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GENERATING BRIDGING DEFINITE DESCRIPTIONS

1. Introduction

It has long been known that knowledge based reasoning is a crucial
component of natural language processing (NLP). Yet the complexity
involved in representing and using knowledge efficiently has led most
NLP work to focus on more tractable aspects of language such as
syntax, prosody or semantic construction.

The generation of definite descriptions (that is, noun phrases with
a definite article such as “the rabbit”) is a case in point. The goal of
this sub-task of natural language generation (which is the production
of a text satisfying a given communicative goal) is to construct a noun
phrase that allows the hearer to uniquely identify its referent in the
context of utterance.

The standard algorithm for this task (on which most other proposals
are based) is presented in (Dale and Reiter, 1995). But neither this al-
gorithm nor the extensions proposed in (Horacek, 1997) and (Krahmer
and Theune, 2001) take world knowledge into account when considering
the context of utterance. For all these algorithms, the context is a fixed
set of positive literals specifying entities and relations between them,
which is intended to represent the current (linguistic and situational)
context of utterance.

Yet many definite descriptions either refer to inferable entities (enti-
ties not explicitly mentioned or present in the context of utterance but
inferable from it) or refer to contextually salient entities using inferred
rather than explicitly mentioned relations (Poesio and Vieira, 1998).
For instance, the use of the definite article to refer to the patrons, the
waitress, the busboys, etc. in (1) can only be explained by taking into
account that world knowledge supports the assumption that these are
somehow related to the restaurant.

(1) The young woman scans the restaurant with this new informa-
tion. She sees all the patrons eating, lost in conversations. The tired
waitress, taking orders. The busboys going through the motions,
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collecting dishes. The manager complaining to the cook about
something.

One proposal which does integrate knowledge based reasoning into
the generation of definite descriptions is that presented in Stone, 1998.
The philosophy underlying Stone’s proposal is that knowledge based
reasoning should be integrated with sentence planning to reason about
what the context (including a representation of the previous discourse
as well as world and situational knowledge) entails. In this paper,
we follow up on Stone’s proposal and show how to integrate surface
realization and inference into Dale and Reiter’s algorithm to support
the generation of such definite descriptions as illustrated in (1).

We start (Section 2) by presenting Dale and Reiter’s base algo-
rithm. Section 3 then summarizes the range of definite descriptions
found in corpora while Section 4 focuses on cases involving knowledge
based reasoning. In Section 5, we consider the two defining charac-
teristics of definite descriptions, uniqueness and familiarity, and show
how these can be defined to encompass not only directly coreferential,
but also inference-based definite descriptions. Section 6 presents the
extended algorithm and an implementation of it based on description
logic. Section 7 concludes and points to further research.

2. The Standard Algorithm for Generating Definite

Descriptions

Most algorithms for generating definite descriptions that are described
in the current literature have a common core based on Dale’s greedy
algorithm (Dale, 1989; Dale, 1992) and on the incremental algorithm
proposed in (Dale and Reiter, 1995). We now describe this standard
base algorithm.

2.1. The Task

The task is to find a description of an object (the target entity) that
allows the hearer to uniquely identify that object in a given situation,
that is, to find a description that does not fit any other object in that
situation. In Dale and Reiter’s algorithm, this situation is represented
by a set C of positive literals such as shown in Figure 1. This repre-
sentation is meant to capture the knowledge that speaker and hearer
share.
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{rabbit(r1 ), rabbit(r2 ), rabbit(r3 ), hat(h1 ), hat(h2 ), bathtub(b1 ),

white(r1 ), black(r2 ),white(r3 ), in(r1 , h1 ), in(r2 , h2 ), in(r3 , b1 )}.

Figure 1. Representation of the discourse context in Dale and Reiter’s
algorithm.

The output of Dale and Reiter’s algorithm, that is, the description of
the target entity, is a subset L of C which uniquely identifies the target
entity. The target is uniquely identified by L if there are no distractors
for the target in C given L. Distractors are defined as follows:

DEFINITION 1. (Distractors) Given a description L (L ⊆ C) and
an entity a, the set of distractors of a in C are all those entities b 6= a
for which there exists a substitution σ (substituting entity symbols for
entity symbols) such that σ(a) = b and σ(L) ⊆ C.

Let’s assume that the goal is to describe the object r1 . The set
{rabbit(r1 )} would not be a uniquely identifying description in this
case, as r2 and r3 are distractors of r1 with respect to this description.
In contrast, the description {rabbit(r1 ),white(r1 ), in(r1 , h1 ), hat(h1 )}
would rule out all distractors and therefore be uniquely identifying.

2.2. The Base Algorithm

The standard algorithm takes as input a target entity t and a set C
of positive literals as shown in Figure 1. It either returns a subset of
C that uniquely identifies t (the description) as output or fails in case
such a description cannot be built.

