in which the stimuli were seen. Remem-

ber, for a physicalist like Block, two physically identical brain states represent the same conscious state.

However, the absence of any awareness of the experience suggests that the patient showed no A-conscious

4The fact that the brain responds in the same manner in this case and cases when the person knowingly experiences the vision
indicates that there is some type of phenomenal information being processed in the brain
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state, nor is there any chance of A-consciousness. If there was an A-conscious state, one that was available

for rational thought and cognitive activity, then the patient would have been able to confirm that he had

seen the stimuli. There are two potential explanations for this unawareness. The first is that there was a

stimulus-representation state created, but this was inaccessible. The second is that no such representation

ever existed. In either situation, there was no A-consciousness. And it appears as though it is true that

P-conscious states are created independently of any A-conscious states, thus, P-consciousness is separate

from A-consciousness and the A/P distinction holds.

This example is in some ways more satisfying than the blindsight and superblindsight examples. Pri-

marily, it is based on tested experiments and empirical evidence rather than conceptually debatable thought

experiments. It seems safe to conclude, based on the evidence above, that the A/P distinction is true. But

where does this leave us in terms of determining the most plausible theory of consciousness? As I men-

tioned above, the A/P distinction would imply functionalism to be conceptually false, so perhaps we can

rule out functionalism to be a viable theory of consciousness. I will not make such definite conclusions at

this point, but it should be noted that functionalism, in its simplest conception, might be untrue.

Still, all we have done up to this point is show that these ideas of access consciousness and phenomenal

consciousness do not denote the same thing. How does this distinction form a theory of consciousness as a

whole? Remember, Block believes consciousness is a mongrel concept; it is comprised of different forms of

consciousness, the two primary ones being access and phenomenal consciousness. Something is generally

only considered conscious when the various forms are presented together as a cluster. When one or more

is missing from the cluster, especially P-consciousness, consciousness as a whole seems to be missing. For

example, when A-consciousness is missing, as is the case with Freudian states and desires, we normally

think of those states as unconscious states. And when P-consciousness is missing, in cases like blindsight

(and superblindsight), it is not natural to attribute consciousness to those states either. Consciousness, as

we think of it, typically arises in a subject when both A-consciousness and P-consciousness are present and

when they interact with each other.

Must we accept this notion of consciousness merely because of the A/P distinction? Perhaps we do

not. Perhaps the A/P distinction can be true regardless of the veracity of the idea that true consciousness
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arises when A-consciousness is accompanied by P-consciousness. Without elaborating excessively on such

an objection to the Block’s ideas, one could argue that attention, that is, awareness and mental access, is in

fact a phenomenon of consciousness, rather than an integral player [30].

Attention and A-consciousness are roughly interchangeable terms. Attention is functional much in the

same way that A-consciousness is functional. In cognitive activity, attention’s function is to ”make informa-

tion accessible for use in the rational control of thought and action” [30]. The similarity to Block’s concept

of access consciousness is clear, as A-consciousness is responsible for making information available and ac-

cessible to rational processes [6]. However, while Block asserts that attention, or A-consciousness, is a part

of the more general concept of consciousness, other philosophers, such as Declan Smithies and William

James, believe that attention, or A-consciousness, is a phenomenon of consciousness, similar to other phe-

nomenons such as pain and guilt. Phenomena like pain and guilt are known to conscious beings through

experience, yet the concepts are difficult to define in terms that are anything more than examples. Sim-

ilarly, conscious beings are aware of attention, but often have a tough time explaining exactly what it is

(Block even spends a portion of his paper discussing the difficulty he has in explaining and defining A-

consciousness). This struggle arises in part because of our misunderstanding of what attention truly is.

Some believe attention is essentially a focalization or modification of our stream of consciousness [19] [30].

By this definition, attention is what makes information accessible in thought and cognitive activity, thus

making attention a mode, or employment, of consciousness. In other words, attention, like pain, is a phe-

nomenon of consciousness, not a part of consciousness. The implication is then that consciousness can

exist with attention, but attention cannot exist without consciousness. In regards to Block’s theory of con-

sciousness, it may be true that A-consciousness and P-consciousness are distinct, but it is not necessarily

true that some thing is not conscious when missing one of those two forms of consciousness (in this case,

A-consciousness). This objection may not be entirely sufficient in refuting the hybrid theory, and it does not

do much in terms of restoring functionalism as a viable theory, as it seems to imply consciousness is more

closely tied to experience than the hybrid theory does. But it at least raises questions about the assertion

that multiple forms of consciousness are necessary for us to consider a subject as being conscious.

Regardless of the conclusiveness of this objection to Block’s view of consciousness, let us focus on a
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fundamentally different theory. Integrated Information Theory is a theory of consciousness that starkly

contrasts with Block’s ideas and is more closely tied to functionalism.

3.3 Integrated Information Theory

While consciousness has been discussed primarily within philosophy of mind and psychology, recent sci-

entific advances have expanded the scope of the conversation to include biology and neuroscience. The

findings of many experiments in biology and neuroscience have shaped our understanding of the brain

and its role in consciousness. Naturally, this scientific evidence has prompted the formation of new the-

ories of consciousness. Additionally, the extension of the discussion of consciousness into more scientific

and empirical fields has stimulated non-philosophers’ interest in theories of consciousness. One example

of a recent theory of consciousness, grounded primarily in neuroscience (as well as some mathematics), is

Giulio Tononi’s Integrated Information Theory (IIT). This theory, which seems to rely on philosophical ideas

akin to functionalism and materialism, explains consciousness by appealing to two measurable concepts:

information, and a system’s integration of that information.

At face value, Integrated Information Theory is simple and straightforward. Ultimately, IIT asserts that

consciousness essentially is a system’s ability to receive and process information, and the extent to which

that information is integrated within the system [32]. The level of consciousness in a system, that is, the

quality of the conscious experience, is provided and shaped by the relationships between informational

complexes (a notion I will explain below) in the system [33]. And of course, the bases of this conscious

experience are two crucial aspects mentioned above: information and integration.

When Tononi speaks of information, he does not mean just anything; in fact, his idea of ”information”

is quite specific. In everyday life, ’information’ is used to denote data or details. The characteristics and

properties of what people experience are referred to as information. Integrated Information Theory does

not completely dismiss the traditional or colloquial meaning of ’information,’ but it is concerned with a

particular aspect of it. Tononi defines information as being the ”reduction of uncertainty among a number

of alternative outcomes when one of them occurs” [32]. In other words, information signifies and represents

the number of representational alternatives are not the case. As the number of possible outcomes increases,
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so does the amount of information. For example, a simple coin toss will yield one bit of information, since

there are two total outcomes of the coin toss, and one alternative outcome to the actual one. Thus, the

amount of information in some event can be calculated mathematically using the entropy function, or the

logarithm of the number of alternatives. In the coin toss case, there are two possible outcomes, heads or

tails, so there is log2 2 bits of information, which, again, translates to 1 bit of information [33]. When it

comes to our everyday experiences, the amount of information is immensely high.

Consider the apparently simple case of determining whether or not a screen is light or dark, where

”light” means the screen is showing pure, white light, and ”dark” means the screen is off. When the screen

turns on, we, as humans, are easily able to determine that it is light. But while this may seem like an

elementary task, the amount of information is actually quite high. This is due to the number of possible

outcomes that we must discriminate against. The light screen that we do see is different from a light screen

that is fully colored blue, or that is showing a picture of a tree. The screen can show an astonishingly high

number of alternatives, all of which we are capable of distinguishing between, and all of which would

prompt us to deem the screen as being lit up. Thus, the light screen carries with it a high amount of

information.

