
Automated Parsing of Dialogue Games in Open Ended Dialogue

Author Matthew Marchesani

Adviser Nick Webb

June 13, 2014

Abstract

In Natural Language Processing, the ability to model the structure of language is a key to solving problems.
We currently can label words an utterances according to their meaning and communicative function. My
research involves creating a structure out of these lower components by identifying patterns in dialogues. I will
approach this problem by analyzing a corpus of open-ended dialogue. My research will contribute important
information to Dialogue Management Systems’ about language structure that can be implemented in its
architecture and will help enable human-like generation and understanding of dialogue.

1 Introduction

Research has shown, through studies of naturally occurring dialogue, that people seem to interact according
to pattern conventions [9]. Dialogue relies on conventional knowledge of what response each participant can
expect from the other. This can be one framework from which coherent dialogues are built. Figure 1 is a
diagram of a Dialogue Game (DG).

Figure 1: Dialogue Game Example

Field et al [5] state that DGs are exchanges between speakers that fulfill a goal. Additionally, Con-
versational Theory states that these patterns form the structure of any and every possible dialogue [6] [3].
Modeling dialogue structure is an inherently fundamental step toward a larger overall goal of having Dialogue
Management Systems (DMS) that are able to understand and generate spontaneous dialogue [12].

1

The nature of task-based dialogue results in a goal oriented view of language [1]. Open-ended dialogue is
not always goal oriented, but some goal oriented dialogue may be embedded in non-goal oriented dialogue.
We believe that many of the DGs found in task based dialogue will be found in the open-ended dialogue.
Also I believe that there will be phenomena in the dialogue that are not captured with the tags. And so
I will try to tag all of the new phenomena that I find. Additionally, I will be looking for utterances that
do not serve a structural function and which can be omitted from the corpus. Omitting these utterances is
similar to taking the stop words out of sentences. The essence of the sentence is not lost, and when the stop
word like utterances are removed, the structure of the dialogue is not lost. After that, I plan to use machine
learning to gain statistical information about DGs in the corpus. I am particularly interested in DGs that
are involved in canonical forms of DGs and embedded forms of DGs. I believe that gaining probabilities
of games being embedded or appearing canonically will make computationally understanding spontaneous
dialogue much easier. DG starting points and ending point in open-ended dialogue are more complex than
they are in the task based dialogue [2]. The data I will use is from the Switchboard corpus. I am analyzing
an annotated text version rather than an audio version. This simplifies the research problem to one that is
approachable for the amount of time I have to spend.

Current state of the art, human-agent DMS, does not have the robustness of dialogue that humans
do. Even more interesting, agent-agent systems currently exhibit significant incapabilities due to distinctly
different implementations of dialogue structure components. [11]. The solution to my research problem will
contribute to DMSs’ architecture and help produce DMSs with human-like understanding and generation
of dialogue between human-agent and agent-agent systems. DMS that can understanding and generating
conversations effectively as humans can pick up the slack of voice recognition modules, as well. When a
human-agent systems is not able to recognize spoken input, it will be able to use its knowledge of dialogue
structure to make a human-like guess at what the person said [4].

2 Related Work

I have not been able to find much research on DG tagging in open-ended dialogue. And I have found
some research on tagging task-based dialogue, and there is a fair amount of theoretical work on dialogue
structure, including DGs. The current state of task based DG knowledge is divided among a handful of
theoretical approaches [7]. Attempts to support several approaches with empirical data have failed. These
failure were due to the fact that the intention based approach and the psychological commitment based
approach for modeling dialogue structure considers the psychological states of the participants. Predictions
about psychological states of participants cannot be verified and are difficult to produce reliably. These
failure have resulted in a movement in the direction of shallow discourse analysis (i.e. no consideration of
psychological states of participants) [10] [11]. The most popular being the social commitment based dialogue
structure analysis.

2.1 Dialogue Structure

Conversational Theory states that there are dialogue structures and they are conventions of natural lan-
guage [9]. Researchers have empirically shown that dialogues are built up from structures that are formed
from sequences of utterances that contribute individual functions of the dialogue [3]. The sequences of
communicative functions create coherence in conversations [9] [11] [3].

2

In the past, complex dialogue behavior has been emulated with network and stack architectures. Imple-
menting a stack provides for a way to reenter a state of a dialogue that was interrupted [5]. For example,
the current DG will be on top of the stack, and the nested is pushed on the stack before the previous top
was popped off. Then when the new current is popped off, the previous is continued. [8]

2.2 Dialogue Acts

Currently, many researchers use of Dialogue Act (DA) sequences to describe dialogue structure [12] [13]. A
DA is a label for an utterance’s communicative function [12], and include labels such as, question, statement,
and backchannel. Their general purpose is to serve as initiations or responses. DAs can be automatically
labeled [12] [5] [13]. This research provides a significant foundation for my research.