The algorithm starts with an empty set and then incrementally adds
literals until the description uniquely identifies all entities mentioned in
it. The search problem the algorithm has to solve is given in Figure 2.
States are determined by the description that has been built so far
and the list of those entities that the description mentions but does
not identify uniquely. In the initial state, the description is empty and
the target list contains only t, which is the initial target provided as
input. Goal states are all those states where the target list is empty,
which means that all entities mentioned in the description are uniquely
identified. A state s(i + 1) can be derived from state s(i) by applying
the search operator to it. This operator first adds a new literal to
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the description. This literal is chosen from the given context and has
to fulfill the following two constraints. It has to extend the descrip-
tion, which means that it has to mention an entity also mentioned in
Description(i). Furthermore, it has to rule out at least one distractor
of at least one entity mentioned in Description(i + 1). This means that
Description(i + 1) mentions at least one entity for which the set of
distractors given Description(i) is smaller than the set of distractors
given Description(i + 1). Finally, the list of target entities is updated.
This involves first adding all those entities to the list that are mentioned
in the newly added literal, but were not mentioned in the description
before, and then deleting all those entities that are uniquely identified
by the new description.1

There are different ways in which the search can be performed.
Dale and Reiter discuss three, which they call Full Brevity, Greedy
Heuristics, and Incremental Algorithm.2 The Full Brevity strategy is a
breadth first search which stops as soon as a goal state is found. It is
guaranteed to always find the shortest descriptions possible. However,
as Dale and Reiter point out, it has worst-case runtimes which are
exponential in the size of the final description. They therefore propose
to use heuristics which allow to approximate the optimal solution with
a greedy search mechanism. The search strategy that Dale and Reiter
call Greedy Heuristic always chooses the search step that rules out
the most distractors. The Incremental Algorithm uses the following
heuristics. It assumes that properties are ordered according to a do-
main dependent preference order. Going back to the example context
in Figure 1, we could, for example, assume that sortal information
(rabbit, hat, bathtub) ranks higher than color information, which ranks
higher than location information. This order can then be used to order
all literals concerning a particular entity. For entity r1 , for example,
we would get the ordering 〈rabbit(r1 ), white(r1 ), in(r1 ,h1 )〉 and for
entity h1 the ordering 〈hat(h1 ), in(r1 ,h1 )〉. This then determines in
which order literals are added to the description. Of all the literals that
are applicable in a given state, the one that is ranked highest in the
order has to be chosen. Hence, the Incremental Algorithm just has to

1 In the 1995 paper, Dale and Reiter actually do not deal with relations
between objects (binary predicates). So, what we are presenting here is a
simple extension along the lines of (Dale and Haddock, 1991).

2 Note that the names are somewhat misleading: all three algorithms build
the description incrementally and both the Greedy Heuristics as well as the
Incremental Algorithm perform a greedy search.
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input: a set of literals C (the context)
a target entity t

state s(i): Description(i), a set of literals

Targets(i), a list of target objects

initial state: Description(0) = ∅

(state s(0)) Targets(0) = {t}

goal state: State s(i) is a goal state if

Targets(i) = ∅

operator: 1) Select a literal P from C, where P extends the
description and rules out at least one distractor.

2) Description(i + 1) = Description(i) ∪ {P}.

3) Targets(i + 1) is derived from Targets(i) by updating
it with P : first, those entities mentioned in P that are
not mentioned in Description(i) are added and then,
all those entities which given Description(i+1) do not
have any distractors (Definition 1) are deleted.

Figure 2. Searching a uniquely identifying description.

go stepwise through the ordered lists of literals for the entities that are
part of the description and either include or discard each literal.

The output of the base algorithm is a list of properties that uniquely
identify the target entity. So, this base algorithm determines the se-
mantic content a referring expression has to express in order to be
successful, it does not, however, produce the surface form of such a
referring expression. It is therefore possible that the base algorithm
produces an output that cannot be verbalized.

The general idea for avoiding this problem is to interleave property
selection with surface realization (Horacek, 1997). This allows us to
immediately check that every selected property can be incorporated in
the syntactic tree, and to make sure that the final description has no
“holes” which have to be filled due to syntactic reasons. For example,
“the red” is not a good noun phrase in English (or at least it requires
a special context). To turn it into one we would have to include some
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State Description Targets Distractors

0 ∅ {r1} r1 : all entities other
than r1

1 {rabbit(r1 )} {r1} r1 : {r2 , r3}

2 {rabbit(r1 ), white(r1 )} {r1} r1 : {r3}

h1 : all entities other
than h1

3 {rabbit(r1 ), white(r1 ), {r1 , h1 } r1 : {r3}

in(r1 ,h1 )} h1 : {b1}

4 {rabbit(r1 ), white(r1 ), ∅ r1 : ∅

in(r1 ,h1 ), hat(h1 )} h1 : ∅

Figure 3. Running Dale and Reiter’s algorithm with target r1 on the context
in Figure 1.

property that can be realized as a head noun, even if it doesn’t rule
out any distractors.

2.3. An Example

To illustrate how the base algorithm works, we will now go through
the example of Section 2.1. Let us assume that the input context is as
given in Figure 1 and that the target entity is r1 . Figure 3 shows state
by state how the greedy search advances.

In the beginning, state 0, the description is empty. Hence, it does
not distinguish the target r1 from any other entity. The distractor set
contains all entities mentioned in the context. Adding literals to the
description cuts down the distractor sets of the targets more and more.
In state 3, for example, r3 is a distractor of r1 , because substituting r3

for r1 and b1 for h1 would yield the description {rabbit(r3 ),white(r3 ),
in(r3 , b1 )}, which is a subset of the context.