Compare our situation to that of a photodiode, which can only distinguish between light and dark in

a strictly binary sense. Regardless of whether or not the screen is showing blue or red or a picture of a

tree, the photodiode is only capable of distinguishing between light and dark, or on and off. As far as the

photodiode is concerned, there are two possible outcomes, light and dark. Therefore, the same screen has

only 1 bit of information for the photodiode, but a large amount of information for the human. Integrated

Information Theory seems to imply that the more specifically a system can discriminate one alternative

from another, the more information that system is receiving. It is important to note that this ability to

discriminate between outcomes is related to the specificity of the system’s representations of the outcomes.

That is, if there exist a difference between a system’s representation A of a tree, and representation B of the

same tree without a leaf, then the system can discriminate between those two outcomes. When a system’s

representational power increases, its discriminatory power increases, and the level of (potential) conscious

also increases [33]. However, there is another, perhaps more important, component of consciousness that
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must be taken into consideration: the integration of the information.

The information facet of Integrated Information Theory is not of much interest. Few people, if any,

would argue that a photodiode, or other system that is capable of distinguishing between only two possible

experiences, is in any way conscious. For IIT, the true origins of consciousness lay in a system’s integration

of information. A system experiences consciousness only when the system integrates information in a way

such that subdivisions of the system are not able to integrate the same information independently of each

other [32]. In other words, a system has conscious experience when the level of interdependency between

parts of the system is high.

Take, for example, a camera with a sensor chip comprised of millions of photodiodes, each one similar

to the photodiode in the above example. Since each photodiode can distinguish between two alternative

states, light and dark, there are millions of separate states that the camera, as a whole, can distinguish

between (increasing the number of photodiodes would exponentially increase the number of distinguish-

able states, hence, the more megapixels in a camera, the higher the specificity of the image). However, the

camera is not considered conscious because each photodiode is causally independent of the other photo-

diodes in the sensor chip. Thus, we can consider the chip to be a ”collection of one-million photodiodes

with a repertoire of two states each, rather than a single integrated system with a repertoire5 of 21,000,000

states [32]. Humans, on the other hand, cannot be deconstructed in such a fashion. The manner in which

human brains are structured and integrate information does not allow us to redefine the brain’s repertoire

of states as the combination of individual brain parts’ repertoire of states. That is, we can not say the brain’s

(a single integrated system) repertoire is equal to a collection of all of its individual neuron’s repertoires

(similar to each photodiode’s repertoire of light and dark). While we can deconstruct a camera’s image

into pixels corresponding to individual photodiodes, we cannot deconstruct an experience of a tree into

bits that correspond to individual neurons; there are causal processes between neurons that result with the

entire experience of a tree [33]. Furthermore, we cannot deconstruct the entire experience of a tree to just

the visual, audial, or olfactory characteristics. The entire experience is comprised of them, but cannot be

reconstructed by any fewer than all of them.

5Here, ’repertoire’ refers to a system’s collection of distinguishable outcomes. A photodiode, then, has a repertoire of two states, as
it can distinguish on from off, while a human has a enormously large repertoire, as it can visually distinguish colors, shapes, shades,
sizes, etc.
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It is worth noting that Integrated Information Theory is not suggesting that a physicalist, or a materialist,

account of the mind is false. In fact, IIT does just the opposite. It supports, as well as relies on, a materialist

view of the mind. Materialism is the idea that all mental states and processes, i.e. the mind, can be explained

by the physical, or material, states and processes of the system, e.g. the human brain. It may appear

as though IIT denies this claim about the mind when it states that human experience and information

integration cannot be deconstructed down to the individual components of the brain, but this statement

should not be confused with opposition to materialism. All is meant by this claim is that the particular

state that the system is currently in, or state being experienced, cannot be reduced to components and

elements that do not depend on the other components and elements of the system [26].

Now that the concepts of information and integration have been defined, and the effects that each con-

cept has on consciousness has been outlined, there are two potentially important issues that need to be ad-

dressed. The first is the problem of how information integration yields consciousness, rather than merely

indicates it. And the second concern is how we determine which systems are conscious. That is, which

systems integrate information in such a way that they are considered conscious systems.

Questioning Integrated Information Theory’s ability to explain just how integrated information is con-

sciousness is legitimate. Early versions of IIT avoid this problem by only claiming that consciousness only

corresponds to integrated information [32]. But more recently developed and modified editions of Integrated

Information Theory seem to suggest that consciousness is, in some way, the integration of information.

These versions of the theory are the ones that could be targeted by the question at hand.

However, it appears as though there is no clear answer to this problem. The objection that there is

an explanatory gap between integrated information and consciousness is equally true for many materi-

alist theories of consciousness. Just as there is an explanatory gap between information integration and

consciousness, there exists one between physical brain parts and consciousness6. But, IIT comes as close

as it can to bridging that gap by asserting that experience is modal, and different modes of experience

correspond to subsets of mechanisms and information integrating subsystems. Also, there are elementary

experiences, like those of pure, primary colors, or pain, that cannot be explained in terms that are not merely

synonyms or examples. This is not necessarily a flaw of IIT specifically, it is simply a challenge that many,

6This is not necessarily true for all materialist and physicalist accounts of consciousness
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if not all, similar theories of consciousness face. In IIT, such elementary experiences correspond to equally

elementary subsets within the system being considered. In fact, it looks as though Integrated Information

Theory may come a step closer to linking consciousness and physical properties than other, more general,

materialist and physicalist theories of consciousness.

Amazingly, neuroscientists have been able to identify which neurons are responsible for particular ex-

periences, such as feeling anxious. Unfortunately, they are still unable to offer a satisfying response to the

questions of why or how that neuron, or group of neurons, gives rise to the experience that it does. Inte-

grated Information Theory is at least able to state that that neuron, or group of neurons, integrates particular

information in a manner such that [phenomenal] consciousness arises and the elimination of the neuron,

or group of neurons, would destroy such consciousness. So while Integrated Information Theory’s con-

clusions may not be wholly satisfying to any explanatory-gap-objectors, it can at least give them this new

evidence and point them in the direction of the larger materialism debate, which I do not wish to address

at length in this paper.

The second worry one may have concerns the way by which an Integrated Information Theorist deter-

mines whether systems are conscious or whether they are unconscious. Due to the fact that IIT describes

consciousness in mathematical and quantitative terms [26], and those quantitative terms yield qualitative

experience, the quality, or level, of consciousness in a system can effectively be measured and calculated.

This calculation of consciousness appeals to the measurement of information, as discussed above, as well

as the measurement of a system’s integration of that information.

As I outlined earlier, the amount of information represented by a particular state S is related to the

entropy of S. But that is only a minimal description of information, and not one that is practical to use in the

calculation of a system’s consciousness. Instead, consciousness should be said to be impacted specifically

by effective information. The amount of information in a system’s state is not simply the number of possible

states it can distinguish between, but instead, the number of states that are causally integrated within the

system. In order to determine the amount of effective information in a particular system, one can examine

the relationship between two partitions, A and B, of a system X, where B = X − A. By replacing A with

A’s maximum entropy, that is, the number of individual states that are equal to the states represented by
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A, the entropy of B can be derived7. The effective information of X from A to B is equal to the the amount

of information shared between partitions A and B. The fact that A is nothing more than a collection of

individual states means that any information B shares with A is the result of ”causal effects of A on B” [35],

and not any effects of B on A. As the causal connection (integration) between A and B increases, so does

the effective information from A to B; different outputs from A will produce differences in the processes

and outputs of B [32]. Similarly, effective information from A to B will be low or zero if there is a minimal

or non-existent causal connection between A and B. The effective information for the system X, comprised

of partitions A and B, is thus the sum of the effective information from A to B and from B to A, where

A and B are the partitions that yield the lowest amount of effective information. This minimum amount

of effective information, for a system X, is known as the Φ of X, and represents X’s capacity to integrate

information [32] [33] [35].