There are DA sets that are completely domain-independent, the popular most widely used being the
Dialogue Act Markup in Several Layers (DAMSL) tag set [1] [12]. This set is used by several computational
frameworks that, accurately and reliably, automatically tag utterances with labels [13]. This set of DAs may
be able to infer DGs that are the building blocks for conversational game structure, which reflects the goal
structure of the dialogue [2]. My research will be using this set.

2.3 Dialogue Games

Communicative Theory researchers state that dialogue has structure, and that the structure is a fundamental
concept of communication [9] [1] [11] [3]. A coherent conversation happens due to constraints that dialogue
games enforce on a dialogue [9] [1] [11] [3]. And through using dialogue games any dialogue can be synthesized
by the abstract structures. The social-commitment based approach explains the structure in a data driven
way [11] [3]. It says that the interlocutor binds their self to prepositions or actions, within the dialogue [11] [3].
The dialogue game approach to the structure of dialogue can be social-commitment based and therefore be
built upon easily verifiable data.

DGs capture shared conventional knowledge that people have about communication, and are patterns in
dialogue made up of one or more turns of a participant [9]. And each turn is made of a DA. In an attempt
to be able to model the structure of dialogue, Conversational Theory has begun to look at theses patterns
closely and given them the name DG [9].

In a DG coding scheme it is important to identify the purpose of the game and give a description of how
games are related to each other [1]. At any point in a dialogue a participant can refuse continue the initiated
game. This can be in the form of ignoring the initiation and initiating a move of their choice. It is also
possible for a explicit refusal. For example, rebuffing a question with the statement “Let’s not talk about
this.“

All games hinge on the fact that, in general, questions are followed by answers, greetings by greetings,
statements by acceptances or denials, ect [9] [1] [3]. And because of this nature game analysis has a funda-
mental approach of dividing into two groups. One being initiations, which set up some expectation about
what will follow. The other is response, and it fulfills the expectation that is set up [1]. Games can also be
further divided by purpose, either getting information or providing information [9].

3

3 Methods and Design

The Switchboard corpus, which contains 1155 5-minute telephone conversation that make up a total of
205,000 utterances, was tagged with a shallow discourse tagset. The tags indicate the dialogue acts of the
utterances. The tagging of the corpus was part of a project call Switchboard SWBD-DAMSL Shallow-
Discourse-Function Annotation. I will use this tagged corpus of open-ended dialogue to. I will use the DA
with which that the Switchboard corpus was labeled already. This is not only convenient but the tags have
been formally evaluated for reliability. I will use machine learning software to extract statistical data about
DGs from the Swtichboard corpus.

4 Approach

4.1 Corpus Preparation

The corpus is in XML format. There are elements for dialogues, turns and utterances. Turns have attributes
for their number in the dialogue and their speaker. Utterances have attributes for their number in the turn
and type of DA. The words said by the speaker are in CDATA elements that are contain inside of utterances.

I spent a significant amount of effort trying to get the corpus in a easily processable form. It turns out
that this process resulted in the awareness that the work I planned to do required more than one version
of the corpus. A main feature of the different corpora is that initially the corpora contained actual XML
elements for turns. At the end of the research, I rarely used this format. Corpora with dialogues that
contained only utterances with speaker attributes to indicate who took the turn were mostly used.

First I prepared the corpora by I replaced short tags DA with full length ones. The full length tags gave
me the ability to read data and write code containing the tags much easier than translating short tags to
their meanings or memorizing all of them.

The original version of the corpus that I used did not have uniformly sequenced turns. There were
adjacent turn by the same speakers. These turns contained only one utterance. These turns did not serve
any function and made traversing the corpus difficult. And so I reformated the corpus dialogue by dialogue.
When repeating turns by one speaker occurred, I inserted the utterances of following turns at the end of the
initial turn. This continued up until a turn change to the initial turn, I deleted the turns that followed the
initial turn. This essentially is conflation of adjacent turns made by one speaker. Making the turn sequence
uniform like that meant that there would be no turns by the same speaker next to each other.Furthermore,
when a person has to read the corpus with many turns containing single utterances, they can become tired
and frustrated quickly. Later on this would clearly make the corpus traversal algorithms much easier to write
than ones that would be made for a corpus with many turns containing only one utterance.

After conflating the turns, within each one, there could be more than one utterance. This feature
corresponded to the multiple turns by the same speaker in the initial corpus. Because there were more than
one utterance in a turn, there could be adjacent utterances of the same type. This is like they way that
more than one turn by the same speak were found adjacent to one another in the original corpus. These
utterances were conflated the way that the turns were. Although when conflating utterances of the same
type, the result is not applicable to the general analysis. For example, if two wh-questions by the same
speaker get conflated, a very interesting feature of the corpus could be lost. This is a reason why there were
multiple corpra made. This version with conflated utterances is useful and must be analyzed. But it is not
perfect, and it only contributes a part of the research that is done. Even though, conflation of utterances
needs to be done with careful consideration, this version of the corpus yielded valuable insights that are

4

discussed later in this paper.
The utterances that were conflated then had multiple !CDATA elements in them. These could be con-

flated. The conflation of these resulted in large blocks of text that were really easy to read. Of course,
because these CDATA elements were childeren of utterances that were conflated there was a trickle down
effect of the possiblity of combining thing that should not be combined. As stated above, all this conflation
is only part of the preparation of a single version of the corpus it is not a final version of the corpus.