The example is following Dale and Reiter’s Incremental Algorithm
and literals are added in the order described above: first sortal infor-
mation, then color information, and then location information.
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3. Definite Descriptions in Real Texts

We now survey the types of definite descriptions that can be found in
corpora thereby giving a list of the different cases that an algorithm
for generating definite descriptions should be able to deal with.

Two properties are generally taken to characterize definite descrip-
tions namely, uniqueness and familiarity. Roughly, uniqueness says that
the referent denoted by the definite description must be the only refer-
ent satisfying the given description – this property is most prominently
exposed in (Russell, 1906). Familiarity on the other hand, requires that
this referent be known to the hearer – this is perhaps most strongly
demonstrated in (Heim, 1982).

Indeed these two properties are the properties taken into account by
the base algorithm: the set of relations it outputs must allow the hearer
to uniquely identify the intended referent (uniqueness) and it must do
so on the basis of shared knowledge about that referent (familiarity).

The familiarity/uniqueness explanation is a fairly high-level one
however, and as shown by, for example, Hawkins (1978) or Prince
(1981), a finer grained examination of the phenomenon reveals a much
more complex typology of possible uses. For a start, uniqueness is
always relative to some restricted context. Here are some examples.

(2) b. If a rabbit sees a carrot, the rabbit eats the carrot.
c. There once was a doctor in London. The doctor was Welsh.

In (2a), uniqueness is relative to the quantification domain: for each
rabbit and for each carrot that this rabbit sees, the rabbit eats the car-
rot that it sees. Similarly in (2b), uniqueness is relative to the domain
of discourse: (2b) does not imply that there is a unique Welsh doctor
in London but that there is a unique Welsh doctor in London that the
speaker is talking about.

Although the base algorithm simply assumes an already restricted
context, Krahmer and Theune (2001) show how it can be extended to
deal with discourse domain restrictions. Interaction with quantification
remains an open question and will probably remain so for a while as
quantifiers have received little attention in the generation literature.

Moreover – and this is the main point of this paper – familiarity can
be of different types, and only some of them are covered by the base
algorithm. Following Poesio and Vieira (1998), for instance, we can
identify four main familiarity classes: coreferential (direct or indirect),
bridging, larger situation, and unfamiliar uses. In coreferential uses,
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8 CLAIRE GARDENT, KRISTINA STRIEGNITZ

the referent of the definite description is familiar in virtue of having
been mentioned in the previous discourse (the referent is discourse old
in Prince’s (1981) terminology). In such cases, the hearer will know the
intended referent either because the speaker uses the same description
as was used in the previous discourse (direct coreference, as in (3a)) or
because she uses a description which on the basis of world or lexical
knowledge, the hearer can infer to be true of the previously mentioned
entity (indirect coreference, as in (3b))

(3) a. A woman came in. The woman was wearing a beautiful hat.
b. An actress entered the stage. The woman was wearing a beau-
tiful hat.

In a bridging use, the referent of the definite description is discourse
new but related by world knowledge to some previously mentioned, that
is, discourse old, entity. In (4) for instance, the referent of the ceiling
is related by a part-of relation to the discourse old entity denoted by
the NP the room. The ceiling is not just any ceiling but the ceiling of
the room that was mentioned in the previous sentence.

(4) A woman came into the room. The ceiling was very high.

Larger situation uses (see (5)) are cases where the definite descrip-
tion denotes a discourse new but hearer old object: the described entity
has not been mentioned in the previous discourse but is assumed by the
speaker to be part of the hearer’s general knowledge about the world
(5a) and situation of utterance (5b).

(5) a. The sun is rising.
b. Pass the salt please !

The unfamiliar class covers all remaining uses of definite descrip-
tions; that is, uses where the referent of the description is neither
discourse/hearer old nor related by lexical knowledge to some discourse
old entity. It encompasses definite descriptions with sentential com-
plements (6a) and with modifiers relating the referent of the definite
description to some either discourse or hearer old object (6b-c).

(6) a. Bill is amazed by the fact that his father is black.
b. The man John met yesterday is interesting.
c. The Iran/Iraq war is over.
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GENERATING BRIDGING DEFINITE DESCRIPTIONS 9

In sum, a definite description can be familiar either because it refers
to some known (that is, either discourse or hearer old) entity (coref-
erential and situational use); or because it is related, either explicitly
by the description (unfamiliar use) or implicitly by lexical knowledge
(bridging), to some known entity.

The base algorithm, because it only resorts to information that is ex-
plicit in the context of utterance (either through the previous discourse
or through the situation), can only account for directly coreferring or
larger situation uses. Indirect coreferences and bridging uses cannot
be dealt with as they require an interaction between generation and
inference. In the next section, we look at these inference based definite
descriptions in more detail to see what is needed to extend the base
algorithm so that it can deal with them.

4. Definite Descriptions and Inference

Inference based definite descriptions, that is, bridging and indirect
coreferential uses, represent a non negligible proportion of uses in real
text. An empirical study of the Wall Street Journal by Poesio and Vieira
(1998) shows that out of 1412 definite descriptions being studied, 24%
were inference based uses, with 9% bridging cases and 15% indirect
coreference.

