
Mark Weston 5/12/05

Professor Almstead: CSc 197

Background Paper: The Current State of Cryptography Implementations

Cryptography's main strength lies in its solid mathematical foundation, a foundation that

is independent of implementation. However, with the advent of the computing age, cryptography

has been adapted and implemented in computers to secure transmissions and protect data from

prying eyes. As my project proposes using the RSA and El-Gamal cryptosystems in the context

of an online tool, it would be useful to explore the state of current implementations.

Implementation difficulties will be explored, as well as the feasibility of attacking these two

systems. This research will enable a project that will provide greater levels of functionality to the

user.

As mentioned above, the mathematical basis of cryptography is solid. The currently

successful and popular cryptosystems have been subjected to a rigorous peer review process.

Many of them are arguably unbreakable within a 'reasonable' amount of time. By 'reasonable' I

mean a finite amount of time an attacker would be willing to invest, given current hardware.

Unless we see an epic increase in processing power or a significant advancement in number

theory, the length of time to complete many of these attacks will continue to be measured in

years [4].

If this is true, we should be living in a privacy dream world. Why then, do some mistrust

the protection that cryptography offers? Many are very wary of giving out personal information

online, even to recognized parties. Online shopping is convenient, but who knows what is

really happening to your credit card number as it sails out across the Internet. The problem has

to do with the current implementations of recognized cryptosystems [2].

 The mathematics behind cryptography gains considerable strength by using problems

that, by principle, are difficult to solve. The implementations of those problems, however, lack

the same kind of validation and proof. They are done by people, people who can and do make

mistakes. In addition to the cryptosystem itself, there is a massively complex 'context' that is

needed to provide services to end users [2]. The lesson here is that cryptographic algorithms and

protocols, if implemented and used correctly, can be a powerful aid to a software system.

Although I will be focusing on a single user, it is important to realize is that implementation can

be tricky.

One example of an implementation difficulty could be prime generation. Although

normally the generation and testing of very large prime numbers can can be difficult, some

lenience is given here due to the probable requirements of the project. As the problems assigned

in the course are meant to be worked out by students, by hand, the primes needed are unlikely to

exceed 4 decimal digits. However, if more advanced functionality is needed, it may be

worthwhile to allow for the creation and testing of large prime numbers. This could be

accomplished by starting with a large number, then iterating it and successively performing

primality tests on it to see if it is 'probably prime'. This will usually result in numbers that are

very unlikely to be composite, usually not exceeding a chance of 1 / 2 ^ 100. There are a variety

of algorithms available to do this, with varying speeds and difficulty of implementation [5]. This

subproblem of prime generation and prime testing proved to be very interesting and could be

used as a way to add 'Computer Science' rigor to the project.

A second area of difficulty for implementation lies in the modular arithmetic central to

one of the cryptosystems to be used – RSA. Specifically, a fair amount of modular division and

exponentiation need to be performed when performing this method. Java provides a useful math

class called BigInteger that provides these methods. In addition to methods dealing with

modular arithmetic, other useful cryptographic methods are implemented, such as GCD and

prime generation [6]. Although it probably won't be needed, this class will be available if I'm

looking for a way to test my implementations. This will probably not be used in my project

simply because its great strength – a powerful class library, is offset by its inflexibility. If

something needs to be changed or done in a different way, I would be stuck with what the class

gives me.

A third area of difficulty for implementation has to do with picking/generating some of

the values used in the RSA cryptosystem – p, q, n, e, and d. Although it has been mentioned

before that the requirements of this tool will be less strenuous than most, flexibility should be

required. A truly successful implementation should be able to generate and work with large

primes p and q, a large modulus n, and encryption and decryption constants e and d. Poorly

chosen values may still accurately decrypt/encrypt, but could be indicative of an underlying

weakness or fault. Poorly chosen values of n, for example, could lead to it being factored by

several well known methods. Because RSA's strength relies on the belief that no efficient

factoring algorithms exist for suitably chosen values of n, the implementation will be inherently

weak [1]. It is important to note then that in principle, a weak cryptosystem can be just as bad

from an implementation standpoint as a flawed or non-working one.

Why is this important to consider? As we are starting to see, cryptosystems that fail often

do so not because of cryptanalysis, but because of implementation and management errors. This

should be considered when deciding upon the scope of my project. A faulty cryptosystem has

little or no value to anyone. It will be beneficial to remain open about the project so that the

users will be able to given feedback, as well as receive information from the author about what

the system can and cannot do.

However, assuming these implementation issues can be tackled, the resulting system

should be very effective. By that I mean it will behave like a normal cryptosystem would. If

large values are used, the math behind the systems will create effectively one-way functions.