In all the versions, I renumber the dialogues, turns and utterances. The numbering happened to the
children of elements. For example, if there were n turns in one dialogue and a turn had n utterances, they
would be correspondingly labeled.

I also removed attributes that were there previously and had no relevance to my work. I learned that, in
general, to many XML attributes in elements tends to make difficult to read XML.

As mentioned above with the conflation of utterances, the need for having more than one version of the
corpus came about over the course of several weeks. Another key influence in this decision was that at first
there were algorithms that did all types of additional work. For example, an algorithm would travers the
corpus and conflate the utterances before it would do pattern counting. A conflated corpus would make the
algorithm take much less time. If an algorithm has to do conflation while it traverses, for example, that
algorithm will be much slower than one that processes a corpus which has already had conflation done to
it. So time savings in the long run showed up as well. Furthermore, it was much easier to make different
versions of corpora, and then write an algorithm that works for many or all of them. Versus, writing many
complicated algorithms that work on one main version of the corpus.

At times, I needed to delete elements from the corpus, like when I removed the turns. I learned that
iterating backwards over the collections, going from n - 1 to 0, made it possible to remove elements while
iterating. Iterating from 0 to n - 1 and removing as you go create a way for elements to be completely
skipped over.

On interesting thing that I did to prepare the corpora for the DG exploration and parsing, included
combining statement-non-opinion DAs and statement-opinion into one statement type DA. Here are some
statistics for the combination of the two statement DAs in to only one:

Statement-Non-Opinion 75403
Statement-Opinion 26529

Statement (sum of two previous) 101932

Another interesting thing that I did to prepare the corpra is, I removed 7 types of utterances. I did this
because these utterance types did not control the flow of the dialogue in a way that I would consider during
my research. I made a version of the corpus with utterances with the following DA tags removed from turns.
This resulted in some turns with no utterances in them (totaling 3% of the corpus). These tags are taken out
since their influence on turn changes in dialogues are not easily pinned down. For my research the influence
on turn changes that these DAs have are not concrete enough or readily interpretable enough. Here is a run
down:

5

Non-Verbal 3678
Other 1222
Uniterpretable 15682
Quotation 980
Self-Talk 103
Acknowledge-Backchannel 38372
Backchannel-in-Question-Form 1057
Grand Total 61094

I will run the scripts on the version of the corpus that I just created. So I removed the empty turn and
conflated turns, then utterances, then CDATA, where appropriate. During this process, I looked at the
corresponding text in the dialogues where turns ended up with no utterances. I clearly saw that removing
the turns did not impact the flow of the dialogue in any noticeable way. In fact, the dialouges seemed
to flow smoothly over the parts were gaps by turns containing zero utterances were formed joined up by
removing those turns. Removing the utterances causes 6% of the turns to have zero utterances and 10% of
the utterances to be removed.

The original did not have utterances removed or statement types combined or utterances conflation.
Utterance conflation will not change the number of turns in a dialogue. These are three main formats of the
corpus:

Original Without Utterance Conflation With Utterance Conflation
Turns 116187 50829 50829
Utterances 204915 143821 71675

Below are comparisons of counts of DAs in the corpora without utterance conflation and with utterance
conflation:

6

Without Utterance Conflation With Utterance Conflation
Statement 101932 35184
Agree/Accept 11157 8349
Appreciation 4797 4461
Yes-No-Question 4727 4499
Yes-Answers 3042 2716
Conventional-Closing 2585 1821
Wh-Question 1989 1926
No-Answers 1383 1186
Response-Acknowledgement 1309 1228
Declarative-Yes-No-Question 1252 1214
Hedge 1227 1192
Summarize/Reformulate 961 912
Affirmative-Non-Yes-Answers 849 807
Action-Directive 752 662
Collaborative-Completion 723 705
Repeat-Phrase 698 690
Open-Question 657 645
Rhetorical-Questions 578 524
Hold-Before-Answer/Agreement 557 510
Reject 345 291
Signal-Non-Understanding 299 299
Negative-Non-No-Answers 298 292
Other-Answers 286 276
Conventional-Opening 225 178
Or-Clause 210 208
Dispreferred-Answers 207 199
3rd-Party-Talk 117 71
Offers-Options-Commits 110 105
Maybe/Accept Part 105 99
Downplayer 104 89
Tag-Question 98 98
Declarative-Wh-Question 85 84
Apology 79 79
Thanking 78 76
Grand Total 143821 71675