The assessment of Φ of a system X is as follows: if Φ of X is zero, then X is not capable of integrating

information. Since there is no effective information in the bipartition of A and B, both A and B must be

causally independent, non-integrated subsystems. This is evident in the case of the 1, 000, 000 photodiodes

in the camera. Since the photodiodes are independent of each other, in that changing the states of one or

more the photodiodes has no effect on the states of the other photodiodes, there is no effective information

between partitions, and no information is integrated in the camera sensor (the system as a whole) [32].

Recall that under Integrated Information Theory, consciousness is related to the information integration

capabilities, or Φ, of a system’s complexes. Basically, a complex of a system is a subset of that system with

Φ > 0 that is not part of another subset with a higher Φ [32]. The relationship between a system’s complexes

and the consciousness of a system is such that only complexes can integrate information. Elements of

a system that are not contained within a complex cannot contribute to consciousness, even if they interact

with elements in a complex. For example, while a human’s stomach may interact and exchange information

with a human’s brain, the stomach does not contribute to a human’s consciousness, since it is not part of a

human’s main complex [32].

Surely, there are objections to Integrated Information Theory. One, which I already addressed, was the

7In the case of a one megapixel camera’s sensor chip, imagine A as representing half of the sensor chip X. In order to calculate the
entropy of B’s responses, A can be replaced with 500,000 individual photodiodes
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explanatory gap objection. On this objection, IIT does not sufficiently explain why consciousness corre-

sponds to information integration, only that it does correspond with it. To reiterate, this no more of an

objection to IIT as it is an objection to materialism, in general. Secondly, with such a strong reliance on the

inputs and outputs of mechanisms, and the relationships between subsets and complexes of a system, it

seems as though Integrated Information Theory may be susceptible to the same objections that have been

presented against functionalist accounts of consciousness. Initially, it seems as though IIT is only concerned

with how a system handles inputs and produces outputs. This is true, but not in the same way as it is true

in traditional functional theories of consciousness. Integrated Information Theory is not concerned with

the mere functional states of a system or subsystem. According to IIT, the functional role of a particular

state is important, but not necessarily because of its functional role. True, functional states are essential to

consciousness in a manner similar to functionalism, but they are perhaps more important in a different way.

In IIT, the function of two states does not have to be identical for them both to be considered conscious. In-

stead, they only have to integrate information similarly. The functional role of a state may change between

systems, but if they both integrate information to the same degree, they are both conscious.

By the definitions and key principles of Integrated Information Theory, an incredibly simple system,

such as a single photodiode, could theoretically be conscious [26]. However, any photodiode would not

qualify for experiencing consciousness; the structure of the photodiode is essential to its consciousness. A

photodiode consisting only of a detector and output, the behavior of which is determined only by external

inputs (light), is not considered conscious. The reason for the photodiode’s unconsciousness is the fact that

the detector’s response to the external input is passed on as the system’s output. The detector’s response

does not ”come back into” the photodiode’s system. Therefore, the detector and output do not have both

causes and effects within the system, and thus, they do not constitute a complex and produce qualia [26].

On the other hand, a photodiode that functions in the same way, that is, produces the same output for

the same input, but is structurally different can be conscious, although minimally so. Imagine a photodiode

consisting of the same detector, but also includes some predictor, such that the detector responds to both

external inputs and inputs from the predictor. As the detector receives the external output, it sends a signal

to the predictor. The predictor receives input from the detector, then passes a response back to the detector
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such that the detector’s response to the external input is causally affected by the predictor’s information.

When the photodiode is structured in this way, then the system is an informationally integrated complex

with Φ > 0, making it a minimally conscious photodiode [26]. While traditional functionalism would

classify both photodiodes together, thus making them both either conscious or unconscious, IIT allows for

differences in the assessment of their levels of consciousness.

Now that I have outlined and examined three current theories of consciousness, as well as deep learning

algorithms, we are in the position to investigate the primary goal of this paper: determining whether or not

a deep learning computer is capable of being conscious. To do this, I will analyze deep learning systems

through the lens of each theory of consciousness, inferring each particular theory’s position on the conscious

of a computer. Then I will decide which theory is most plausible, either conceptually, empirically, or both,

and the consequences of accepting one of the theories.

4 Are Deep Learning Computers Conscious?

Based on the previous two chapters, it should be clear that answering the question of whether or not deep

learning computers are conscious is not straightforward and simple. The reason for this uncertainty is

due to the fact that accepting different theories of consciousness results in different conclusions about deep

learning computers’ potential consciousness. In order to make this inconsistency more explicit, I will infer

each theory’s verdict on the topic of consciousness in deep learning computers.

4.1 Applying Theories of Consciousness to Deep Learning Computers

Recall from Chapter 1, that I seemed to dismiss the idea of machines as thinking, intelligent things. I im-

plied that deep learning computers do not learn in the same sense that people do. But is that so? Is it not the

case that we are just following a set of rules, or traversing a decision tree at immense speeds and sometimes

without our immediate, perceptual knowledge? Could it be that brains and computers are structured in a

similar manner, in that they both function in this way, and thus, consciousness could also be shared between

organic and artificially constructed things? Ultimately, the answers to these questions, as well as the prin-
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ciple question, ”Are deep learning computers conscious?”, vary depending on the theory of consciousness that

one accepts; and such is the case with the theories mentioned above: physicalism with the A-consciousness

and P-consciousness distinction, the Multiple Drafts Model, and the Integrated Information Theory. The

general problem that these different theories aim to answer and solve is whether a computer, which has

different physical structures and states from a conscious being, but nonetheless functions in the same or

similar manner, is conscious? In other words, is consciousness reliant on functionality or physicality? Let

us examine the conclusions that proponents of each theory above would reach with respect to deep learn-

ing computers (for simplicity, I will first examine more elementary networks, such as the single perceptron

model, then extrapolate to more complex neural network models).

When people are asked to define consciousness and state the requirements of a conscious system, a tra-

ditional and common answer is along the lines of ’awareness’ or ’rationality.’ And this seems to be a natural

and intuitive idea. After all, people believe they are conscious and they possess both of those characteris-

tics; it is what seems to separate us from other animals, so to speak. Dennett, more or less, agrees with this

notion of consciousness. Recall that Dennett believes consciousness relies primarily on the judgments that

a system makes about qualia and the behavior that the system exhibits as a result of that judgment [13]. To

recapitulate his line of argument, qualia, in philosophy, are epiphenomenal in nature. This means, by the

definition of ’epiphenomenal,’ that qualia represent the effects of physical states, but do not produce effects

on the physical world. As a consequence, any epiphenomenally qualitative mental state cannot, by defini-

tion, influence behavior (or consciousness). All that can be considered in the discussion of consciousness

are judgments about qualia, and the functions generated by those judgments. There is no reason to believe

that qualia, rather than judgments about qualia, play any significant role in consciousness [13].

So how does this view translate to consciousness in deep learning computers? Well, simply, it means

that deep learning computers are conscious, so long as they make accurate judgments and their states play

the appropriate functional role in the system. For Dennett, and others that are sympathetic to the Multiple

Drafts Model, there is no significant difference, in the context of consciousness, between a deep learning

computer and another healthy person (which is normally deemed conscious). There is no consequence for

the fact that a computer represents an image using electricity and voltages, instead of chemical reactions,
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because qualia are not existent in either system.