In both cases, processing requires reasoning based on world knowl-
edge and the discourse context. With bridging uses, the hearer must
be able to infer the implicit relation holding between the referent of
the definite description and a discourse or hearer old entity. And in
cases of indirect coreferential uses, the hearer must be able to infer
that the properties used in the speaker’s definite description, although
not part of the common ground between speaker and hearer, hold of
some discourse or hearer old entity.

We now consider these two cases in more detail using (here and
in what follows) the following terminology. We call the referent of the
definite description the target and the (discourse or hearer old) entity
with which it is either coreferential or related via world knowledge the
anchor.

4.1. Bridging

In a bridging use, a definite description relates the target entity to its
anchor via some inferable relation, which we will call bridging relation.

book.tex; 27/09/2006; 14:26; p.9



10 CLAIRE GARDENT, KRISTINA STRIEGNITZ

The term bridging was first introduced by Clark (1977), who identified
several types of different bridging relations, such as the part-of relation,
semantic roles of verbs, reasons, consequences. In this paper, we will
concentrate on the part-of relation. Clark distinguishes three subcases
of bridges involving the part-of relation, which are illustrated by the
following examples.

(7) a. John entered the room. The ceiling was very high.
b. John entered the room. The windows looked out to the bay.
c. John entered the room. The chandelier was sparkling brightly.

In (7a), the ceiling is a part of the room mentioned in the previous
sentence and it is a necessary part: to be a room, a room must have
a ceiling. In contrast, the windows and the chandelier in (7b-c) are
what Clark called probable and inducible parts. Rooms don’t necessarily
have windows, nor do they necessarily have a chandelier. But while
most rooms have windows, rooms with chandeliers are actually rare.
Nevertheless, it is plausible to link the chandelier in (7c) to the room
as rooms typically have lamps and a chandelier is a type of lamp.

There is, of course, a wide variety of different kinds of part-of re-
lations. Kleiber (1997) and Gardent et al. (2003) study how different
part of relations can be involved in bridging anaphora. In this paper, we
gloss over the differences and use bridge to stand for a generic part-of
relation that subsumes the different varieties of relevant relations.

4.2. Indirect coreferential uses

Indirect coreferential uses are cases where the definite description refers
to a discourse old entity using a hearer new description. So, in this case
target and anchor are the same entity. Although the description used
is not part of the common ground, the hearer can nevertheless identify
the intended object because the description used by the speaker is
compatible with the common ground and with world knowledge and
allows the hearer to establish the link to the anchor. Here are some
examples.

(8) a. An actress entered the stage. The woman was wearing a beau-
tiful hat.
b. I met a man yesterday. The bastard stole my money.
c. John bought a new car. The Volvo delights him.

In the first case, the property used in the definite description is
entailed by world knowledge, as woman is a hypernym of actress. But
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GENERATING BRIDGING DEFINITE DESCRIPTIONS 11

as the other two examples show, world knowledge does not necessarily
entail that the property used in the description holds of the target.
Thus, a man can, but need not, be a bastard – x is a bastard is a
proposition that is compatible but not entailed by the proposition x
is a man. Similarly, a car can but need not be a Volvo – in this case,
however, the two properties are not merely compatible, but stand in a
hyponymic relation (Volvos are cars).

So, for both kinds of inference based definite descriptions, bridging
uses and indirect coreferential uses, there are cases where the existence
of an entity fitting the description is not logically entailed by the dis-
course context (Examples (7b,c) and (8b,c)). We focus here on cases
where the existence of an entity fitting the description is entailed and
cases where the description is related through hyponymy to a property
of target that is entailed.

5. Familiarity and Uniqueness of Bridging Anaphora

As we saw in section 3, familiarity and uniqueness are two defining
characteristics of definite descriptions. In this section, we show how
to formulate these properties so as to encompass not only directly
coreferential definite descriptions (as is done in the base algorithm) but
also indirectly coreferential and bridging uses. We start by presenting
the structured context the extended algorithm is working with. We
then go on to give an intuitive explanation of how uniqueness and
familiarity differ in our algorithm from the way these are defined in the
base algorithm. Finally, we present our definitions.

5.1. The Discourse Context

As seen in Section 2, a context in the base algorithm is an unstructured
set of facts assumed to be shared by hearer and speaker. To deal with
bridging anaphora, we need a slightly more sophisticated notion of
context.

First, we need to distinguish between knowledge that is shared be-
tween hearer and speaker and the private knowledge of the speaker.
The speaker should, for example, only use the bridging description the
ceiling in Example (7a) if he assumes that the hearer knows the rule
that rooms have ceilings. The target entity, on the other hand, is, in
the case of bridging descriptions, an entity which is inferable but new
for the hearer. All explicit knowledge about the target entity should
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Cshared : book(b),
∀y[book(y) → ∃x[author(x) ∧ of(x, y)]],
∀xy[of(x, y) → bridge(x, y)]

Cprivate : author(a), of(a, b),
cockroach(c), of(c, b)

Figure 4. Example context to illustrate the definitions of anchors.

therefore be private knowledge of the speaker. Hence, we will use a
structured context representation consisting of the speaker’s/system’s
private knowledge Cprivate and the knowledge that speaker and hearer
share Cshared .