7

Here are the questions taken from the data above. This is a reminderthat conflation can remove features
of the dialogues. When questions are conflated, structures in the dialogues can be removed. The questions
in the dialogues are the focus of my research, and that is why they are highlighted:

Without Utterance Conflation With Utterance Conflation
Yes-No-Question 4727 4499
Wh-Question 1989 1926
Declarative-Yes-No-Question 1252 1214
Open-Question 657 645
Rhetorical-Questions 578 524
Tag-Question 98 98
Declarative-Wh-Question 85 84
Grand Total 9386 8990

One reason to do modifications to the corpus is that it is a simplification tool. The research problem can
be solved by simplifying the problem and then building up sophistication. The solution to the simplified
problem may potentially be added to so that it solves the more complete goal. And solving the simplified
problem is an easier starting point than approaching the overall problem with a direct approach.

I learned from the preprocessing of the corpus is that it’s ideal to think about this stuff early as possible.
Then data does not need to be regathered, and avoiding dealing with incorrect or incompelte initial data.
Regathering a ton of data in light of a useful modification that has just been thought of can be quite time
consuming.

For example, a little late in the game, I replaced sd and sv with a DA called statement. This is going to
change my patterns. This replacement should have been done early. It is a simplification of what exists in
the corpus. An sd or an sv would not change the flow of the dialogue any differently, and so replacing both
of them with a single statement DA would should not lose any critical feature of the dialogue. By examining
the patterns with separate sd and sv DAs, a more fine grained analysis is done. And that is not what I
intend to do during this round of analysis.

After hand annotating, I determined that I needed to change the corpus to one without turns. Automating
the corpus with turns would have created a difficult to read structure.

4.2 Tools Intro

Since the formate is XML, there are many different programming languages that I could have used to analyze
the corpus. I chose Python 2.7 mainly because how easy it is to use Natural Language Toolkit as a module.
Furthermore, Python is a language that is quick and easy to write algorithms in. There are a few options
for module to work with the XML Dom in Python. I used the Python Mini Dom. During my preliminary
research about XML, several of reliable sources on the web championed Mini Dom. And I easily found blogs
and websites, including Stackoverflow, containing more tech information about Mini Dom than the other
available options for XML in Python. The Mini Dom gave all of the functionality that XML specification
requires. The Tools That I Used While Processing the Corpus. NLTK POS tagger uses pen tree bank pos
tags. I easily wrote the scripts that traverse the corpus. Making them customized to do the work that I

8

wanted to do to the corpus involved simply adding logic to extract turns that sandwich changes in speakers
and utterances with certain DA types.

4.3 Initial Work

I can make the dictionary as the script comes across keys. I started by making the dictionary with all possible
ways a pattern could happen. But many of those ways did not happen. And so there were zero values in the
dictionary. Now that I make the dictionary keys as I go, I do not need to desparsify the dictionary. There
are no keys that correspond to a value of zero. When I output the data, I do it in with frequencies mapping
to patterns, like a histogram. But the Python dictionary cannot be sorted. So I turn the dictionary in to a
list and invert the key values. Then I map the frequencies to patterns and sort the list in descending order
of frequencies.

This is exploratory work and uses problem and data simplification often. I also used compositions of
what I found in order to get to the next step in the research. First I needed to find out if patterns existed
in the dialogues. And so, initially, I did a simplified version of a solution. I did not start a the DGs. I took
the stance that DG had to be built up from atomic pieces. In the beginning of my research, I began looking
at the atomic level. One goal was to come across patterns of DAs that could be used directly as DG parsing
rules.

Since turns in the dialogue are sequenced uniformly from speaker Aat to speaker B, I am going to look
at pairs of DAs that sandwich turn changes. Turn changes can happen A to B and B to A. I will make a n
by n hash of the DAs. I will increment the frequencies of the DA pair value when it is found sandwiching a
turn change. I used these counts to compare with the frequencies of DA pairs that occur irrespective of any
turn change. This data could be used to make inferences, like, if a DA pair happens only at a turn change,
the initial DA signals a turn change. It is important to keep in mind that, the DAs in these patterns maybe
the first of several utterances a turn or the last of several utterances in a turn. Furthermore, they could be
the only utterances in a turn. And so, one must be familiar with all of the different lenses that the data is
looked at under.

