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Abstract

The field of robotics presents a unique opportunity to design new technologies that can collaborate with

humans to solve interesting problems. This is especially important in cases where a task is too difficult or

dangerous, such as war. This project serves to bridge a gap within the field of Human-Robot Interaction by

presenting a robust gesture recognition interface that can recognize gestures and translate these into actions

for a robot to perform. The system uses the Xbox Kinect and Willow Garage’s Robot Operating System

(ROS) to recognize a set of seven military gestures. My system accurately recognizes complex sequences of

gestures and performs a preset action for each gesture.



1 Introduction

Robots exist in a very small space in our world today. Despite the great potential they possess, they are

not widely used throughout the world. We must aim is to find better applications for their capabilities and

eventually implement them to perform everyday tasks. Nevertheless, one pressing issue we must address is

making our interactions with these machines as efficient and natural as possible. The field which focuses on

improving our communication with robots is called Human-Robot Interaction (HRI). My research looks to

contribute to the field of HRI by presenting a robust gesture recognition interface. The motivation behind

this research is the need for robotic systems to operate in less than ideal conditions where speech is not a

viable or optimal solution (e.g. loud environments, gunfire exchange). Natural gestures, like hand movements

and pointing, are one of the many ways we communicate as humans and by implementing an interface that

resembles human-to-human interaction we are bridging a communication gap and making HRI more natural

and intuitive. Nevertheless, gestures are inherently complicated and indeterminate; therefore, I have chosen

to focus on military hand signals because they are a set of gestures with specific meanings. Unlike gestures

used in everyday settings, military gestures map 1-to-1, for example there is only one gesture that signals

soldiers to freeze. This allows me to maintain a controlled research environment. For the purpose of military

tasks this gesture recognition interface is very useful for soldiers looking to communicate with the various

robot systems that are currently being deployed in field ops [9]. The question I seek to answer with this

research is: How do we give a robot a sequence of natural gestures to interpret and act upon? A sequence

in the context of this project will be described as set of instructions given to the robot by the user to be

executed in succession.

Outline Section 2 gives an overview of previous work and the current look of HRI. Sections 3 and 4 go over

the progression of my system, from initial approach to final implementation. Section 5 presents experimental

results and, finally, section 6 presents future work.
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2 Background and Related Work

2.1 Image Manipulation

Gesture recognition has relied heavily on the advancement of image manipulation. Most systems today

use some form of image manipulation to recognize patterns and establish relationships to specific gestures.

William T. Freeman and Michal Roth [3] go over orientation histograms and methods of recognizing gestures

based on image manipulation. This research shows some early issues related to image manipulation such as

lighting and varying positions. Freeman and Roth used histograms of local orientations so their classifications

would be independent of lighting changes and position. Image manipulation is critical to the improvement

of gesture recognition as it allows us to focus on specific features that we want to track.

2.2 Multimodal Systems

More recently research has geared towards the implementation of multimodal systems; these are systems that

take in more than one form of input and intelligently fuse these to better interpret a user’s intentions. These

systems tend to be very successful because they use more than one modality (e.g. speech and gestures)

and intelligently combine these to better understand the user. Rogalla et al [6] developed a multimodal

system using an event management system to delegate commands to a robot based on the current state of

the environment and the user’s speech and gesture input. The event management system transforms user

input into actions and fuse incoming events that are related. The system was very successful, correctly

classifying 95.9% of gestures. Another multimodal system was presented by R. Stiefelhagen et al [7], in

which various methods are discussed for detecting gestures and combining these with speech commands.

An interesting feature of this system is that it takes into account the users head pose, as this is a huge

indicator of communication. Stiefelhagen explored HRI in the context of a kitchen scenario and used head

pose estimation and point gesture recognition to successfully communication commands to a robot. Another

multimodal system was explored in [5].
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Figure 1: Microsoft’s Xbox Kinect.

2.3 The Xbox Kinect

Microsoft inadvertently revolutionized robotics with its Xbox Kinect hardware (Figure 1). It provides a very

cheap and easy to use solution for depth imaging and 3d point cloud data. K. K. Biswas [2] uses this hardware

to detect various gestures. His method uses depth information from the Kinect and image manipulation to

isolate the user from the background. Once this preprocessing occurs, the algorithm then focuses on regions

of interest and creates a histogram of the current gesture. Finally a multiclass SVM is trained to recognize

the gestures based on the histograms. The Kinect has also been used to develop a control-free interface for

accessing medical images [4] and general human detection [8].

3 First Approach

This project began as a multimodal system before moving specifically into the gesture recognition domain.

I initially planned to combine gesture and speech information to control a robot as was done in the work

of Rogalla [6] and Stiefelhagen [7] however I soon realized this was beyond the scope of my thesis. Given a

time constraint of 10 weeks and the complexity of the event management system necessary to control such

a system, I moved away from a multimodal system to a strictly gesture-based system. What ultimately led

to this decision was Cornell’s research on military gesture recognition, which I based my project on.

