
Alex Likos

Final Paper 1

3/18/10

Controlling a Sailboat with an Artificial Neural Network

Introduction

Ever since I saw The Matrix I have been interested in the idea of machines with human

capabilities, which is more formally known as true artificial intelligence. The most basic aspect

of the human brain is it's ability to learn, so I feel that the first step towards a true AI is getting a

computer to learn how to do a real world activity and be able to perform the task as well as a

human.

Sailing is a perfect example of a real world activity that would be difficult for a computer

to perform, partially because it is also difficult for a human to perform. The task of sailing a

boat, as with any real world problem, involves a great deal of information processing. Observing

things like wind movement, current, and combining that information with the sail position One

could hard code every known situation that a sailor could encounter on the water, but the

resulting program would be huge and inflexible, since one cannot fully account for every

situation on the water. On top of which a human pilot has access to a far better system of sensory

input and information processing than a computer does. Human sensory input gathers

information from a longer range and with greater accuracy than computer sensors could ever

have and the human brain can process that input with the equivalent power of 12 billion 60 Hz

processing cores.

It is because of this that I am using an artificial neural network to tackle this task. Neural

networks are good at processing information. After it is trained, a neural network can quickly

analyze large amounts of data and generating correct output. However, as powerful as they are

once they are trained, they can only perform the task for which they are trained and they can be

trained incorrectly or incompletely. That is what makes them so interesting.

Because of the expense and time limitations of using a real boat in this project, I will

train a back propagation neural network to pilot a boat using a sailing simulator.

Background

The Artificial Neuron

The basic computational element in a neural network is the artificial neuron. Each neuron has

connections for both input and output. Each connection has an associated weight, which can be

modified in order to model synaptic learning. The neuron contains an activation function that

takes the weighted sum of its inputs and calculates the output for the neuron. The most

commonly used activation function is the sigmoid function, due to the fact that it tends to allow

the neural network to reach global optima better than any other activation function

Drawing 1: Representation of an artificial neuron

Drawing 2: Graph of a sigmoid function

The Artificial Neural Network

An artificial neural network (ANN) is a computational model that tries to simulate

learning. The system is implemented as a network of interconnected processing elements that

mimic the function of neurons in the brain. For that reason, these simple processing elements are

also called neurons.

Neurons in the brain look like little balls with threads that branch off and connect to other

neurons. They function as very simple processing units. An individual neuron takes an input

signal, manipulates it in some way and send it out to the other neurons it is connected to, which

in turn does the same thing. The artificial neurons in the ANN function in a very similar way. A

basic ANN has a layer of input nodes, a layer of hidden nodes and a layer of output nodes. The

input nodes contain data given to the neural network that will be manipulated to calculate the

value(s) in the output.

The hidden layer contains nodes that function as neurons. Unlike input and output nodes

which contain values, they contain an activation function. The functions take the combined

values of all the incoming signals and allow a portion of the value at that node to pass through to

the output nodes. If this function is a stepwise function, the activation function behaves more like

an activation level. If the activation level of a hidden node is reached or exceeded, the value at

that hidden node is sent to the output level. Otherwise the node does not activate and no signal is

sent out from that node.

An important difference between real neurons and artificial neurons lies in the properties

of the connections between the neurons. Connections between real neurons are considered “loss-

less” which means that the signal does not change from the time it is sent out of one neuron and

received by another. Connections between artificial neurons are weighted so that the value

changes as it is passed from node to node. These weighted connections are the property that

allow the artificial neural network to learn.

In the above example, the value given to the first (top) hidden node is the sum of the

value in the first (top) input node multiplied by the weight of its connection to the first hidden

node and the third (bottom) input node multiplied by the weight of its connection to the first

hidden node. The boxed value in each hidden node is the activation level. The only hidden nodes

that are activated are the the first and third because the combined value of their inputs reaches or

Illustration 3: simple multi-layer, not-fully-connected neural network with input data
propagated through the network and the calculated output. B

Breakdown of top hidden node value: HN1=(.6*.5)+(.3*.4)=.42

 TopInputNode=.6; weighted val=.3

 BottomInputNode=.3; weighted val=.12

exceeds the activation level of those nodes. From there the output value is the sum of the value

coming out of the activated hidden nodes multiplied by the weights of their connections to the

output node.

Training Humans vs. Training ANNs

The learning process for an artificial neural network learns is very similar to the learning

process for a human. Humans generally have a teacher when they first start learning a new skill.

That teacher can be a book or another person. The teacher first explains what the student needs to

observe about their surroundings in order to successfully perform the activity. They are then told

what parts of their environment they have direct control over. After that, the student is given a

rough idea of how to use the information they observe to decide how to best utilize their control

over the environment. Once the student has all this information, they must practice in order to

become better. For a human, practice can be considered self-training because we are able to

come up with new test situations, on the fly. This is where the human brain's ability to learn

surpasses that of an artificial neural network.