Now that I have two main versions of the corpus that have turn elements or do not have turn elements,
I need a traversal algorithm for each of these main versions. I traversed the corpus by getting collections
of element types and indexing the elements in the collection, rather than using sibling traversal. There are
text elements between siblings and this has to be accounted for in the latter method. I am conflating the
utterances in the patterns. The conflation algorithm looks at the adjacent utterance (before or after the
utterance its adjacent to, depending on where in the pattern the algorithm is) and treats the adjacent and
initial as one if the DA labels are the same. Being careful not to skip any utterances while traversing is
extremely important. It is easy for an iteration to be off by one if there is a boundary case that is written
sloppily. This is after removal and conflation. If an entire turn is only one type of utterance, than the turn
was skipped. In this, if either has only one type, then next turn is brought up. But I want to keep this target
turn and check both turns from this perspective. If there is only one type of utterance in turn i, but there is
more than one type in turn i+1, I conflate where I can and keep the pattern. Before, I incremented i. Not
incrementing results in something like DA turn DA DA or DA DA turn DA, because one side is conflated.

The first analysis went through every dialogue, every turn, and every utterance. It took counts of the
patterns of adjacent utterances regardless of what speaker made them. For example, if there were two
turns, A and B with two utterances each A1A2B1B2, three patterns would be counted A1A2, A2B1, B1B2.
Following this I went through each dialogue and each turn For example, if there were two turns, A and B
with two utterances each A1A2B1B2, one pattern would be counted A2B1. from turn 0 to turn n-1 and

9

take the ith turn and the ith+1 turn an incremented a counter, in the form of a Python dictionary that had
patterns mapped to counts. There were 352 possible permutations and X actually occurred. Initially, I used
two for loops, one nested in the other, to create the dictionary with initial counts equal to zero. Then I
realized that as I went through the dialogues, I could add the patterns to the dictionary as they happened.
This saved quite a bit of computation. And it also saved having to do the work of checking for patterns
that had zero counts later on. Sometimes when I printed out the counts I would not want the zero count
patterns to be included, and by using this alternative method, I did not need to include checking for zeros
in my printing algorithm, which worked out well for me. No sparsity. Reverse to make a histogram. Cannot
sort a dictionary, so turn it in to a list.

I did this with three and four utterances in the following fashion. For three utterances, the for loop would
iterate from i = 0 to i = (the number of utterances - 1) - 2. And in the body of the loop indexing the second
and third positions in the pattern could be done with i+1 and i+2 without going out of bounds when being
at the end of the dialogue. For four utterance patterns, the loop would end at the (number of utterances -
1) - 3. At the end there would be no indexing out-of-bounds from the body of the loop.

I found the frequency of the pattern any where in the dialogue and the frequency of the pattern if there
were two turns, A and B with two utterances each A1A2B1B2, A1A2B1 and A2B1B2. For three utterances,
I found the frequency of the pattern anywhere in the dialogue and at turn changes, A and B with two
utterances each A1A2B1B2, A1A2B1 and A2B1B2. For four utterances, I found the frequency of the pattern
anywhere in the dialogue and at turn changes, A and B with two utterances each A1A2B1B2, A1A2B1B2.
By using these two sets of counts I could determine which patterns never occur at turn changes, always
occur at turn changes, or what the frequency of a pattern at a turn change when it occurs both inside of
turns and at the changing of turns.

As I added to the pattern, the percentages at turn changes grew higher. That was because less of the
longer patterns happened in the middle of turns, then sandwiching a turn change. This is easy to imagine
being the case.

This is the older way of doing utterance conflation as the iteration over the corpus happens. But if I need
to keep track of where conflation happens then I need to use this approach. I could have added attributes
to utterances that tell the amount of conflation that happened. Although, I never tried this approach. This
is after removal and conflation. If an entire turn is only one type of utterance, than the turn was skipped.
Although, I want to also look at when both, only one of the turns, has only one type of utterance. In this,
if either has only one type, then next turn is brought up. But I want to keep this target turn and check
both turns from this perspective. s s ynq ya s s s would not be the same as s s s ynq ya s. There is a
Python file for doing this. The corpus that the files us must have turns. And obviously not have utterances
conflated. The format of the results is like: 15, statement-non-opinion[2], statement-opinion[1], agree/accept,
statement-non-opinion. The bracketed number tells how much conflation happened.

A great transition to parsing from initial work is that I decided to parse patterns that happen frequently.
I looked at the top 10 possible games being the patterns that occurred most frequently at turn changes. I
decided to go with question answer, opening opening, and closing closing. I created DG paring rules for
them by using the and DAs turn change sequence that correspond to the patterns.

4.4 Question Answer(QA) DGs

When doing simple parsing of QA DGs, the main characteristic is that if the utterances in the answering
speakers turn are all part of the answer unless the utterances are questions. Everything up to the first
question, or the turn change, is considered the answer. a more sophisticated parser could look at ynq ya na

10

Right now, I am using mini DGs. This is a strategy that parses nested games from the inside out. (I saw
simple two level DGs in the corpus.