In a deep learning computer, whether it is using a feed-forward or a recurrent network, the necessary

core principles of the Multiple Drafts Model are present. First, a conscious computer must behave as if

it is conscious. This means, in the context of some input, the computer must produce the appropriate

output. For example, when a deep learning computer is given a picture of a cat as input, the behavior

and judgments it makes should be of the sort that a person would have, such as stating, ”That’s a cat.”

This sort of judgment, presumably, would be equivalent in both the human and the robot due to the equal

discriminatory abilities in both systems. The computer’s judgment is evidence of a comparable level of

power in differentiating between objects to that of a [conscious] human [14].

The other feature of conscious beings is the continual availability and revisability of information. Deep

learning computers satisfy this criterion as well. Remember, Dennett’s notion of being able to revise in-

formation does not refer to knowingly or willfully revising it (though it could). In his illustrative phi phe-

nomenon example, the brain revises information about the two dots in order to make sense of it, and this

revision is done without the subject’s knowledge. Deep learning computers are similar. In fact, continual

revision is how deep neural networks work! When a computer learns with an artificial neural network,

input weights are repeatedly changed and updated so that the computer can become more accurate and

productive in its task. In essence, the network is creating multiple drafts of representations of the data. For

each different input weight in the neurons of the network, the input ”looks” different, and so the overall

response or output would change. In the phi phenomenon, the original draft represents two separate dots,

and the second draft represents a line. As a result of the revision and multiplicity of the drafts, our judg-

ment changes from judging that two dots were seen to judging that a line was seen. In a neural network,

changing the weights, i.e. revising the drafts, changes the network’s judgments about the input. It seems,

then, that deep learning computers satisfy this criterion of having multiple, revisable drafts, as well.

Furthermore, information in the brain is shared and accessible between modules, and this is what leads

to conscious experience. Likewise, information from one process is available to other processes in deep

learning computers, so long as the connections are there to make that possible, which is a necessary compo-

nent of information’s availability in the brain, too. In deep learning networks, information is passed from
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neuron to neuron and layer to layer, much like information is shared between brain neurons and brain

modules. Altogether, deep learning computers are working like conscious systems in order to act like con-

scious systems. And since qualia have been removed from the discussion of consciousness and replaced

with judgments about qualia and functions resulting from those judgments, deep learning computers are

conscious, and would have a stream of consciousness just as humans do, according to the Multiple Drafts

Model.

But remember that the Multiple Drafts Model is only one type of consciousness theory. While Den-

nett denies that consciousness is truly anything more than functional states associated with qualitative

judgments, physicalists, such as Ned Block, believe there is something more to consciousness than simply

functions. The key difference between a conscious and unconscious thing is the existence of qualia, or in

Block’s terms, phenomenal consciousness.

Physicalist accounts of consciousness, in general, state that the physical states of a system are, rather than

are correlated with, conscious states [31]. This means that a system is only considered conscious when the

physical state of the system is identical to the physical state that another conscious being is in. Or in other

words, every conscious state that a system is in at time t is identical to and explainable by the physical state

that system is in at time t. Some physicalists, like Ned Block, believe these physical states, and therefore

conscious states, include qualitative, phenomenal states.

Ned Block’s physicalist account of consciousness, as explained above, asserts and relies on two prin-

ciples of consciousness. The first is that conscious states, the states that make some thing conscious, are

purely the physical states of that thing. The second characteristic of consciousness that Block presents is

that there exists a distinction between two forms of consciousness: access consciousness and phenomenal

consciousness, which both comprise consciousness as it is commonly thought of. As a result, Block, and

other physicalists that share his views, would maintain that computers are not conscious in the way that

other systems, like humans, are. The key component of consciousness that computers do not have, accord-

ing to Block, is P-consciousness, or phenomenal experience. Block asserts that computers do not have the

important part of consciousness, which is qualia [6]. When a deep learning computer performs some task,

it receives input, processes it, and produces some output. This, in principle, is the same as how humans
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function. However, Block would argue that the type of input, as well as the realization of the respective

systems, is the dividing factor when it comes to consciousness.

For Block, when a person, or even another intelligent animal, produces ”output” from ”input,” it is

only the same as a computer producing ”output” from ”input” in a linguistic sense; the words used to

describe the activity are the same, but the actual process is entirely different. The input into a human’s

processing system, in Block’s view, consists of, and is understood in terms of, qualia, or P-conscious states.

This means, when a person produces output, such as speaking, behaving, or having thoughts, it is the result

of his phenomenal experience. The fact that the input is experience means there is something it is like to

process that information; something is experienced. For example, when a person sees a color, such as red,

there is information about the redness (among other properties) that enters the person’s mind. When the

brain processes that information, the result is the experience of seeing red, and thus, there is something

it is like to see the color red, as opposed to seeing orange. A deep learning computer, on the other hand,

has no such experience. When it receives its input, which contains no qualitative properties, but instead,

mere combinations of electric currents, there is no mental state, or P-consciousness, of the computer. Sure,

both the computer and the person have access consciousness, since both are capable of having and being

in states of available information, but this alone is not enough to claim that both are conscious as a whole,

according to Block. The access conscious states in the person seeing red are accessing perceptual, experiential

information [6], whereas the deep learning computer is simply accessing series of 1′s and 0′s.

Note that Block does not deny that computers are access conscious. He agrees on the idea that informa-

tion being available to the processes of a deep learning computer means that they have access conscious-

ness. When information is processed in a deep neural network, the information is representational and is

used in the system’s logical, information-processing operations. In the case of feed-forward convolutional

networks, the information is passed between layers in the network. But while the information is represen-

tational of the input, it is not necessarily fully accessible; it is only accessible to the system after passing

through the final output layer. But this is no different than information in a human brain; in fact, it is much

the same. We would not think to call the low-level abstractions of seeing a chair that are produced by in-

dividual neurons to be A-conscious states, so there is no reason to do so in the convolutional network. The
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final output of the network, however, is an A-conscious state, just as the entire visual experience of seeing

a chair is an A-conscious state. The same could be said for deep recurrent networks, such as deep belief

networks. Therefore, deep learning computers are access conscious, which is a form of consciousness, after

all [6]. But once again, access consciousness does not suffice for ”complete” consciousness.

As described in Chapter 3, there are scenarios in which A-consciousness exists without P-consciousness

and P-consciousness exists without A-consciousness. While P-consciousness without A-consciousness may

be relevant in the discussion of consciousness as a whole, it does not apply to deep learning computers, as it

is rare that the information in a program is inaccessible. A-consciousness without P-consciousness, then, is

the scenario of interest, in the context of deep learning computers. Recall the example of this situation that

Block presents: superblindsight. In the case of superblindsight, the patient is able to guess what is in the

blind spot by his own accord, rather than needing to be prompted to do so by another person, as is the case

in normal blindsight. In regular blindsight, the fact that the patient has to be asked to guess means there

is no A-conscious state; there is nothing available to rational processes. Conversely, the superblindsighter

will suddenly have the knowledge that there is something in his blind spot, and at that point would make

the accurate guess about what is in front of him.

