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1 Introduction

Text adventures are a classical form of computer games which were most popular in the
eighties. The goal of these games is to solve puzzles by interacting with the game world
(e.g. the rooms and objects in a space station). This interaction takes place by typing in
natural-language commands; the player receives written feedback from the computer, e.g. as
follows:

> put my galakmid coin into the dispenser
Click.
The dispenser display now reads "Credit = 1.00".

In this paper, we describe an implementation of a text adventure engine which has a de-
scription logic (DL) knowledge base at its core and employs techniques from computational
linguistics to interpret the player input and to generate the game’s responses. Our system
shows some interesting interactions between the DL knowledge base and the language pro-
cessing components. It turns out that the DL infrastructure is useful in both the analysis of
the player input (resolution of referring expressions) and the generation of system utterances
(content determination and realization modules).

A more detailed account of the NLP modules and their interaction with the reasoner can
be found in (Gabsdil et al. 2001). Here we try to give a flavour of the implementation by
showing more of the low-level details necessary for processing one complete example. The
implementation was carried out as a student project at Saarland University. We used the
concurrent constraint programming language Oz (Mozart Consortium 1999), which allowed us
to reuse existing modules for parsing and realization (Duchier and Debusmann 2001; Striegnitz
2001). As a DL prover we used the RACER system (Haarslev and Méller 2001) because it
provides support for A-Box reasoning, which is essential for us. In addition, its standalone
version can connect to our system via sockets.

In the following section, we will give an overview over the architecture of the system.
We then describe the DL knowledge bases modeling the status of the game in Section 3.
In Section 4 we go through an example illustrating the contribution of each module and its
interaction with the DL knowledge bases. Finally, in Section 5, we provide some preliminary
discussion of our decision to use description logic and how well the prover could deal with the
inference tasks that are required by our application.

2 Architecture

The general architecture of the game engine, shown in Fig. 1, consists of a number of language-
processing modules (drawn as ellipses), which interface with a world model provided by a DL
knowledge base (drawn as rectangles). The arrows indicate flow of information.



Realization

Resolution

Content
Determination

A-Box: World Model A-Box: User Knowledge

‘ T-Box

Figure 1: Architecture

The world model consists of one common T-Box defining the concepts and roles we use,
as well as some useful derived concepts, such as the concept of all objects the player can see.
We use two different A-Boxes: One for representing the true state of the world; it is used to
determine whether the preconditions of an action are satisfied in the world, and, if this is the
case, is updated with the action’s effects. The function of the other A-Box is to keep track of
the player’s knowledge. It is used in the language-processing modules — for instance, referring
expressions must be interpreted and generated with respect to the user’s knowledge —, and
is updated by the realization module with the information that was verbalized and therefore
conveyed to the player.

The user’s input is first parsed using an efficient parser for dependency grammar (Duchier
and Debusmann 2001). Next, referring expressions are resolved to individuals in the A-Boxes.
The result is a ground term or a sequence of ground terms that indicates the action(s) the
user wants to take. In case of syntactic ambiguities which cannot be resolved by the parser
and the resolution module the alternative sequences of actions are all passed on to the module
executing the actions, where unsatisfied preconditions may resolve the ambiguity.

The ground terms are then used to retrieve action descriptions from a database. Action
descriptions are STRIPS-like operators defining preconditions and effects of an action. In
addition, they specify how the user knowledge has to be updated when the action is performed.
If the preconditions of an action are satisfied, the world model is updated according to the
action’s ‘effects’ slot, and the instantiated contents of its ‘user-knowledge’ slot are passed
on to the content determination component, which retrieves the information that has to be
verbalized from the knowledge bases. The realization component then produces an English
text conveying this information to the player and updates the user model.

3 The DL Knowledge Bases

The T-Box establishes a concept taxonomy. The most general concepts are ‘room’, ‘object’,
‘player’, and ‘property’. By requiring that the concepts 'room’, ‘object’, and ‘player’ be
pairwise disjoint, the individuals of the world are partitioned in three groups. (Note that the
individual ‘myself’ is the only instance that we ever define of the concept ‘player’.) T-Box
axioms, such as ‘toolbox C object’, ‘colour C property’, ‘silver C colour’, specify subsumption
relations between concepts. The T-Box furthermore defines roles. In particular, it defines the



room (scooter-bridge) player (myself)

hammer(hammer1) toolbox(toolbox1)

id-card(id1) silver(hammer1)

closed(toolbox1) unlocked(toolbox1)

white(id1)

has-location(toolbox1, scooter-bridge) has-location(myself, scooter-bridge)
has-location(hammerl, toolbox1) has-location(id1, toolbox1)

Figure 2: A fragment of the world A-Box.