I initially started by parsing DG rules with specific DAs. These games were based on DA patterns that
I found which had high frequencies. (EG yq ya na) I decided to simplify my approach. I ended up taking
anything following a question that is not a question to be an answer. For example ().

any question followed by a statement is a dg
This is simple parsing because it only looks at question answer game, and it considers everything forllowing

a question up to the next turn change to be the answer. This does not parse nested q/a games (eg q q a a
would get parsed as q DG a)-question answer is a pattern, but question question answer answer is not being
parsed at this point the conflation would have given an idea of whether or not nearly all the corpus would
be parsed or not.

The conflation will cause sibling statements to be treated as one, and so more of the corpus would be
involved in a game than what actually was involved in a game. The dialogues should have been looked at
and not the corpus. There may be dialogues that are completely parsed even if the corpus is only partially
parsed.

I have two parsers one for with turns and one for without turns. This is because initially I used the
corpus with turn elements, and later on it became apparent that when parsing the DGs it was difficult to
annotate where the DG started and where it ended when using the turn element version of the corpus. A
bit of planning for how an algorithm would traverse a corpus with no turn elements but keep track of turn
changes happened.

I found out that I definitely needed speaker attributes and not turn elements for speakers during the
following process. Using speaker attributes has a few advantages over speaker turn elements. One is that
the parsed DG corpus can later be run on my pattern frequency counting algorithm and the patterns that
are not involved in a DG can be counted. I parsed the corpus and still used the statistical algorithms for the
non-parsed corpus. Introducing DG elements would break those algorithms. I considered replacing turns
that create DGs with DG elements. But because turns can have more than one utterance, some turns are
involved in a DG at the beginning of the turn and some are involved in a DG at the end of the turn, or both.
And removing a turn that has only one end involved in a DG will not capture what happens at the other
end. And it is important for what is happening at the other end to remain in the corpus for analysis later on.
For example, if turn i and turn i+1 form a DG, but i+1 and i+2 do not form a DG, and I replace i and i+1
with a DG, the non pattern between i+1 and i+2 will no longer be in the corpus. I decided to to insert a DG
in between turns that formed a pattern. Doing this would make a pattern that the algorithm initially used
to parse the game no longer found by the algorithm. The parsing algorithm fails to see the pattern because
a DG has been inserted between the two turns and it splits the pattern. This is advantageous because I
can run the algorithm or a fairly similar one on a corpus that has been parsed and old patterns will not
be parsed a second time. Also, the parsed DG corpus can later be run on my pattern frequency counting
algorithm and the patterns that are not involved in a DG can be counted.

At first, I thought that the percentage of questions in a dialogue could be an indicator for a dialogue that
would have a large percentage of its utterances parsed.

11

Dialogue Percentage Is Questions
34 35%
893 34%
7 33%
17 32%
967 30%
261 29%
198 28%
56 28%
809 28%
891 27%

Without Utterance Conflation
Yes-No-Question 3893
Wh-Question 1531
Declarative-Yes-No-Question 1024
Open-Question 498
Rhetorical-Questions 212
Tag-Question 82
Declarative-Wh-Question 49
Total Parsed 7289
Total Utts in Games 31821
Percentage of Corpus 22%

Without Utterance Conflation
Dialogue DGs Utterances in DGs Total Utterances Percent
38 4 44 59 75%
1150 14 86 120 72%
888 12 56 78 72%
766 4 45 63 71%
129 3 54 81 67 %

With Utterance Conflation
Yes-No-Question 3881
Wh-Question 1522
Declarative-Yes-No-Question 1023
Open-Question 493
Rhetorical-Questions 212
Tag-Question 82
Declarative-Wh-Question 48
Total Parsed 7261
Total Utts in Games 19308
Percentage of Corpus 27%

12

With Utterance Conflation
Dialogue DGs Utterances in DGs Total Utterances Percent
1 3 13 18 72 %
100 15 42 62 71%
371 16 44 62 71%
888 12 32 48 67%
7 6 22 33 67%

First, I put DG elements at the turn change. Second, I added DG start and DG end attributes to utterances.
Adding attributes to utterances with out turns made the parsed corpus much easier to read. The values of
the DG start and DG end attributes were the corresponding counts for the DGs in a dialogue.

4.5 Noun Similarity QA DG Parsing

With this parser the breadth of the answer is now being limited to the utterances that contain the same
topic as the question or beginning of the answer (ie the immediately following utterance). To be able to
parse the corpus in this way, I came up with the idea that I would use a special version of the corpus. I
made a version of the corpus with noun attributes added to utterances. Then when I want to look up the
nouns for an utterance all that I have to do is grab the value for the the corresponding noun attribute.