Of course, this example of superblindsight may initially strike us as difficult to imagine, but that is pre-

cisely its purpose. Block wants us to conclude that the inability, or at least, difficulty, in conceptualizing

what it is like to be a superblindsight patient is evidence that the patient has no P-consciousness. That

is, the fact that it seems odd that the superblindsight patient is able to ”just know” that they are missing

something and should guess supports the idea that there is no experience, there is no way it is like to be a

superblindsight patient. For Block, a computer is extremely similar, if not equivalent, to the superblindsight

patient. The computer’s realization is like the patient’s visual system, in that it does not support phenom-

enal qualia that P-consciousness requires. The computer experiences nothing when it receives input that

will later be accessible information, just as the superblindsight patient experiences nothing in his blind

spot, even though he will later access that information. The deep learning computer, as well as all com-

puters, just simply do not experience phenomena, and therefore, lack the important form of consciousness:

phenomenal consciousness.
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On the other hand, some people, like Tononi, believe that views like Block put too much stock in qualia,

and that the existence of qualia is neither essential nor irrelevant to consciousness. In IIT, qualia is only

important insofar as it is information. Integrated Information Theory is only concerned with the amount

of information in the system, and the level of integration of that information. For this reason, a proponent

of IIT would come to a rather unique conclusion about deep learning computers. To put it simply, Tononi

would say that computers are conscious, but not all computers are equally conscious. As the structure and

design of the computer changes, the degree of information integration also changes, and thus, conscious-

ness occurs in varying quantities. Note that IIT differs from the other two theories in that the others are

views of consciousness that are binary: some thing is either [fully] conscious or not [fully] conscious. On

Tononi’s view, two separate computers, specifically, deep learning computers, can have different levels of

consciousness. The reason for the differences in consciousness is the dissimilarity in structure, and thus, a

variance in information integration.

In order to illustrate this point, return to the example of the simple, two-part photodiode from the previ-

ous chapter. This photodiode consists of two parts: a detector and a predictor. Recall that this photodiode,

as simple as it is, relative to many other systems, it is actually conscious, though it is decidedly minimally

conscious. According to IIT, the photodiode exhibits the necessary traits needed for consciousness. The

internal states represent information and are maximally irreducible, meaning there are no partitions of the

photodiode system that are capable of processing the same information [26]. However, the level of con-

sciousness in the photodiode is immensely low, compared to a human, and for this reason, it cannot be

said that the photodiode’s conscious experience is of much interest; rather than stating that the photodi-

ode is experiencing ”light,” as it might seem to somebody observing it, it is more accurate to state that the

photodiode is merely experiencing this state A rather than that state B [26].

Now, return to the original photodiode comprised of only the detector and no predictor. This photodi-

ode, while capable of the same function as the previous photodiode, is not conscious at all. The information

in the system, that is, the state of the detector, is equal in both examples, but the one-part photodiode has no

integration aspect. Since the information related to the detector only causes the output of the photodiode,

rather than causing and being affected by it, the system does not qualify as a complex, and thus, has no in-
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formation integration. The key difference between the two photodiodes is feed-back within the system [26].

Additionally, the fact that these two photodiodes have different levels of consciousness rejects behaviorists’

claim that consciousness is solely determined by the outputs produced from some inputs.

One may question whether or not feed-back is truly a necessary component of consciousness, and that

concern is legitimate. I do not want to attend to this issue too greatly, so I will simply offer a few prelimi-

nary responses to the objection that feed-back is not important for consciousness. The first line of support

comes from empirical findings. Feed-back and the reentry of information is present in human brains, and

when people undergo anesthesia, certain neural systems and parts that utilize feed-back and reentry are

not active [26] [18] [9]. And the reason that our brains have developed in this way can be argued on evo-

lutionary, or more theoretical, grounds. From an evolutionary standpoint, a system that can accomplish a

task by using an architecture with few parts that reenter information is more economical than one that uses

many parts once. Thus, a brain with neurons capable of feed-back has a greater cognitive capacity when

compared to a brain with the same number of neurons, but is not integrated via informational feed-back.

This principle is not evident in the photodiode example, as each is capable of the same function, despite

one using more parts. But when more complex tasks are examined, a larger system is needed when there is

no feed-back. Generally, this is one reason why a convolutional network may contain 6 or 7 or 8 layers of

neurons, while a deep belief network used for the same task may have only 4 or 5. Additionally, a system

without any sort of informational reentry is concerned solely and entirely with external input, whereas as

a highly integrated system with feed-back is affected by internal states as well as external input, and so it

is more likely to be autonomous (it will react specifically to the internal states) [26].

When we expand the systems in the discussion to include deep neural networks, many similarities to

the photodiode example become apparent. From the perspective of an Integrated Information Theorist,

convolutional neural networks are fundamentally the same as the one-part photodiode without the predic-

tor, while recurrent networks, such as deep belief networks, are fundamentally equivalent to the two-part

photodiode with the predictor.

When a convolutional neural network processes input, the input weights exceed a neuron’s threshold

and trigger the function of the neuron. After the neuron completes its function, its output is given to another
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neuron in another layer. This means that the output from a layer of neurons in a convolutional network

does not necessarily have an effect on the outputs of another layer in a way that is unique to that neuron; the

same effect on the overall output could be the result of significantly different weights in another neuron. In

other words, as far as the function of a neuron is concerned, there is no difference between receiving input i

with weight w from an external source and receiving that same input i with weight w from another neuron

in the network. The function of each neuron is independent of the functions of other neurons, in the sense

that it will process inputs and weights in the same manner, regardless of whether or not they are external or

internal. Therefore, there is no integration of the information. When there is no integration of information,

then the network does not form a complex and has no consciousness. Any maximally reducible partition

of a convolutional network will be capable of processing the same information as another partition. If a

partition, with its current input weights, is not capable of processing information (regardless of the degree

of integration) to the same extent as another partition, it will have a different Φ value, as well as lower

representational and distinguishable power than another partition. If, for example, a convolutional network

were split into two halves ”length-wise,” such that each layer of the network consisted of half of the neurons

it previously did, the representational power would be half of what it was before, regardless of the fact

that integration of the system would be the same (the causal relationships between neurons would remain

intact). This imperfection is one of the reasons why convolutional networks are preferable over larger,

more traditional feed-forward networks. Since neurons in convolutional neural networks share weights

and their outputs are pooled between layers, convolutional networks are able to complete the same tasks as

larger, more unsophisticated feed-forward neural can, but with few connections between neurons [20] [25].

But even so, the neurons in feed-forward networks, in general, are not integrated in the way necessary for

consciousness.

On the other hand, a deep recurrent network, such as a deep belief network, will be more conscious

than a convolutional network. Just as the photodiode systems above are dissimilar, a convolutional net-

work and a deep belief network differ in the presence of informational feed-back within the system’s parts.

When a deep belief network processes information, feed-back and the reentry of information is present.

When deep belief networks, as well as other deep recurrent networks, process information, the input enters
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the first layer. In DBNs, this first layer is typically a Restricted Boltzmann Machine. Normally, these RBMs

consist of a visible layer of neurons and a hidden layer of neurons. The input into the DBN initially enters

one of the RBM’s layers, and the weights are determined (i.e. the RBM learns on the data) by updating in

relation to the states of the neurons in the other layer [17]. This means that the current internal states of the

neurons in the RBM’s layers have a cause-and-effect relationship with the neurons in the other neural layer.

This relationship is analogous to the relationship between the detector and the predictor in the conscious

photodiode; the network will not function properly or similarly if one of the layers is removed from the

system. Thus, the RBM forms a complex, since the units that comprise it are integrated together and are de-

pendent on each other. When a subsystem is removed, such as the hidden layer of neurons, it is equivalent

to removing the predictor in the photodiode, and both the functionality and the information integration

are lost. In terms of feed-back, the data in the DBN is reentered into each layer. That is, the neurons in

both the hidden and visible neural layers of the RBM are not simply dealing with new external information

each time, but instead, they are ”looking at” the same information with regard to the outputs and states

of other neurons in another layer. This evidence of integration means that deep belief networks that use

Restricted Boltzmann Machines, are conscious, at least to some extent. There is no general conclusion that

one can make about the level of consciousness in a deep belief network, just as there is no single amount

of consciousness experienced in a human8. It all depends on the particular deep learning computer being

considered.