‘has-location’ role, which connects players and objects to exactly one location (i.e. a room,
a container object, or the player). Finally, the T-Box contains definitions of more complex
concepts which are essential for checking the preconditions of actions and for processing the
natural language input and output. One is the concept ‘here’, which contains the room in
which the player currently is — that is, every individual which can be reached over a has-
location role from a player object. As ‘player’ contains just one individual and ‘has-location’
is a feature, the concept ‘here’ contains precisely one individual as well.

here = Jhas-location ! .player

Another useful concept is ‘accessible’, which contains all individuals which the player can
manipulate. All objects in the same location as the player are accessible, and if such an object
is an open container, its contents are also accessible. As the player itself is by definition ‘open’,
this includes the player’s inventory.

accessible = here LI Vhas-location.here U Vhas-location.(accessible [ open)

A concept ‘visible’ containing those individuals that the player can see can be defined in
a similar, but more complicated way.

The two A-Boxes for modeling the current state of the game world and the user’s knowl-
edge share this T-Box. They contain information about specific individuals in the world,
stating which concept they belong to and by which roles they are related to other individuals.
A fragment of such an A-Box, which we will also use in the subsequent example, is shown in
Fig. 2. The contents of the two A-Boxes will typically be different. For instance, the world
A-Box will usually contain more individuals than the player A-Box because the player will
not have explored the world completely and will therefore not have seen all the individuals.
It can also be useful to deliberately hide effects of an action from the user, e.g. if pushing a
button has an effect in a room that the player cannot see.

Finally, we should mention that inside the action processing module, we create multiple
temporary A-Boxes. They can be necessary when the user types an ambiguous sentence, such
as “put the apple in the box on the table”. In this case, we pursue all possible meanings of
the sentence in parallel. We do this by creating copies of the current world A-Box for each
reading, and then carrying out the different actions denoted by the readings on these copies.
We currently clone an A-Box by resending the history of all calls made to it to a new A-Box;
this is a source of inefficiency that will be discussed later.



4 Example

We now go through an example to illustrate the precise contributions of the particular modules
and the queries that they typically send to the DL prover. Assume that we are in the game
partially specified by the A-Box given in Fig. 2, and that the user has just unlocked the
toolbox (which is still closed, however). This means he has not yet seen the contents of the
toolbox; in particular, the player A-Box does not yet contain any assertions for the individuals
‘id1’, ‘hammer]’, etc. Now the user types

> open the toolbox

Parsing. First of all, the input is parsed as described in (Duchier and Debusmann 2001),
producing a simple semantic representation which specifies the action that is to be executed
and descriptions of the objects this action should be performed on:

open(patient: [toolbox(agr: [gender: [neut] number: [sing] spec:[def]])])

That is, we want to perform an ‘open’ action on an object which is a toolbox that was specified
by a definite description (“the toolbox”). The term also includes some agreement information
which is needed for the resolution of pronouns (cf. Gabsdil et al. 2001).

Resolution. Before the action can actually be executed, such object descriptions must first
be resolved to individuals in the game world. The module for resolving referring expressions
retrieves the instances matching this description from the player A-Box. To this end, the
semantic content of the description is represented as a DL concept term (‘toolbox’). As
actions can only be performed on objects that are accessible or visible, we assume that those
are the objects that the player will want to talk about, and ignore all other objects. This
avoids confusion of two objects that would both fit the description but are in different rooms,
for example. Here, the query that is sent to RACER is

(concept-instances toolbox I visible) .

In the example, there is only one visible individual which belongs to the concept ‘toolbox’, so
resolution succeeds, and we get the output

open(patient: [toolbox1]).

In case a definite description is resolved to more that one instance the input is rejected with
an error message stating that the reference cannot be resolved.