When I was still in the beginning stages of my research on multimodal systems, I looked into Carnegie

Mellon University’s CMU Sphinx speech recognition toolkit. This is a cross-platform open source toolkit to

develop speech recognition systems. The advantage of multimodal system over a unimodal system is that it

is more robust because it analyzes information from more than one modality; so if say the gesture recognition
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Figure 2: my gesture recognition interface was integrated into Union College’s giraffe robot.

were to fail or generate erroneous data, the speech recognition would ccorrect the outlier and generate the

correct output. A multimodal system would have been a better solution, but based on time and complexity

it was out of scope for this project.

After deciding to stay away from multimodal system, I began looking into the MIT Kinect Hand Detection

ROS package for more accurate gesture recognition. This package tracks the left and right hand of the user

based on point cloud data. I also planned to use the pi face tracker package to track head pose and eyes

similar to [7]. I ended up using a similar approach to Cornell’s Personal Robotics Laboratory, which used

the Xbox Kinect to track the user skeleton and used a classifier to recognize arm gestures. The following

section explains the final implementation of my system and how it works.
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left_shoulder: 0.35, 0.12, 2.19 
left_elbow: -0.18, -0.10, 2.02 
left_hand: -0.13, -0.34, 1.924 

Figure 3: Diagram of each step taken to perform a gesture recognition.

4 Methods and Design

4.1 Overview

I implemented my system on Union College’s Giraffe robot seen in Figure 2. The system is composed of

four phases: user input, recognition, classification and output. The user input phase begins when the user

stands in front of the robot and performs a gesture. This is followed by the recognition phase where the

Kinect reads in the X, Y, Z coordinates of the left arm of the user. We look specifically at the left arm

because this is the arm used in the military to signal commands to soldiers. During this same phase these

coordinates are transformed into angles. I explain what these angles represent and how they are generated in

Section 4.3.2. The next phase is classification. The angles from the recognition phase run through a classifier

that determines the gesture being performed and stores this gesture in a sequence. These first three phases

repeat until the execute gesture is performed. Once the system receives the execute gesture, the output

iterates through the sequence and sends commands to the robot for it to move. Figure 3 shows a high-level

interpretation of this control flow.

4.2 Gestures

This system can recognize a set of seven military gestures. The gestures are STOP, FREEZE, LISTEN,

RIFLE, COVER, STOP and ENEMY. As of now the system only allows the user to perform static gestures,

but in Section 6 I present ways to implement dynamic gestures. The RIFLE gesture is arbitrarily used as an

execute command to tell the system when to begin the output phase. An image of each gesture is provided

at the end of this paper.
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Figure 4: Graph showing the relationship of the nodes in the system

4.3 Nodes

The software design is composed of six main nodes inside the Robot Operating System (ROS). ROS is a

platform developed by Willow Garage to standardize programming in robotics and make the process more

efficient. ROS operates using nodes and messages. Nodes are executable files and messages are data; Nodes

interact by publishing and subscribing to messages from other nodes. There are six main nodes operating in

my ROS environment and they are openni tracker, kinect listener, gesture recognizer, classifier, add gesture

and AER Driver. Figure 4 displays a graph generated by ROS of all the nodes in the system.

4.3.1 Openni Tracker

The openni tracker node is provided by OpenNI and it uses the Kinect hardware to track the user’s skeleton

(Figure 5). Using the Kinect’s depth information, the node publishes frames containing X, Y, Z coordinates

of different parts of the users body. Here is a sample output of openni tracker:
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Figure 5: Visual of user’s skeleton being tracked by the openni tracker node provided by OpenNI.

head: -0.208168, 0.362528, 2.247084 | 0.111806, 0.014298, 0.041540, 0.992759

neck: -0.190124, 0.141407, 2.196289 | 0.111806, 0.014298, 0.041540, 0.992759

torso: -0.173044, -0.091958, 2.143523 | 0.110194, 0.014691, 0.037494, 0.993094

left_shoulder: -0.358859, 0.12825, 2.1998 | 0.165864, 0.72583, -0.4794, -0.464566

left_elbow: -0.186129, -0.10265, 2.0264 | -0.325417, -0.581837, 0.49569, 0.556648

left_hand: -0.133285, -0.394494, 1.924446 | 0.00000, 0.00000, 0.00000, 1.00000

If you look closely the data is broken up into two parts, three values on the left and four values on the

right. The values on the left are X, Y, Z coordinates, the values on the right represent rotation. My system

only takes into account the values on the left and this data is handled by the kinect listener node.

4.3.2 Kinect Listener

The kinect listener transforms the X, Y, Z coordinates from openni tracker into the angles (θhand, φhand,

φelbow, θelbow). This is done by using an algorithm to convert the coordinates from Cartesian to Spherical.
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The angles θhand/φhand represent the position of the hand in respect to the elbow and the angles φelbow/θelbow

represent the position of the elbow in respect to the shoulder. The reason for using these angles instead of

the X, Y, Z coordinates provided by the kinect is so we can accurately classify gestures independent of the

position and size of the user.