As was the case with the photodiode, the amount of information in each individual neuron is minimally

low. Since the units in the DBNs are stochastic and binary, their states are of the kind such that they are

either in state A or state not-A. But as the number of neurons increases, the representational power also

increases. For example, a layer of neurons, such as one in a CNN, is capable of representing an image,

rather than only a pixel, like a single neuron can. Similarly, a human brain’s neurons are binary, in that they

are in a state of being fired, or not being fired. But as the number of neurons increases, and continue to

be integrated, they form a maximally reducible complex that contains a great number of informational bits

(imagine the human visual system). Likewise, if the DBN (or RBM) is large enough, in terms of the number

8Intuitively, it seems as though a newborn baby is not as conscious as a 25-year-old healthy adult, but this claim may be controver-
sial.
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of integrated neurons, and its representational power is great enough, then the amount of information will

be large, as well. Overall, the amount of information in the deep learning computer is contingent on the

particular structure of the deep belief network being used.

In terms of the integration of the deep belief network, the degree is again determined by the architecture.

For example, if the deep belief network were designed in such a way that the first two layers were layers

in a Restricted Boltzmann Machine, but the subsequent layers were simply feed-forward, then the overall

network would only have the same level of consciousness, or Φ, as the initial RBM, which would not

be much, relative to humans and the like. However, if the deep belief network consisted of a Restricted

Boltzmann Machine that fed into another Restricted Boltzmann Machine, such that the hidden layer in the

first served as the visible layer in the second, then the two RBMs would be integrated together, forming

a larger maximally reducible complex. While there is no difference in the number of bits of information

between these two networks, the level of integration is higher in the network consisting of two RBMs,

rather than one. This is due to the fact that the amount of [effective] information between two partitions, or

subsystems, of the network is greater. Imagine there are three neural layers, A, B, and C, in the network,

such that layers A and B form the first RBM, and layers B and C form the second RBM, as shown in Figure

8. When the entire network is learning and the states of the neurons are updating, the two RBMs interact.

Figure 8: An example of connected and integrated Restricted Boltzmann Machines. Notice that the first
RBM consists of layers A and B, while the second RBM consists of layers B and C. This integrates the two
RBMs.

The neurons in layer A update in reaction to the current states of the neurons in layer B, which update

with respect to the states of the neurons in layer C. Under this design, the network cannot be divided in
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such a way that one of the layers, A, B, or C, is removed (making it equivalent to a single RBM) and the

amount of effective information is not decreased to some extent. Thus, the second, two-RBM deep belief

network is more integrated than the one-RBM deep belief network, and so the amount of consciousness in

that network is greater.

The general rule for Integrated Information Theory’s determination of consciousness is that of feed-

back. If a system reenters information, and current internal states interact in some way with other inter-

nal states, rather than only with external input, then that system will experience consciousness. In deep

learning computers, convolutional neural networks, as well as other strictly feed-forward networks, are

not conscious, while recurrent networks, such as deep belief networks, are conscious, though to varying

degrees.

4.2 Where Do We Go From Here?

In the previous section of this chapter, I examined two types of deep neural networks through the scopes

of three different views about consciousness, and inferred the conclusions each theory would come to, and

why. Unfortunately, but perhaps unsurprisingly, the theories do not fully agree on the matter. The Mul-

tiple Drafts Model states that deep learning computers are conscious, while Block’s access consciousness

and phenomenal consciousness distinction rules out the existence of the significant form of consciousness,

P-consciousness, in deep learning computers. And to complicate things further, Tononi’s Integrated Infor-

mation Theory states that some deep learning computers are not conscious, while others are, yet among

those that are, the level of consciousness fluctuates. In some ways, one could argue, they do agree, since

all theories attribute some consciousness to some deep learning computers, but it should be clear that this

is hardly satisfying. In order to truly advance the topic of conscious computers towards some type of

definitive answer, or at least, consensus, about whether or not deep learning computers are conscious, one

has two options: engage in philosophical debate, or engage in empirical research about either the actual,

necessary properties of consciousness, or a computer realization that satisfies all theories of consciousness.

Naturally, both of these routes have been taken in the past, and many people are still taking them to-

day. Unfortunately, empirical study, definitive though it may be, has two drawbacks. One, which may
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seem trivial, is that it takes a long time. Neuroscientists and biologists are working towards finding the

answers to questions about consciousness, but current technology can only accomplish so much, and the

same can be said for neural network research. Philosophical debate, on the other hand, is able to step in

where experimentation falls short. Contemplating theoretical principles is useful, but ultimately gains us no

ground with regard to the consciousness of deep learning computers, since some principles simply cannot

be tested, such as the phenomenal consciousness of a computer. This illustrates the second disadvantage of

empiricism: some tests are extremely difficult. It is not clear exactly how to test for consciousness, primarily

because it is unclear exactly what should be tested for. The existence of conflicting theories of consciousness

makes it practically impossible to devise a test or method that is unquestionably used. However, philoso-

phy is able to help, once again. By utilizing argumentation for one theory over another, we can make small

steps towards general acceptance on the nature of consciousness. In lieu of science being able to rule out

certain theories with research, one can rule out certain theories based on other support, thus leading to the

acceptance of just one.

In the context of the three theories of consciousness considered above, how might we go about the task

of eliminating variation between conclusions? Empirically, we could institute a ”consciousness science.”

That is, we can make empirical findings about consciousness, shedding light on fundamental and necessary

properties of consciousness. This scientific approach has already begun and interesting findings, such as

the role of awareness in consciousness, have allowed philosophers and scientists alike to rule out certain

theories and properties [8]. But while that may be generally helpful and eventually successful in coming to

a single verdict about the consciousness of deep learning computers, it is not yet conclusive enough to be

solely relied on. Analogously, people have not, and do not, wait until all questions regarding physics have

been answered before applying theories and principles. In fact, they do the opposite. Historically, both the

general public and scientists have accepted a notion, such as Newtonian physics, and revised their views

when new findings suggested their current ideas were incorrect.

The other empirical route involves redesigning neural networks such that they are deemed either con-

scious or unconscious by all consciousness theorists. But this seems like the wrong option to take at this

point in time. Just as is the case with consciousness science, neural network research takes time, and it
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should not be the case that we hold no opinion until such time that a network architecture of that type is

developed. Moreover, due to the fundamental differences between the views held be theorists like Block

and Dennett, it is not clear that such a network can be designed. It seems, then, that when faced with multi-

ple theories of consciousness, we should make an argument for one of the theories, particularly Integrated

Information Theory, and use that theory as the basis of our conclusions and research. For the purpose of

this paper, I do not wish to claim that the argument will be sufficient for accepting IIT over all other theo-

ries of consciousness. Instead, it should suffice to show that IIT is preferable to the other two theories, thus

eliminating them from contention, and progressing us closer to a generally accepted theory.

4.3 A Case For Integrated Information Theory

When it comes to choosing one of the three theories of consciousness that have been examined in this pa-

per, there are a couple of areas of interest to consider: the ”hard problem of consciousness,” and the objec-

tions from liberalism and chauvinism. Specifically, Dennett’s Multiple Drafts Model and Block’s physicalist

theory of consciousness seem unattractive when viewed through these lenses. However, Integrated Infor-

mation Theory is able to avoid the shortcomings that the other theories have, making it a more attractive,

advantageous, and beneficial theory of consciousness. In order to illustrate IIT attractiveness, I will explain

the problems that Dennett and Block face, and explain how IIT does not fall victim to the same objections.