Actions. This ground term is now used to select and instantiate an action description,
which then looks like this.

entry(action: open(patient:toolbox1)
pre: [closed(toolboxl) unlocked(toolboxl) accessible(toolboxl)]
effects: effects(add: [open(toolbox1)]
delete: [closed(1)])
uk: uk(add: [open(toolboxl) describe(toolbox1)]
delete: [closed(toolbox1)]))



It specifies that its patient must be accessible to the player and still has to be closed, but must
not be locked. Checking these preconditions involves testing whether an instance belongs to a
certain concept or (though it doesn’t occur in this example) whether two instances are related
by a certain role in the world A-Box. This can be done by individual-instance? and
individuals-related? queries in RACER. In our example, all preconditions are satisfied in
the world A-Box, so the actions module updates it with the information that ‘toolbox1’ is no
longer closed, but now open. We “forget” what’s specified in the delete list of the effects slot
and then add what’s specified in the add slot.
The following record is passed on to Content Determination:

open(patient:toolbox1l
failPre:nil
succPre: [instance(toolboxl accessible)
instance(toolboxl unlocked) instance(toolboxl closed)]
uk:uk(add: [instance(toolboxl open) describe(toolbox1)]
delete: [instance(toolboxl closed)])

This record specifies what effect the action should have on the user knowledge, and it also
records which of the preconditions were evaluated successfully and which failed. If there were
failed preconditions, this would be used by the generation modules to produce informative
error messages explicitly stating which are the reasons why the action cannot be carried out.

Content Determination. The next step is to determine what information should be
prompted to the user, as specified by the user-knowledge (‘uk’) slot of the instantiated ac-
tion. The elements of the ‘add’ slot are treated one after the other. For elements introducing
concept or role assertions, such as ‘instance(toolbox1 open)’, the main task of content deter-
mination is to compute the information that is necessary to construct expressions referring
to the individuals mentioned in these assertions. In the case of old individuals the content
determination module just collects what the player already knows about this individual and
passes it on to the realization module which constructs a suitable referring expression. New
individuals are introduced to the player by giving their type and colour. The instruction ‘de-
scribe(toolbox1)’ is expanded into a description of the toolbox and its contents. Retrieving
the necessary information about an individual from the world A-Box involves accessing its
direct types (i.e. the most specific concepts it is an instance of), other individuals it is linked
to via a certain role, and, in general, role assertions it is mentioned in.

The following list of records is passed on to the realization module. Each element will be
realized as one sentence.

[content (new:new(entities:nil
properties: [open(toolbox1)])
old:old(entities: [toolbox1]
properties: [toolbox(toolbox1l) unlocked(toolboxl) open(toolbox1)])
uk:uk(add: [instance (toolbox1l open)]
delete: [instance (toolboxl closed)]))
content (new: (entities: [id1 hammeri]
properties: [contains(toolboxl [hammerl id1])
id-card(id1l) white(id1)
hammer (hammer1) silver (hammer1)])
old:old(entities: [toolbox1]
properties: [toolbox(toolbox1l) unlocked(toolbox1l) open(toolbox1)])
uk:uk(add: [related(idl toolboxl has-location)



related (hammerl toolboxl has-location)

instance(idl id-card) instance(idl white)

instance (hammerl hammer) instance(hammerl silver)]
delete:nil))]

If there had been failed preconditions, we would have had to generate an error message
explaining the failure. In such a case, the Content Determination takes the slot recording the
failed preconditions (instead of ‘uk’) as input, adds the information that the statements in
this list have to be negated, and then proceeds in the same way, assembling object descrip-
tions as described above. If, for instance, the toolbox had not been unlocked, the content
determination would return the following record, which would be realized as ‘The toolbox is
not unlocked’.

[content (new:new(entities:nil
properties: [not (unlocked(toolbox1))1)
old:old(entities: [toolbox1]
properties: [toolbox(toolboxl) locked(toolbox1)])
uk:uk(add:nil
delete:nil))]

Realization. Finally, the realization module produces a text which conveys this information
and updates the player A-Box. Everything that was specified by content determination to
be new information has to be expressed, while the old information is only needed to build
successful references. The above information gets verbalized as follows:

The toolbox is open.
The toolbox contains a silver hammer and a white ID card.

Note that the hammer and the ID card are realized as indefinites because they are new.
The next time they are mentioned, they will automatically be realized as definites (“the
hammer”).