Secondly and as we alluded to above, we need rule based knowledge
to capture the way concepts such as rooms and ceiling are linked
through bridging relations. So, Cshared consists not only of positive
literals but also of rules of the form all entities with propery A are
related to an entity with property B through a bridging relation. Figure
4 shows an example context.

5.2. Familiarity and uniqueness in the extended algorithm

The uniqueness condition for coreferential definite descriptions described
in Section 2 requires that the target entity be the only entity in the
discourse context fitting the description. Furthermore, no familiarity
condition was mentioned in the specification of the base algorithm.
This is because it only generates coreferential definite descriptions,
and without making it explicit, it assumes a very simple familiarity
condition: The use of a definite description is only licensed if the target
entity and the property used to describe that entity are discourse old.
We now describe how these notions of familiarity and uniqueness can
be extended to also capture bridging description. Our proposal will also
be able to handle indirectly coreferential definite descriptions.

When looking at bridging descriptions, familiarity is important be-
cause we have to distinguish those discourse new entities which can be
anaphorically linked to the previous discourse (the familiar ones) from
those discourse new entities which do not license an anaphoric link to
the previous discourse (the unfamiliar ones).3 The use of the cockroach
in (9), for example, is odd since familiarity is not given. Even if the

3 Note that in our terminology, not only discourse old entities are familiar.
Inferable discourse new entities are also familiar.
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GENERATING BRIDGING DEFINITE DESCRIPTIONS 13

speaker had some information that links the cockroach to the book
and intended the book to be the anchor, it is not part of general world
knowledge that cockroaches are parts of books, and so the speaker
cannot expect the hearer to make this link. In other words, to ensure
familiarity the definite descriptions that the speaker uses should be such
that they let the hearer find at least one of the anchors intended by the
speaker.

(9) I picked up a book and the cockroach fell out.

Now, consider Example (10). Assume that the speaker intended the
Italian restaurant to be the anchor for the cook. In this case, using
the definite description the cook is not appropriate because from the
hearers point of view either of the restaurants could be the anchor.
That is, the hearer considers an entity to be a possible anchor which
the speaker does not intend to be an anchor. So, this is one part of the
uniqueness condition that definite descriptions have to satisfy: definite
descriptions should be such that they do not allow the hearer to consider
entities to be anchors which the speaker does not intend to be anchors.

(10) There are an Italian and a Chinese restaurant. The cook is excel-
lent.

But there is another way in which uniqueness needs to ensured: the
description should make the target unique with respect to the anchor.
(11) shows an example where this condition is violated.

(11) I picked up a book and the page fell out.

The definite description the page lets the hearer identify the book as
a possible anchor (because world knowledge tells him that books have
pages), and there are no other entities which could be an anchor. So the
familiarity condition and the first part of the uniqueness condition are
satisfied. However, world knowledge says that a book usually has more
than one page. So, the second part of the uniqueness condition requires
that the definite description should be such that it is plausible to assume
that there are no entities besides the target which fit the description and
are related to the anchor via a bridging relation.

These informal definitions of familiarity and uniqueness crucially
depend on two sets: the set of entities that the speaker intends to be
anchors, which we call the speaker anchors, and the set of entities that
the hearer considers to be possible anchors, or the hearer anchors. In
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14 CLAIRE GARDENT, KRISTINA STRIEGNITZ

Cshared : book(b),
∀y[book(y) → ∃x[author(x) ∧ of(x, y)]],
∀xy[of(x, y) → bridge(x, y)]

Cprivate : author(a), of(a, b),
cockroach(c), of(c, b)

Figure 5. Example context to illustrate the definitions of anchors.

the following section, we will make the notions of speaker and hearer
anchor more precise, and in Section 5.4, we will give formal definitions
of the familiarity and uniqueness conditions based on these notions.

5.3. Defining Hearer and Speaker Anchors

We will now define the sets of speaker anchors and hearer anchors. The
intuition behind these sets is as follows: the speaker anchors are the
entities intended by the speaker to be possible anchors and the hearer
anchors are those entities which the hearer considers as anchors (or
rather which the speaker thinks the hearer considers as anchors). For
an anaphoric expression to be successful, the two sets have to coincide
in a way that will be made more explicit in this section and the next.

The set of speaker anchors contains all entities a such that the
speaker knows that a is identical to or related to target entity t. In
other words, the set of speaker anchors contains all entities which could
act as anchors for the target. The set of speaker anchors is defined as
follows.

DEFINITION 2. (Speaker Anchors) The set of direct speaker an-
chors (dSA) for a given target entity t is simply dSA(t) = {t}. The set
of indirect speaker anchors (iSA) for a given target entity t in a given
context C is defined as follows:

iSA(t, C) = {a | Cprivate ∪ Cshared |= bridge(t, a)}.

The set of speaker anchors (SA) for a given target entity t in a given
context C is

SA(t, C) = dSA(t) ∪ iSA(t, C).