Everything that was just mentioned about the human learning process has an analogue in

the learning process of an artificial neural network. The setup of the input and output nodes is

analogous to a person being told what to observe and what they can control. The difference being

that the training aspect requires more work on the part of the teacher. A neural network learns by

observing rather than learning-by-doing. For this reason the teacher must know or be able to

calculate the desired output for a set of input data. In order to learn, once the network has

calculated what it “thinks” the output should be, the actual output must be compared to the

desired output in order to calculate error. Some algorithm will use this error to adjust the weights

in some way so as to minimize the error. This algorithm is the most important part of the learning

process because the weight adjustment is what actually simulates learning in the neural network.

Back-Propagation

There are many different algorithms to facilitate the learning process. The most

commonly used algorithm is known as back-propagation or back-propagation of error. This

algorithm compares the set of output values to a set desired value to calculate the error in the

network. The error propagates backwards from the output nodes to the inner node, changing the

connection weights so that the actual output will approach the desired output. The back-

propagation algorithm falls under he category of supervised learning. Which means that the

network is trained by a teacher that knows what the optimal output for the given set of input

should be, which in this case is a large set of input and optimal output data. The process for back

propagation learning goes as such:

1. Present a training sample to the neural network.

2.
 Compare the network's output to the desired output for that input.
Calculate the error in each output neuron.

3.
 For each neuron, calculate what the output should have been, and a
scaling factor, how much lower or higher the output must be
adjusted to match the desired output. This is the local error.

4. Adjust the weights of each neuron to lower the local error.

5.
Assign "blame" for the local error to neurons at the previous level,
giving greater responsibility to neurons connected by stronger
weights.

6. Repeat from step 3 on the neurons at the previous level, using
each one's "blame" as its error.

This algorithm tries to find what nodes are contributing the most error to the output and

reducing it by adjusting the weights.

The ALVINN System

The ALVINN System1 is a DARPA sponsored project to make an autonomous land vehicle

controlled by an artificial neural network. This project has particular relevance to my own,

because my goal at the end of this project is to have a neural network that can drive a real boat,

despite the fact that I am not using a real sail boat to train the neural network.

Josh Bongard's Work on Resilient Machines

The project regarding resilient machines2 was my inspiration for using a simulator to train my

artificial neural network. This project shows that it is possible to teach a neural network how to

do a real world activity by training it in a realistic simulator.

Project Details

Overview

Artificial neural networks sometimes require prohibitively long training times and large

training data sets to learn interesting tasks. As a result, few attempts have been made to apply

artificial neural networks to complex real-world perception problems like sailing a boat or

driving a car. The goal of this project is to teach an artificial neural network how to pilot a small

sailboat using a back-propagation algorithm. However, trying to train the ANN with a real

sailboat and a bunch of sensors will be both expensive and time consuming. After researching

Josh Bongard's work on resilient machines, I have come to the conclusion that it is theoretically

possible to train a neural network to perform a real life task with a simulator that closely models

the real world. So, I will train the neural network using the sailing simulator, Sail Simulator 5,

developed by Stentec Software. It has very accurate boat handling and environment physics,

which makes it an ideal simulator for training an ANN that could pilot a sail boat in real life.

As previously mentioned, back-propagation neural networks need a teacher in order to

learn. I will function as the teacher because I can use the navigational tools in the simulator to

confirm that I am sailing the boat in an optimal fashion. Which means that the set of desired

output will be generated the simulator.

Sail simulator 5 is able to send environmental data such as wind speed and direction to a

hardware serial port. It outputs information using the National Marine Electronics Association

standard format, that is used as input by most GPS navigation systems. To gather this

information, I will use a COM port emulator to create a virtual COM port. The output from the

game will be sent to the emulated COM port and I will capture that data with a COM port

monitor that will write the data from the game to a text file. The text file will contain the all the

necessary input data and the desired output data for the neural network and the neural network

code will grab information from this file as necessary.

Once the network is trained, I need to be able to test it by allowing the network to sail the

boat on its own . To do this, I am going to need be able to stream data from the simulator to my

neural network and then get the output from the neural network into the simulator.

The Function of the Neural Network

Since the network is performing the function of the skipper, it makes sense that it should

be presented with the same input that a skipper observes while he sails. Namely

Picture 1: Screen shot from Sail Simulator 5. Sail boat
flying a spinnaker

Picture 2: Screen shot from Sail Simulator 5.