To make the nouns attribute. I removed all special markup in the CDATA text (eg <laughter >, {F uh,
}). And I made sure that the algorithm did not remove apostrophes to preserve the words in the utterances.
Because the text in the CDATA elements usually is not perfectly grammatic, parsing this data to find the
nouns was not as reliable as I would have liked. Any thing that will work to prevent not parsing important
topic nouns needed to be maximized. Then I part of speech tagged words in utterances with NLTK’s part
of speech (POS) tagger. Since the utterances in the dialogues did not have perfect grammatical structure,
the POS tagging did not work with perfect accuracy (need to find a way to improve this. After the text was
POS tagged, I took all of the nouns with the following part of speech tags out

Tag Type Function
NN Noun singular or mass
NNS Noun plural
NNP Proper noun singular
NNPS Proper noun plural
PRP Persona pronoun
PRP$ Possessive pronoun

This list of nouns included what are considered to be stopwords. So I took the stopwords out of the list.
I added an attribute called nouns to the utterances in the corpus, and the list of nouns that I extracted from
the utterances got placed in the value of the utterances’ noun attributes. Since each utterance subsequently
contained a noun attribute with all its nouns, comparing the subject of an utterance to the subject of another
utterance could conveniently take place. I modified an existing parser in a way that took the subject of an
utterance into account when searching for the end of a QA DG.

13

The parser used the following algorithm: when there is a change in turns, if the first speaker gives a
question and the second speaker does not respond with a question parsing will take place. The nouns from
the first speaker’s question and the second speaker’s response are considered the QA nouns. If there are no
QA nouns the game start and end are simply marked appropriately in these two adjacent utterances. If this
is not the case, and the utterance following the second speaker’s first utterance is another utterance by the
second speaker, and it’s not a question, the utterance’s nouns are compared to the QA nouns. If the sense is
within .7 of each other, they are included in the game. This continues until the next utterance is a speaker
one, or a speaker two question, or a speaker two non-question that does not contain any noun with the topic
of any QA nouns.

This is an example taken from the corpus of a game:

Speaker A:
DA = wh-question, nouns = night:

And what night is it on?
Speaker B:

DA = hold-before-answer/agreement, nouns=[]
Well, we watched it,

DA = statement, nouns = times excuse friday night
The times we’ve seen it, it’s been like on Satur-, or, excuse me, Friday night.

DA = hedge, nouns = couple times
We’ve only seen it a couple of times.

I took some statistical information on parsed QA DGs from the corpus parsed with noun similarity. In
the corpus with no utterance conflation, there are 161 games that have 7 or more utterances. In the corpus
with no utterance conflation, 1 game has 5 or more utterances. In the corpus with utterance conflation, these
results sense because many of the utterances that are included in a game in the corpus with no utterance
conflation are likely would get conflated and that is what makes the numbers go down.

Without Utterance Conflation
Yes-No-Question 3893
Wh-Question 1531
Declarative-Yes-No-Question 1024
Open-Question 498
Rhetorical-Questions 212
Tag-Question 82
Declarative-Wh-Question 49
Total Parsed 6383
Total Utts in Games 15728
Percentage of Corpus 11%

Without Utterance Conflation

14

Dialogue DGs Utterances in DGs Total Utterances Percent
33 4 25 47 53%
891 6 23 49 47%
623 9 32 71 45%
34 5 23 58 4%
370 19 46 121 38%

With Utterance Conflation
Yes-No-Question 3881
Wh-Question 1522
Declarative-Yes-No-Question 1023
Open-Question 493
Rhetorical-Questions 212
Tag-Question 82
Declarative-Wh-Question 48
Total Parsed 6456
Total Utts in Games 14487
Percentage of Corpus 20%

With Utterance Conflation
Dialogue DGs Utterances in DGs Total Utterances Percent
1075 10 24 39 62%
33 4 10 17 59%
955 11 26 49 53%
772 6 16 31 52%
18 9 20 39 51%

4.6 Nested Games

The following statistics are for the simple QA parser. In the corpus without utterance conflation, there are
9386 questions. And the number of games parsed is 7289. So there are 2097 questions that are not parsed,
which is 0.22 percent of the corpus. In the corpus with utterance conflation, there are 8990 questions and
1729 parsed games. That mean 0.19 percent, or one third, of the questions are potentially part of a nested
game. I pulled text for dialogues that had questions that were not parsed. This showed many of the the
non-parsed games being part of nested structures, like expected.

The following statistics are for the noun similarity QA parser. In the corpus without utterance conflation,
there are 9386 questions. And the number of games parsed is 6383. So there are 3003 questions that are not
parsed, which is 0.32 percent of the corpus. In the corpus with utterance conflation, there are 8990 questions
and 2534 parsed games. That mean 0.28 percent, or one third, of the questions are potentially part of a
nested game. I pulled text for dialogues that had questions that were not parsed. This showed many of the
the non-parsed games being part of nested structures, like expected.