For instance, given the context in Figure 5 the set of speaker anchors
for entity b is {b}, the set of speaker anchors for a is {a, b} and the set
of speaker anchors for c is {c, b}.
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GENERATING BRIDGING DEFINITE DESCRIPTIONS 15

The intuition behind the set of hearer anchors is that the speaker
tries to model how the hearer will interpret a given description. The
set of hearer anchors, hence, contains all those entities (known to both
speaker and hearer) which when taking into account only the shared
knowledge, could act as anchors for the given description. For instance,
given the description the cook and assuming that it is shared knowledge
that restaurants have cooks, the set of hearer anchors would contain all
cooks and all restaurants mentioned in the shared knowledge (indepen-
dently of whether they are in fact related to the target). Since the hearer
does not know the target, what he considers possible anchors is based
on the description only. The set of hearer anchors is, therefore, defined
with respect to the context and the property given by the description.

DEFINITION 3. (Hearer Anchors) Given a property P , and a
context C, the set of direct hearer anchors (dHA) is defined as

dHA(P,C) = {a | Cshared |= P (a)},

the set of indirect hearer anchors (iHA) is defined as

iHA(P,C) = {a | Cshared |= ∃x[bridge(x, a) ∧ P (x)]},

and the set of hearer anchors (HA) is

HA(P,C) = dHA(P,C) ∪ iHA(P,C).

Definition 3 says that all entities of which the hearer knows that the
description holds are direct hearer anchors. So, the book b in Figure 5
is a hearer anchor for entity b given the property book. In addition, a
discourse old entity can be an indirect hearer anchor if the hearer knows
that this discourse old entity is related to an entity of which the prop-
erty holds. For this reason, entity b in Figure 5 is a hearer anchor for
entity a given the property author. The entity b is not a hearer anchor of
c given property cockroach, though, as ∃x[bridge(x, b)∧ cockroach(x)]
does not follow from the shared knowledge.

This definition for hearer anchors captures cases of bridging or indi-
rectly coreferential definite descriptions where the existence of an entity
fitting the description is entailed by the context (Examples (7a) and
(8a)). To also capture cases where the property used to describe the
target is a hyponym of a concept for which the existence of an entity
belonging to that concept is entailed (Examples (7b), (7c), and (8c),
we need to extend our definition of hearer anchors a bit.
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16 CLAIRE GARDENT, KRISTINA STRIEGNITZ

Recall the reasoning process that we proposed to explain how the
link between the room and the chandelier in Example (7c) is estab-
lished: From world knowledge we know that rooms are related to cer-
tain objects which we call room accessory (roomacc) (∀x[room(x) →
∃y[room acc(y) ∧ bridge(x,y)]]), and we know that chandeliers are a
kind of room accessory (∀x[chandelier(x) → room acc(x)]). Similarly,
we know that Volvos are a kind of car, which allows the hearer to
consider the car mentioned in the first sentence of Example (8c) as a
possible anchor for the Volvo mentioned in the second sentence.

To handle such cases the definition of hearer anchors is modified to
involve not just the property P given by the description but also an
adequately generalized version of this property (P [Q/N ]). P [Q/N ] is
derived from P by replacing the part of P that represents the meaning
of the head noun, let’s call it N , with a more general concept Q. (Note
that this reference to the head noun means that this strategy only
works if surface realization is interleaved with the content planning
for definite descriptions.) Furthermore, we restrict Q to be the most
specific property for which Cshared entails that a possible anchor has
property Q (for direct hearer anchors) or for which Cshared entails that
there is a bridging relation between a possible anchor entity and an
entity with property Q (for indirect hearer anchors). So, this extended
version of the definition of hearer anchors looks like this:

DEFINITION 4. (Hearer Anchors — revised) Given a property
P , and a context C, the set of direct hearer anchors (dHA) is defined
as

dHA(P,C) = {a | ∃P [Q/N ] such that Cshared |= P [Q/N ](a)},

the set of indirect hearer anchors (iHA) is defined as

iHA(P,C) = {a | ∃P [Q/N ] such that
Cshared |= ∃x[bridge(x, a) ∧ P [Q/N ](x)]and
Q is the most specific concept for which
Cshared |= ∃x[bridge(x, a) ∧ Q(x)]},

and the set of hearer anchors (HA) is

HA(P,C) = dHA(P,C) ∪ iHA(P,C).

book.tex; 27/09/2006; 14:26; p.16



GENERATING BRIDGING DEFINITE DESCRIPTIONS 17

5.4. Defining Familiarity and Uniqueness

We can now define the familiarity condition (given the definite descrip-
tion the hearer should be able to find at least one of the anchors that
the speaker intended) in terms of hearer and speaker anchors. Namely,
the intersection of these two sets should not be empty.

DEFINITION 5. (Familiarity) An entity t described using property
P is familiar in a context C if (dSA(t) ∩ dHA(P,C)) ∪ (iSA(t, C) ∩
iHA(P,C)) 6= ∅.
We will also call (dSA(t)∩ dHA(P,C))∪ (iSA(t, C)∩ iHA(P,C)) the set
of familiar anchors (FA(t,P,C)).

This definition allows for entities to have several familiar anchors
based on the same property. If there are several entities to which the
target is related and for which lexical or world knowledge provides a
relation to the target, all of these entities count as familiar anchors.
This fits the findings of Spenader (2002).