1. Boat facing(direction of movement)

2. Wind speed

3. Wind direction

4. How much the boat is heeling

5. How the skipper is distributing his weight to counteract the heeling of the boat

6. The location of a waypoint (a desired location)

The output of the neural network should be the the factors of the environment that the

skipper has direct control over. Namely:

1. The position of the sheets(the ropes that one uses to control the sails)

2. the position of the rudder

The network will also return a decision to tack(turn the boat across the wind while

keeping the sheets in the same position). This is a technique that must be learned in order to sail

upwind.

Project Status

Sail Simulator 5

Sail Simulator 5 was modified to output the information I need to give to the neural

network. However, when a variable was in transit, for instance when the boat facing, sail position

or rudder position was changing, the data became extremely noisy. This was extremely

detrimental to the reliability of several important variables variable. Because of this, I was unable

to use the simulator output as input for the neural network. However, using the simulator, I was

able to take fairly accurate physical measurements of the necessary data. I took measurements of

the optimal sail angle on the screen with a protractor and used the various navigational

instruments in the simulator to gather other necessary information. With this data I made a

database that generated the information in place of the simulator. It generates, wind speed and

direction, boat speed and direction along with boat and waypoint gps coordinates and the sail and

rudder position.

The Neural Network

When I ran the information generated by my sail sim database through the neural network

after 10000 training iterations my neural network output yields an error of .02 in the rudder

position and an error of .000005 in the sail position. After 20000 iterations rudder position error

is .004 and sail position error is .000002. After 80000 iterations, rudder position error is .002 and

sail position error is .0000005. after 100000 iterations, rudder position error is .0002 and sail

position error is .00000002.

Feedback Test

I added a method into my sail sim data base that used my neural network to calculate rudder and

sail position instead of using the database's native methods. The data generated in the feedback

test did not deviate from the information generated by the training set by more than .0007

degrees on the rudder position and 1.2*10 -7 degrees in sail position.

Conclusion

The ultimate goal of this project is very similar to the goal of the ALVINN project: to

create an artificial intelligence unit that can navigate a vehicle with no post-training human

intervention and both projects yielded reasonably successful results.

The very low error in the output values of my neural network leads me to believe that the

network has successfully learned how to sail and it does so in a relatively short amount of time.

The ALVINN developers found that on average their network was able to take over control of the

vehicle after 5 minutes of training, but they had a much larger training set and more hidden

layers.

The main issues I ran into over the course of my project was caused by the sailing

simulator. The original plan was to use the pre-modified simulator's capability to produce NMEA

output and write an NMEA translator to get the data for the ANN. But, I later learned that the

NMEA format is proprietary and access to a translator is expensive. The Stentec developers

turned out to be generous enough to modify their code for me, but the data stream was too noisy

to be useful. This became apparent too late into the project to ask stentec to fix the noise issue,

which prompted the creation of the database. Since I am confident that my measurements were

correct, I am confident that if I was to get the data link to work properly and used its output as

input for the simulator, that the Neural network would have no trouble learning how to sail the

boat in the simulator.

At the very least, this project explores some fairly new territory in the field of artificial

neural networks. According to Dean Pomerleau, One of the developers of the ALVINN system,

very few attempts have been made to use sensor input to an artificial neural network to perform a

real world perception problem. Although my project does not deal specifically with the real

world, it is using the same kind of information that is obtainable from digital sensors, and if Josh

Bongard's resilient machines are any indication, a neural network that was trained using data

generated by realistic simulator will perform just fine in the real world.

References

1. The ALVINN Project Home Page: http://ftp.utcluj.ro/pub/docs/imaging/Autonomous_driving/
Articole%20sortate/CThorpe/ALVINN%20Project%20Home%20Page.htm

2. Efficient Training of Artificial Neural Networks for Autonomous Navigation
Dean A. Pomerleau
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213 U S A

3. Resilient Machines Through Continuous Self-Modeling
Josh Bongard, Victor Zykov, and Hod Lipson (17 November 2006)
Science 314 (5802), 1118. [DOI: 10.1126/science.1133687]
{http://www.sciencemag.org/cgi/content/abstract/314/5802/1118}

4. Dayhoff, Judith E., DeLeo, James M.
Artificial Neural Networks, Cancer Vol 91, 2001
CP: Copyright © 2001 American Cancer Society
Complexity Research Solutions, Inc., Silver Spring, Maryland; Clinical Center, National
Institutes of Health, Bethesda, Maryland
1.

http://ftp.utcluj.ro/pub/docs/imaging/Autonomous_driving/Articole%20sortate/CThorpe/ALVINN%20Project%20Home%20Page.htm
http://ftp.utcluj.ro/pub/docs/imaging/Autonomous_driving/Articole%20sortate/CThorpe/ALVINN%20Project%20Home%20Page.htm
http://www.sciencemag.org/cgi/content/abstract/314/5802/1118