15

5 Future Work

Finding the topic of chunks of the dialogues would be a way to help improve the noun parsing that is done
to add noun attributes to utterances. The incorrect grammar of some utterances makes it important nouns
left out of the noun attributes. By dividing the dialogues up by topic, then the set of topic nouns can be
searched for in utterances. Therefore, a simple look up can be done at the same time that the POS tagging
is. The improvement over the current implementation would definitely be worth the work to format the
corpus in this way. Although, I have not figured out a way to represent the sections of topic in the XML.
This would have to be perused as well. It is different from giving utterances noun attributes because there
will be groups of utterances that are part of a topic. This additional meta data would need to be located
somewhere. Looking at the topic of the utterance that follows the DG ending can help build up sections of
dialogue corresponding to topics. This level of analysis could lead to interesting statistic on how many DGs
per topic happen in dialogues. Once the topic of a DG can be established, then the average number of DG
per topic can be found. This is valuable because it can be used to find probabilities of DGs continuing on a
certain topic after this number.

Since only a third of the corpus is parsed in to DGs, it would be interesting to find what is in between
the games. The first step is looking at how many utterances how many turns. Next, the types of DAs would
need to be looked at. While looking at the things in between the DGs, there would definitely be some nest
DGs found.

The current parsers are essentially parsing the inner most part of nested games. So moving out a level of
nesting is a great thing to work toward in the future. Finding the questions that tend to be at the beginning
of nested games would be valuable at this step as well. The statistics would help when they are used by a
dialogue management system to do probabilistic reasoning.

Of course, finding new type of games is also a good topic for future work. A new type of game maybe built
up from my simple QA DGs. For instance, a QA DG followed by an acknowledge/agree accept DA could be
considered a QA with Acknowledgment DG. Additionally, patterns with questions followed by or-clauses are
fairly common and neither of my parsers do anything with them. This functionality is a good investment
which likely will lead to other ideas for future work.

References

[1] Jean Carletta, Amy Isard, and Jacqueline Kowtko. HCRC dialogue structure coding manual. HCRC
Publications, University of Edinburgh, 1996.

[2] Jean Carletta, Stephen Isard, Gwyneth Doherty-Sneddon, Amy Isard, Jacqueline C Kowtko, and Anne H
Anderson. The reliability of a dialogue structure coding scheme. Computational linguistics, 23(1):13–31,
1997.

[3] Guillaume Dubuisson Duplessis, Nathalie Chaignaud, Jean-Philippe Kotowicz, Alexandre Pauchet, and
Jean-Pierre Pécuchet. Empirical specification of dialogue games for an interactive agent. In Advances
on Practical Applications of Agents and Multi-Agent Systems, pages 49–60. Springer, 2013.

[4] Ulrich Endriss, Wenjin Lue, Nicolas Maudet, and Kostas Stathis. Competent agents and customising
protocols. In A. Omicini, P. Petta, and J. Pitt, editors, Proceedings of the 4th International Workshop
Engineering Societies in the Agent World (ESAW-2003), volume 3071 of Lecture Notes in Artificial
Intelligence (LNAI), pages 168–181. Springer-Verlag, 2004.

16

[5] Debora Field, Simon Worgan, Nick Webb, Mark Hepple, and Yorick Wilks. Automatic induction of
dialogue structure from the companions dialogue corpus. In Proc. of Fourth International Workshop on
Human-Computer Conversation. Citeseer, 2008.

[6] Joris Hulstijn. Dialogue models for inquiry and transaction. University of Twente, 2000.

[7] Joris Hulstijn and Nicolas Maudet. Uptake and joint action. Cognitive Systems Research, 7(2):175–191,
2006.

[8] Antonis Kakas, Nicolas Maudet, and Pavlos Moraitis. Flexible agent strategies and societal communi-
cation protocols. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors, Proceedings of the
3rd International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS-2004),
pages 1434–1435. ACM Press, July 2004. Extended abstract.

[9] James A Levin and James A Moore. Dialogue-games: Metacommunication structures for natural lan-
guage interaction. Cognitive science, 1(4):395–420, 1977.

[10] Ian Lewin and Mill Lane. A formal model of conversational game theory. In Procs. of the 4th workshop
on the semantics and pragmatics of dialogue (Gotalog 2000). Citeseer, 2000.

[11] Nicolas Maudet and Brahim Chaib-Draa. Commitment-based and dialogue-game-based protocols: new
trends in agent communication languages. The Knowledge Engineering Review, 17(2):157–179, 2002.

[12] Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie Meteer. Dialogue act modeling for automatic
tagging and recognition of conversational speech. Computational linguistics, 26(3):339–373, 2000.

[13] Nick Webb and Michael Ferguson. Automatic extraction of cue phrases for cross-corpus dialogue act clas-
sification. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters,
pages 1310–1317. Association for Computational Linguistics, 2010.

17

	Introduction
	Related Work
	Dialogue Structure
	Dialogue Acts
	Dialogue Games

	Methods and Design
	Approach
	Corpus Preparation
	Tools Intro
	Initial Work
	Question Answer(QA) DGs
	Noun Similarity QA DG Parsing
	Nested Games

	Future Work