4.3.3 Gesture Recognizer

Essentially, the gesture recognizer node is a delegate node. It subscribes to the data published by the kinect

listener and decides what to do with it. Gesture recognizer distributes the pose data generated in kinect

listener to either the classifier node to classify the gesture, or to the add new gesture node to be stored in a

training dataset. When gesture recognizer send data to classifier it receives a response message containing

the gesture the user has performed, and based on this message it generates a message to tell the robot to

move. These messages are composed in the form of cmd vel ROS messages which take an X, Y, Z parameter.

4.3.4 Classifier

The classifier node takes in handPhi, handTheta, elbowPhi, elbowTheta and uses this information to deter-

mine the gesture that is being performed by the user. The algorithm is a C4.5 decision tree created using

the WEKA [1] machine learning suite. This node returns its output back to gesture recognizer. Here is an

example output of C4.5 decision tree generated by WEKA:

handTheta <= 0.48988

| elbowTheta <= 0.865855: rifle (150.0)

| elbowTheta > 0.865855

| | elbowTheta <= 1.029816: listen (150.0)

| | elbowTheta > 1.029816: freeze (150.0)

handTheta > 0.48988

| handTheta <= 1.536201

| | elbowTheta <= 1.029816: cover (150.0)
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| | elbowTheta > 1.029816

| | | elbowTheta <= 1.770026: abreast (150.0)

| | | elbowTheta > 1.770026: enemy (150.0)

| handTheta > 1.536201

| | handTheta <= 2.562422: stop (150.0)

| | handTheta > 2.562422: antigesture (150.0)

4.3.5 Data Collection / Add New Gesture

I developed a data collection node as a means to efficiently collect data and format it. This node takes

subscribes to gesture recognizer to receive pose data messages and then formats and stores this data into a

master CSV file containing all the training data for our system. This node collects 150 frames of pose data

and adds it to the training dataset. Currently this node can collect data from the user and add it to the

training dataset, however the decision tree in classifier has to be manually updated for the new data to take

effect. Once I had this node running I thought it would be interesting to be able to have the option to add

new data to the training set on the fly. From this idea came the add new gesture node. Although it was

not originally part of the design of the system, I decided to add this feature because it would allow users to

customize their experience with the interface and use gestures that are most useful to them. As of now add

new gesture is not fully implemented because of difficulties using the WEKA suite inside of python.

4.4 Handling Errors

With a system that requires robot action, it is important to handle erroneous data so that the correct

action is performed. My system handles this by conducting multiple recognitions before any command is

sent to the robot. When the same gesture is recognized in sequence the system is more confident that it

is the correct gesture. For the gesture to be added to the final sequence it has to be correctly recognized

10 times consecutively. After a gesture is recognized, it is stored in an array of gestures. The system also

handles errors for gestures that are incorrectly recognized when the user is not performing a gesture. This is
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accomplished by introducing the anti-gesture to the list of gestures that can be recognized. The anti-gesture

is recognized when the user has their hands to their side, however it is not added to the sequence when

recognized. This prevents the system from incorrectly recognizing gestures where the users hands are below

the waist (e.g. STOP).

5 Results

As a result of this project, I have developed a gesture recognition interface that can successfully identify a

set of 7 military gestures with a very high accuracy. This system is capable of handling a boundless sequence

and execute an action for each gesture in that sequence. THe accuracy with which the system can recognize

gestures is 82%. The system does very well in live demos however the accuracy is lower than expected because

the system fails to recognize the LISTEN gesture correctly; it tends to confuse LISTEN with COVER. All

other gestures are recognized at a clip of +93% aside from the LISTEN gesture. I provide suggestions as

to how my system can achieve a higher accuracy in the following section. From here we can expand on the

system and experiment with other domains outside the military (e.g. social robotics, medicine, etc.).

6 Future Work

Much work can be done to improve the overall effectiveness of the system. We can start with enhancing the

openni tracker node. Before openni tracker can begin to collect data from the kinect it must first go through

a calibration phase where the user has to maintain a Psi pose for a few seconds. This is not characteristic of

a natural interaction and the system would definitely work better if it was able to omit this step and allow

for fluid interaction. Another improvement would be handling of dynamic gestures. One way we can do

this is to partition a dynamic gesture into static gestures and have our system recognize these as individual

gestures. We can account for the dynamic gesture by treating the static sub-gestures as its own sequence

and verifying that each gesture recognized is associated with the dynamic gesture. The classifier can also be

modified to use a more sophisticated algorithm such as a State Vector Machine with feature vectors. This

would allow us to recognize a wider range of gestures and with high accuracy. Finally, this system can be

10



coupled with a speech recognizer to form a multimodal system for robust Human-Robot interaction.
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Figure 6: COVER gesture

Figure 7: FREEZE gesture
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Figure 8: ENEMY gesture

Figure 9: STOP gesture
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Figure 10: RIFLE gesture

Figure 11: ABREAST gesture
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Figure 12: LISTEN gesture
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