The first part of the uniqueness condition says that the definite
description should be such that it does not allow the hearer to consider
entities as possible anchors which the speaker does not intend to be
anchors. That is, the set of hearer anchors should be a subset of the
speaker anchors.

DEFINITION 6. (Uniqueness Condition I) Property P correctly
identifies the anchors of target t in context C iff

dHA(P,C) ⊆ dSA(t) and iHA(P,C) ⊆ iSA(t, C).

The set of speaker anchors only contains entities which are, so to
speak, real anchors, because the speaker knows that they are related to
the target. By requiring that the set of hearer anchors does not contain
any additional entities we ensure that the hearer does not consider
any entities as anchors that are not related to the target. By way of
illustration consider the context represented in Figure 6a. The property
cook does not correctly identify the anchors of entity c in that context,
since iHA(cook,C) = {r1 , r2} while iSA(c, C) = {r1}. However, the
property λx.cook(x) ∧ ∃y[restaurant(y) ∧ italian(x) ∧ of(x, y)] would
correctly identify c’s anchors.

The second part of the uniqueness condition requires that it should
be plausible to assume that the anchor is related to only one entity
which fits the description. What we have to check is whether it follows
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18 CLAIRE GARDENT, KRISTINA STRIEGNITZ

(a) Cshared : restaurant(r1 ), italian(r1 ),
restaurant(r2 ), chinese(r2 )
∀x[restaurant(x) → ∃y[cook(y) ∧ of(y, x)]]
∀xy[of(x,y) → bridge(x, y)]

Cprivate : cook(c), of(c, r1 )

(b) Cshared : book(b),
∀x[book(x) → ∃yz[page(y) ∧ of(y, x) ∧ page(z) ∧ of(z, x)

∧y 6= z]]
∀xy[of(x,y) → bridge(x, y)]

Cprivate : page(p), of(p, b)

Figure 6. Example contexts to illustrate the definition of uniqueness.

from the context that there is more than one entity of which the prop-
erty holds and which is related to the anchor. If this is the case, then
we have evidence that the second uniqueness condition is not satisfied
and that, therefore, a definite description cannot be used. If, however,
the context does not provide any evidence that there is more than one
entity which fits the description and is related to the anchor, then it
is possible to assume that the target entity is the only such entity. So,
we are checking for consistency. We are not requiring that uniqueness
with respect to the anchor has to follow from the context; it just has
to be consistent with it.

DEFINITION 7. (Uniqueness Condition II) Property P uniquely
identifies target t with respect to its anchors in the context C iff

Cprivate ∪ Cshared 6|= ∃x[P (x) ∧ bridge(x, a) ∧ x 6= t]

holds for all entities a ∈ FA(t, P,C)

Given the target c and the property cook, this condition is satisfied in
context (a) of Figure 6. There is nothing in the context which enforces
that r1 or r2 necessarily have more than one cook. In Figure 6b, in
contrast, the property page does not suffice to uniquely identify p with
respect to its anchors, since it follows from the shared knowledge that
b has more than one page.
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6. An Algorithm for Generating Bridging Anaphora

In this section, we show how to extend the base algorithm introduced
in Section 2 to bridging and indirect coreferential uses of definites. We
illustrate the workings of the algorithm by means of some examples and
describe an implementation of it using a description logic reasoning
system for carrying out the necessary inferences on the background
knowledge.

6.1. Extending the Standard Algorithm

We will now present an extension of the base algorithm that generates
bridging definites in addition to coreferring definites. The main idea
behind this extension is to use the relation between hearer and speaker
anchors to control the algorithm. Thus, the proposed algorithm starts
with an empty description and keeps adding properties as long as the
Familiarity Condition is satisfied and the Uniqueness Condition is not
satisfied. In terms of anchors this means that the algorithm proceeds
until the set of hearer anchors is a subset of the set of speaker anchors
and while the intersection of the two sets is not empty.

As in the base algorithm the description is represented by a set of
literals. To be able to use the definitions of the previous section we
have to derive the property that is attributed to an entity by a set of
literals. Given a set of literals Γ, let

∧
Γ be the conjunction of elements

of Γ. If
∧

Γ mentions entities t1 , . . . , tn then

P (ti ,Γ) = λxi∃x1 , . . . , xi−1 , xi−1 , . . . , xn

∧
Γ[t1/x1 , . . . , tn/xn ].

Given, for instance, the set of literals Γ = {cook(c), of(c, r), restaurant(r),
italian(r)} the property that is attributed to entity c by this set is

P (c,Γ) = λxc∃xr [cook(xc)∧of(xc, xr )∧restaurant(xr)∧ italian(xr )].

Assuming a given target entity t, we will now also write HA(Γ, C) to
mean HA(P (t,Γ), C) and similarly for the direct (dHA) and indirect
(iHA) hearer anchors as well as for the familiar anchors (FA).

