
PROBLEM

BACKGROUND

Senior Project – Computer Science – 2013

Visualization of Parallel Programming
Andrew Schwartz

Advisor – Prof. Valerie Barr

http://research.cs.vt.edu/AVresearch/MPI/

DESIGN GOALS

IMPLEMENTATION

CONCLUSIONS

Mainform.cs 407-425

The program uses OO programming paradigms to represent a model of 
each configuration as an object. Configurations then encapsulate a set 
of nodes which carry both state information and profiling statistics. The 
custom Tab View’s paint method is overwritten to display the current 
configuration’s state given its model. The simulation emits events that 
modify the state of a model. Thus, through a specially crafted series of 
events determined by the topology and function, we can simulate each 
step of the algorithm and update the view accordingly.

WinForms UI
• WYSIWYG 
• Quickly iterate changes
• Spend more time on 

code rather than UI
Custom Tab View

• Overwrite paint
• Becomes canvas for 

visualization

For each topology, a specific set of events needs to be crafted to 
accurately simulate the function on the given topology. Topologies 
were restricted to rings and trees for this reason. An algorithm to 
construct the proper set of events for each function dynamically 
creates the queue at runtime for the user-defined topology. The 
bookkeeping for profiling information takes place in the event queue 
handler which adjusts each node’s state depending on the type of 
event emitted.

C#.NET
• Visual Studio IDE
• WinForms Compatible
• OO
• Cross-platform with 

Mono (UNIX/Windows) 
• Java-like familiar syntax

• But don’t have to 
use Swing/other UI

Parallel programming visualization as a teaching aid has been attempted 
before by Virginia Tech, but lacks important profiling features. Parallel 
program profilers report too much information for use as a teaching aid, 
and are generally meant for developers optimizing their code, not 
students trying to learn the paradigms.

MPIViz (2008)
• Developed at Virginia Tech
• Options very limited

• Number of nodes
• Function

• Information very limited
• Log and visual cues
• No numerical data

• Core design challenges of the project were met
• Some quality of life/usability functionality still left to be completed
• Extendable project design, just need to come up with algorithms to 

construct new event sets and it can be added
• Port to UNIX while simple through Mono migration, hasn’t been 

tested.
• Initial results seem promising but still need to test the efficacy in 

the classroom.

The minimalistic design of MPIViz has good usability, but lacks features 
that could prove beneficial to understanding the effects of different 
topologies on different function calls.
The goal is to retain the positive attributes (usability, visual cues) of 
MPIViz, while also intuitively incorporating more information.

• Retain
• Colorful nodes
• Connection 

highlighting
• Log

• Add support for:
• Multiple 

configurations
• Node analysis
• Different 

topologies Created in Balsamiq Mockups

Conventional teaching methods for 
introductory courses in parallel 
programming insufficiently explain the 
data flow of a network during standard 
parallel programming design patterns. 
This can lead to poor design decisions 
when developing an application. 
Students are taught with static diagrams 
when the execution of a program is 
inherently dynamic. In order to fully 
grasp the underlying methods behind 
message passing in a network, it is 
necessary to see an active visualization 
of the process.

Objective: Create a tool to aid in teaching best practices of parallel
programming through the use of profiling and visualization of simulated
standard message passing function calls in a user-defined network topology.

http://goparallel.sourceforge.net/

This static diagram illustrates the 
difficulty in conceptualizing data 
flow in a parallel program. 

http://research.cs.vt.edu/AVresearch/MPI/
http://goparallel.sourceforge.net/