As it was famously proposed by David Chalmers, the ”hard problem of consciousness” is that of ex-

plaining subjective, phenomenal experience [10]. That is, why do qualitative, perceptual experiences exist,

and how do we explain their existence? One of the criticisms of certain functional theories, like the Mul-

tiple Drafts Model, is that they are not concerned with this hard problem of consciousness, which leaves

questions of our perceptions unanswered. In denying the existence of qualia as real, rather than effects of

functions that only exist in our minds, Dennett avoids, not answers, the hard problem of consciousness. In

fact, he believes that there is no question to answer; it is not possible to explain why qualitative experiences

exist because they themselves do not exist (since qualia do not exist). But this response seems to be unsatis-

fying to many, primarily because it appears as though the hard problem is a real problem. To many people,

qualia are real, as evidenced by our qualitative experiences, and so the hard problem is also real. To simply
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state that qualia are non-existent on the basis that they are epiphenomenal in nature (which is not an idea

that every philosopher agrees with) is unattractive and puzzling. And even under the view that qualia are

not the causes of our experiences, MDM does not explain why it seems we have experiences, which is all he

claims is true.

Integrated Information Theory, however, is not a guilty of avoiding the hard problem in the way that the

Multiple Drafts Model is. While IIT is a type of functionalist theory of consciousness, it is still concerned

with the hard problem of consciousness, since it agrees that both qualia and experience exist. An Integrated

Information Theorist would argue that qualia exist, but they are not special. Instead, qualia, and phenom-

enal properties, should merely be considered information. Under IIT, when one experiences a red chair, it

is not the case that one is only experiencing the appearance of red (as MDM would claim). Instead, it is the

case that the experience of red is one possible outcome, with others being all other colors, i.e. green, blue,

yellow, etc., that one is capable of distinguishing between. This then, means that experiencing the color red

carries many bits of information, since the number of alternative possible outcomes is high. Additionally,

IIT posits that perceptual experience is important in consciousness, insofar as a highly integrated system

will have experiences. As information integration increases, autonomy increases (as the result of informa-

tional feed-back and reentry). Thus, a conscious system will have some sort of experience. A minimally

conscious photodiode only experiences ”this state rather than not this state,” while a far more conscious

system, like a human, will experience ”light” (the quality of experience is related to the representational

capabilities of the system). Therefore, Integrated Information Theory does address the hard problem of

consciousness by providing an explanation for our subjective experiences: qualia is information and feed-

back yields autonomy, or in other words, subjectivity. And IIT does this without removing qualia from the

discussion like MDM does. This makes IIT a better functionalist theory than the Multiple Drafts Model.

But what about Block’s physicalist view? How does Tononi compete with Block? Surely, it is not pos-

sible to reject Block’s theory for the same eliminativist reason as MDM was rejected, since it is the case

that Block’s theory also addresses the hard problem. Unlike Dennett, Block does not dismiss qualia; in

fact, qualia, and our ability perceive them, is what makes us conscious. Recall, P-consciousness, or per-

ceptual experience, is significant in whether or not a being is conscious, according to Block. This appeal
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to phenomenal consciousness is satisfying in similar manner to how MDM is unsatisfying. The fact that

we are phenomenally conscious makes it appear that phenomenal experience should be necessary for sub-

stantive consciousness. However, accepting that notion has undesirable side-effects. What would a view

like Block’s, which claims that a necessary property of consciousness is P-consciousness, claim about the

consciousness of a person in a deep sleep?

Imagine being in a truly deep sleep, in which you have no dreams. What is that state of sleep like?

How would you describe it? You may find that to be a difficult task. When in dreamless sleep, it seems

as if it never happened. You go to sleep and then you wake up hours later, unable to express, or even

recall, what those hours of sleep felt like. This is similar to the superblindsight and blindsight scenarios

mentioned earlier. The common feature between these cases is the difficulty in imagining what it is like to

be in their respective states. And I think Block would have to agree that this lack of experience is due to a

lack of P-consciousness and P-conscious states. Also, I think he would have to agree that a person in deep,

dreamless sleep, is not phenomenally conscious9. But this would mean that a sleeper is not conscious, in the

important and robust sense. While some people may be fine with this assertion, others, myself included,

find it peculiar. On the one hand, deeming a sleeping person unconscious has ethical ramifications, such

as being no more possessive of basic human rights than a rock or chair. But perhaps more interestingly,

this idea of sleep-induced unconsciousness yields more questions. One could ask how it is that we regain

consciousness when we wake up, or how we lose it in the first place when we go to sleep? What happens

in sleep such that consciousness, which is physically realized, is removed and reinstated? These questions

make Block’s view more complex and complicated than is desirable. While Block’s physicalist, P-conscious

view of consciousness is subject to these difficult questions, IIT is not.

Integrated Information Theory would agree that it is difficult to describe the experience of deep sleep.

However, it would not conclude that a sleeping person is not conscious. Instead, one may just decline

in one’s level of consciousness when one enters a dreamless sleep. Since consciousness is determined by

information integration, all that is necessary for a person, awake or asleep, to retain consciousness is to

have integrated information in his brain. While the person may not have perceptual experience inputs

9If he disagrees that a sleeping person is not P-conscious, I would be curious to hear his description of what experiencing sleep is
like.
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and information, information most likely still exist in his brain. Brain scans have shown that there is brain

activity even when one is asleep. This is evidence that the brain is functioning in some manner to some

stimuli. Knowing how the brain functions when we are awake, we can infer that the brain is equally as

integrated when asleep, since falling asleep does not change the structure of our brains or the methods by

which they operate. And while we may not be able to determine the types of information that the brain

is processing, we can know that it is processing something when we are asleep. This means that informa-

tion is being integrated, and importantly, it is being integrated in a similar or equivalent manner to when

we are not sleeping. Therefore, under Integrated Information Theory, sleeping people are still conscious,

though perhaps at much lower levels then people that are awake. Furthermore, unlike Block’s view, which

generates new questions, one can explain why and how consciousness is increased and decreased with the

entrance and exit of sleep. This, I believe, makes IIT more appealing than Block’s requirement of phenom-

enal consciousness.

This dreamless sleep example is just one illustration of a larger problem that Block encounters, which is

chauvinism. As I explained in Chapter 2, the chauvinist objection essentially states that physicalism does

not attribute mental states, such as consciousness, to beings that do have mental states, and consciousness.

Block’s view does not allow for a person in deep sleep to be considered robustly conscious, despite the

fact that the sleeping person’s brain is in the same physical state as when he is awake (and conscious). IIT,

as I just explained, does not restrict which things are conscious and which things are not in this way. But

simultaneously, it is not a liberal theory, either. While IIT may initially appear to be subject to the liberalism

objection, which states that it assigns consciousness to unconscious systems, I find that it is not, or at least,

it is not as poorly liberal. That is, while behaviorism is a liberal theory that would assign consciousness

to both photodiodes (assuming it was agreed that the second one is conscious), IIT does not. It may be

arguably liberal in assigning consciousness to the second, more complex photodiode, but it does so in a

way that allows it to discriminate against other unconscious systems.

Imagine a zombie with no brain and no mental states, but that acts and functions exactly like a regular,

conscious human. Despite the almost undeniable fact that the zombie is not conscious, since it does not

have a brain, a behaviorist would label the zombie as conscious, since its behavior is the same as a conscious
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human. However, IIT does not fall into that trap. On the basis of information integration, IIT is able to deny

that the zombie is conscious in any way. So while it can be said that IIT is a liberal theory of consciousness, it

should be noted that its liberalism is a side-effect of its ability to justifiably discriminate against unconscious

systems without being chauvinist, like a physicalist theory of consciousness is.