Definite descriptions are built following Dale and Reiter (1995) by incrementally adding
information to the noun phrase until it uniquely identifies the individual it is supposed to
refer to. Whether a definite description is indeed uniquely identifying is checked using the
same techniques as the resolution module for computing the referent of a referring expression.

5 Discussion

Our initial motivation for representing the world using description logic was that we had
heard that the most recent DL provers (Horrocks and Patel-Schneider 1998; Haarslev and
Moller 2001) were able to deal surprisingly efficiently with very expressive logics. Although
computational linguists often employ logics that are even far more expressive, and this is
certainly necessary for the general case, we wanted to give DL provers a try in our very
restricted setting.

In hindsight, this was a very good idea. The inferences we needed were much simpler
than full first-order entailment tests: Concept subsumption and in particular automatic as-
signment of (complex) concepts to individuals were sufficient. This made first-order provers
look too powerful for our needs. In addition, we needed some simple functions for knowledge
base management, such as adding and forgetting information. Such functionality, along with



queries for retrieving information from the knowledge base such as concept-instances and
individual-direct-types, is offered by DL provers, but not by first-order ones.

It seems that while DL is certainly not expressive enough to capture the meanings of nat-
ural language in all their complexity, the setting in an adventure game entails some powerful
simplifications that make the task of the semanticist easy enough to use DL. The world model
only talks about the state of the world, and not about any events that have a temporal aspect.
In addition, the user’s inputs only refer to singular individuals that are concretely “present”
at the current location, and not about abstractions or properties. It may even help that the
user is used to talking in very simple syntax to a computer game.

From a perspective of efficiency, most of the queries that we send to the inference system
are answered very quickly; the vast majority take under 10 milliseconds, and only a handful
of queries ever takes more than 100 ms. Unfortunately, the expensive queries can be really
expensive. The primary culprit here is the realization of A-Boxes, which sometimes takes
several seconds to come back even for a very small knowledge base; we can easily build bigger
versions whose realization takes minutes. But this problem is largely caused by the fact that
we create a new world A-Box for each action that the player wants to perform, and then
explicitly copy every piece of information from the old world A-Box to the new one, which
then has to be realized from scratch. We hope to gain much efficiency here by exploiting the
A-Box cloning mechanism in the new version 1.6.1 of RACER. Further, we want to look into
the extent to which our naive use of recursively defined concepts and inverse roles counteract
RACER’s optimizations. These are certainly part of the problem: The second most time
is spent in answering the query (concept-instances here), and the definition of ‘here’ is
simple but involves an inverse role.

One aspect where the logic supported by RACER is not expressive enough for our needs
is the construction of concepts from individuals. The SHOQ(D) logic (Horrocks and Sattler
2001), for instance, admits nominals, concept terms {0} whose denotation contains precisely
the one individual 0. The absence of such terms in our application forces us into workarounds
in several places. For example, some of the action effects could be stated more naturally
by simply defining the concept ‘player’ as containing precisely ‘myself’. As it is now, some
action definitions contain subqueries for concept-instances, which hurts the efficiency. On
the other hand, we of course acknowledge that the combination of nominals and inverse roles
is even more explosive from a computational point of view.

6 Conclusion

In this paper, we have discussed a text adventure engine that employs techniques from com-
putational linguistics to deal with natural-language input and output. The world is modeled
as a description logic knowledge base, and we make use of DL inference services throughout
the system. As the language-processing modules have to reason about the state of knowledge
of the player, we have to use two different A-Boxes, one of which describes the true state
of the world, while the other describes the player’s knowledge. We have gone through an
example in some detail to illustrate the queries we actually send to the inference engine, and
have discussed the suitability of today’s DL provers for our application.

The current system does allow the interaction with a small game world. However, the lan-
guage modules are still very simplistic and the theorem-proving task becomes quite inefficient
for more complex worlds. We plan to address the second problem by a careful investigation



of some aspects of our T-Box that counteract the prover’s optimizations, e.g. the use of
inverse roles. As for the first problem, we plan to put a cleaned-up version of the system
on the Web and invite colleagues and students to contribute their own (more sophisticated)
modules to replace ours. As part of this process, we want to develop a clear specification of
the modules and the interfaces between them and provide a mechanism which allows users of
other programming languages to plug in their modules as well.
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