Text will be able to be easily and quickly encrypted and decrypted, but without extra knowledge

about the problem, standard attacks will not be successful [1], [4]. However, if small values are

used, these same attacks could be implemented as a proof-of-concept of how they work on

vulnerable cryptosystems. A useful metaphor for explaining this is that of an attacker who would

like to enter a certain territory, however, there is a wall blocking him/her. The attacker can be

envisioned as one of many algorithms targeting the mathematical basis of the cryptosystem,

hoping to eventually solve it. The wall is the cryptosystem. If small values are used, the wall is

small. Then, the attacker, who can only climb at a very slow rate, will be able to reach the top.

However, if large values are used, the wall gets exponentially higher, and nothing the attacker

can do will increase the rate of his/her ascent. It will be important to illustrate this concept and

include the flexibility for both relatively large and small values when using the tool.

I mentioned earlier that the mathematical foundation of these two systems is solid. I

would like to take a moment now and expand on that just a little. The first system used, RSA,

only exposes an an encryption key, e, and a modulus, n, to the public. An attacker will be able to

successfully 'break' RSA if they can find the private decryption key, d, which is related to the

above two terms by the equation:

ed≡1 mod phi n

where n is equal to the product of two large primes, p and q, and phi(n) = (p-1)*(q-1).

Given phi(n), an attacker can solve the above relation easily. However, phi(n) can only be

obtained by factoring n, obtaining p and q, and then computing phi(n). It has been proposed,

then, solving the above relation is equivalent to factoring n [1]. Fortunately, this has been shown

to be a difficult problem to solve, given large values of p and q. RSA Security is currently

holding a contest to factor “n's” with varying bit and decimal lengths. Cash prizes are awarded,

the highest of which is $200,000 for a 2048 bit modulus. The largest current value that has been

successfully factored uses 576 bits. It was posted in July of 2001 and was broken in December

of 2003. This was accomplished using distributed research centers across several countries over

a period of two years [3]. Using today's hardware and algorithms, if it were feasible, the higher

moduli would have been cracked by now in order to win those cash prizes. However, the current

state of factoring has shown that even though RSA can scale well into 200 digit decimal

numbers, it is not feasible to factor those numbers at this time. It takes an epic amount of time

and resources to break a single communication that may or may not be of worth.

The second system, El-Gamal, uses a different defense, but is similarly strong. The El-

Gamal system uses a problem known as the discrete-logarithm problem. It also uses a large

prime, p, a “generator” g of p and a value a, that is an element of the set g can generate. g has the

property that when repeated exponentiation is performed, followed by modulo division of p, it

yields a set of unique elements <= p-1. The goal then, is to find a value i, such that

a≡g i mod p

The normal brute force method is to apply all j from 0 to p-1 to g to see if it matches a

after the modulo division. However, for large primes, this is infeasible. Additionally, prior work

does not improve the possibility of future calculations being successful. The exponentiation and

the modulo division disguise each result from the next, until the correct 'i' is chanced upon [1].

Doing a few simple examples by hand can assure the user of this.

At this point we have explored the state and feasibility of current implementations of the

two cryptosystems to be used. Some implementation difficulties have been explored, such as

prime number generation, modular arithmetic, and picking appropriate values for the systems.

The safety of these two systems has also been examined. If appropriate values are picked and the

implementations are correct, both systems provide exceptional defense against cryptanalysis

attacks. Being aware of these issues and the properties of the systems I intend to work with

should help produce a better designed, easier to use, and more functional project. If I can

complete the 'core' resources in a quality manner in less time, I will be able to spend more time

adding other features, as well as working on the user interface.

References:

[1] K.M. Pradosh, “Public key cryptography,” Crossroads, vol. 7, no. 1, 2000, pp. 14-22.

[2] P. DePalma et al, “Cryptography and Computer Security for Undergraduates,” 35th Technical
Symposium on Computer Science Education (SIGCSE), pp. 94-95.

[3] “RSA Security – The New RSA Factoring Challenge” May 2005; http://
www.rsasecurity.com/rsalabs/node.asp?id=2092

[4] R. D. Silverman, “Massively distributed computing and factoring large integers,”
Communications of the ACM vol. 34, no. 11, Nov. 1991, pp. 95-103.

[5] E. Shade, “Ready for prime time?,” Journal of Computing Sciences in Colleges vol. 17, no. 3,
Feb. 2002, pp. 282-289.

[6] "Sun Java API Documentation" May 2005; http://
java.sun.com/j2se/1.5.0/docs/api/index.html