When contrasted with both the Multiple Drafts Model and phenomenal conscious physicalism, Inte-

grated Information Theory is more attractive and versatile, at least in the context of the issues mentioned

above. Again, it was not my intention to make an exhaustive, definitive argument for IIT, but instead, show

that it is the most preferable and appealing theory out of the three. In light of accepting IIT over MDM and

Block’s physicalism, we can revisit the question of redesigning deep neural networks in order to maximize

computer consciousness. I understand that the

4.4 Empirical Advancements Revisited

As I mentioned briefly above, a deep neural network with more recurrent parts is a more conscious network.

In my previous example, I explained how a deep belief network with two Restricted Boltzmann Machines,

rather than one, is more integrated, thus yielding more consciousness. While this two-RBM deep belief

network may be more conscious that a one-RBM network, it is still nowhere near the level of consciousness

experienced in humans, or even less intelligent animals, for that matter. So how can we increase the amount

of consciousness experienced by a deep learning computer? The simple answer is: add more recursive

layers. By adding integrated neurons to the network, we are increasing the size of the main, maximally

reducible complex of the system. As a result, the system is representationally more powerful, which means

a particular state or representation contains more bits of information. At some time t0, each neuron in the

network will be in some internal state, namely, its functional threshold is either exceeded or not. If the

input was modified ever so slightly, such that the state of one neuron in the initial input layer at time t1 was

also modified, the overall representation at time t1 would be different than at time t0, and so, the input at

t1 is an alternative outcome relative to the input at t0. It is evident, then, that the amount of information in

the network increases as the number of neurons increases, since more subtle and minute alterations in the

input will be represented, thus constituting an alternative possible outcome.
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But simply adding neurons does not necessarily increase consciousness in deep learning computers.

Adding neurons to the layers of a convolutional network does not make the network conscious, since

those neurons are still not integrated at all. So in order to increase the consciousness of deep learning

computers, the integration needs to increase with the amount of information. One method of doing so is to

design deep neural networks with many recursive units and parts, such as Restricted Boltzmann Machines.

In principle, the most integrated deep neural network would consist of a series of RBMs, situated such

that the hidden layer of each RBM acted as the visible layer in the next RBM, much like an extension of

the RBM model in Figure 8. In this type of deep belief network, there would be no partition that would

constitute a complex with a Φ level as great as the entire network. Unfortunately, this would lead require

immense amounts of computing and processing power. Researchers have applied this notion of using

many RBMs, but even then, they were forced to use graphics processing units (GPUs), as only those were

able to provide the processing power necessary to handle a four layer deep belief network [27]. In order

to increase consciousness in deep belief networks to a level that is comparable to a human, an almost

unimaginable amount of processing power is necessary. However, if the neural network were structured

such that the hidden layer of every fourth RBM was used as the visible layer in another series of four RBMs,

for example, then the integration would be higher than in the case of a purely feed-forward network, yet

the requirements of the computer’s hardware would be lesser, though still tremendous. In fact, this is

closer to the way in which human brains are structured. While the brain is integrated, overall, it is not

the case that every neuron is connected to every neuron in a chain-like manner. That would be far too

demanding on the system. Instead, there are smaller, highly integrated subsystems, such as those used for

visual processing, toe-movement, etc., which are then integrated as a complex into the system as a whole.

This makes information processing more parallel, and therefore, more economic. If a deep belief network

were to model this structure, without sacrificing overall integration, it would lead to a more conscious

deep learning computer, with more representational power, more feed-back and autonomy, a more rich

experience, and more consciousness.
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5 Conclusion

Due to the fact that highly sophisticated computers and robots have been developed and utilized only rela-

tively recently, many people are not familiar with the concerns that accompany the creation and operation

of such computers. One of these concerns is certainly their consciousness. One’s conclusion about the con-

sciousness of a computer can have many effects, such as the ethics of using and turning off a computer.

When designing computers and artificially intelligent machines, then, the issue of computer consciousness

should earnestly be considered. However, due to the many different theories of consciousness and the

many different types of computers in existence, the size of that task is great and frankly, intimidating. But

perhaps the best way to begin is to examine one of the most advanced sorts of computers, and one that

owes its inspiration to the most advanced animal: deep learning computers.

After examining how deep learning computers and two common types of deep neural networks, con-

volutional networks and deep belief networks, are structured and function, I explained three theories of

consciousness that encapsulate common forms of materialist theories more broadly: Ned Block’s quali-

tative physicalism, Daniel Dennett’s Multiple Drafts Model, and Giulio Tononi’s Integrated Information

Theory. By extracting each of the three theory’s judgments about the consciousness of deep learning com-

puters using both convolutional neural networks and deep belief networks, I illustrated the fact that there

is no one established opinion about whether or not these computers are conscious. Commonly, and per-

haps as the result of the freshness of deep learning computers, ordinary people, as well as academics, are

inclined to believe that computers are not conscious. But simply because the idea of unconscious computers

is traditional does not mean that the idea is true. Even though all three theories of consciousness discussed

above were developed in order to explain consciousness in humans, or at most, in animals, deep learning

computers can be examined in their lights. And when this examination process is done, a rather fascinating

incident occurs.

Block, and other qualitative physicalists, assert that deep learning computers, regardless of the architec-

ture of their networks, are not conscious in the way that humans are, since computers are not phenomenally

conscious. However, Block’s theory would posit that deep learning computers are access conscious, which,

admittedly, is not a particularly robust form of consciousness, in terms of the quality of conscious experi-
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ence, but is a form of consciousness, nonetheless. Under acceptance of Dennett’s Multiple Drafts Model,

we can see that deep learning computers are conscious much in the same manner as humans. The net-

work structures allow for information to be processed in the way the human brain processes information,

and thus, deep learning computers are functionally similar to humans, so they are conscious. And lastly,

Tononi’s Integrated Information Theory asserts that a system with no integration, such as a feed-forward

convolutional neural network, experiences no consciousness, while a recurrent network with feed-back and

integration does experience consciousness at different levels. The intriguing feature of these conclusions

is that they all deem deep learning computers to be conscious in some sense or another. The individual

conclusions differ, yet these three fundamentally contrasting theories do agree to some extent on the pres-

ence of consciousness in deep learning computers, which is a notion that is surprising and jarring to many

people. And while Tononi’s theory may be preferable to Block’s and Dennett’s respective accounts of con-

sciousness for its ability to address difficult problems related to the consciousness of other systems, it does

not necessarily need to be the accepted theory of consciousness. However, regardless of the theory one is

attracted to, one should be aware of the implications and extensions of that theory on systems that it did

not originally attempt to explain, for the results may be unexpected.

And based on this conclusion that deep learning computers are, by some definition, consciousness, de-

rived from interpretations of these theories, there are two paths we can choose between. The first would be

to stay true to the traditional belief that computers are unconscious, and call for modifications to be made

to these theories of consciousness so that they no longer judge deep learning computers to be conscious.

But this seems incorrect to me, since these alterations would be made for purely reactionary and conser-

vational reasons, rather than as the result of logical or metaphysical flaws. This would be equivalent to

forever rejecting the notion of heliocentricity and remaining believers of geocentric models of the universe

simply because we used to be heliocentricity-believers. And as there was no immediate acceptance of he-

liocentricity, perhaps there will be no immediate acceptance of computer consciousness. But we must be

open-minded, and take the second path, which is to understand the consequences of current theories of

consciousness, like functionalism and physicalism, and progress from that point. As technology advances

and deep learning computers become more common and sophisticated, the manner in which we regard
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computers is likely to change. I am not claiming that we should blindly accept that deep learning com-

puters are definitely conscious, or will necessarily become conscious, I am simply stating that we should

adapt and change our viewpoints to accommodate the ramifications that our current beliefs, theories of

consciousness, and technologies produce.
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