The search problem for the extended algorithm is shown in Figure 7.
As in the original version of the algorithm, states contain a) the de-
scription Description(i) that has been built up to that state and b) the
set of those entities mentioned in Description(i) which have not yet been
uniquely identified. Descriptions are sets of literals. In the beginning,
the description is empty and the target list only contains the entity
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20 CLAIRE GARDENT, KRISTINA STRIEGNITZ

input: a context C consisting of Csharedand Cprivate

a target entity t

state s(i): Description(i), a set of literals

Targets(i), a list of target objects

initial state: Description(0) = ∅

(state s(0)) Targets(0) = {t}

goal state: State s(i) is a goal state if

Targets(i) = ∅

operator: 1) Select a literal L from Cprivate ∪Cshared . L has to

1. mention at least one entity in Targets(i),
2. rule out at least one distracting anchor for at least

one entity in Targets(i) or mentioned in L, and
3. FA(a,Description(i) ∪ {L}, C) should be

non-empty for all entities a mentioned in
Description(i) ∪ {L}. (Definition 5).

2) Description(i + 1) = Description(i) ∪ {L}

3) Targets(i + 1) is derived from Targets(i) by updating
it with L: first, those entities mentioned in L that are
not mentioned in Description(i) are added and then,
all those entities for which Description(i + 1) satisfies
the uniqueness condition (Definitions 6 and 7) are
deleted.

Figure 7. Searching a uniquely identifying description.

that was specified in the input. We have found a solution if the target
list is empty. A new search state is computed by the following three
steps:

Step 1: Select a literal. Pick a literal L such that Cprivate∪Cshared |= L.
L has to satisfy the following conditions.

− L has to mention at least one entity t which is an element of
Targets(i).
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− The addition of L should rule out at least one distracting anchor
for at least one entity mentioned in Targets(i) or in L.

− The resulting description has to be such that all entities men-
tioned in this description are familiar given the description. More
formally, for all entities t mentioned in Description(i) ∪ {L} the
set of familiar anchors FA(t,Description(i)∪ {L}, C) should not be
empty.

If there is more than one viable literal, heuristics are used to choose
one. As before different heuristics are possible. For instance, literals
which rule out the most distractors could be preferred (as in Dale and
Reiter’s greedy heuristics) or literals could be added according to some
predefined order (as in Dale and Reiter’s incremental algorithm).

Step 2: Update the description. The literal L that is chosen in the first
step is added to the description:

Description(i + 1) = Description(i) ∪ {L}.

Step 3: Update the target list. All entities mentioned in L which are
not elements of Description(i) are added to Targets(i). Then all those
entities for which Description(i + 1) satisfies the uniqueness condition
are eliminated from the list.

6.2. Examples

In the examples that follow, we will assume a simple search strategy
following Dale and Reiter’s incremental algorithm. We will prefer sortal
information to any other kind of property, and unary literals to binary
ones.

Example 1. In this example, the algorithm builds an implicitly an-
chored bridging description. Let’s assume the following context:

Cshared : restaurant(r),
∀x[restaurant(x) → ∃y[cook(y) ∧ of(y, x)]]
∀xy[of(x, y) → bridge(x, y)]

Cprivate : cook(c), of(c, r)

Suppose the goal is to build an expression referring to entity c. Row
one of the table below shows the initial search state (description and
target list) as well as the hearer and speaker anchors of c. In the first
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step, the algorithm could add either cook(c) or of(c,r). Dale and Reiter’s
incremental heuristics prefers the former. The set of hearer anchors of
c now equals the set of speaker anchors, and hence, the first part of the
uniqueness condition is satisfied. The second part of the uniqueness
condition is also satisfied, as there is no indication that r has more
than one cook. Entity c can therefore be eliminated from the target
set, which then is empty. Hence, the algorithm has found a goal state
and stops.

Description Targets HA SA

1. ∅ {c} c: all entities of Cshared c : {r}

2. {cook(c)} ∅ c : {r} c : {r}

Example 2. In this example, the bridging relation has to be made
explicit in the description. We assume the following context, which is
very much like the context of the previous example, but there are two
restaurants now – an Italian one and a Chinese one.

Cshared : restaurant(r1 ), italian(r1 ),
restaurant(r2 ), chinese(r2 )
∀x[restaurant(x) → ∃y[cook(y) ∧ of(y, x)]]
∀xy[of(x, y) → bridge(x, y)]

Cprivate : cook(c), of(c, r1 )

Suppose that the target entity is again c. The search starts out as
in the previous example (as shown by rows 1 and 2 of the table below).
In contrast to the previous example, though, adding cook(c) to the
description does not lead to a goal state. The set of hearer anchors of c
still contains both restaurants r1 and r2 and is therefore not a subset
of the speaker anchors. The only thing that can be added in the next
step is of(c, r1 ), which adds a new entity, r1 , to the target list. r1 is
of type restaurant. However, adding the literal restaurant(r1 ) to the
description would not reduce the set of hearer anchors for either c or r1 .
Assuming that the algorithm prefers literals which rule out distractors,
it chooses to add italian(r1 ) instead. Now, the set of hearer anchors of
both c and r1 are equal to the respective sets of familiar anchors. It is
also consistent with Cprivate ∪ Cshared to assume that r1 has only one
cook. Hence, both parts of the uniqueness condition are fulfilled.
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Note that there is no straightforward way of realizing the description
as an English noun phrase. It corresponds to something like the cook of
the Italian . . . , where a noun is missing in the embedded noun phrase.
So, again, we see that syntactic constraints should be taken into account
when building definite descriptions.

Description Targets HA SA

1. ∅ {c} c: all entities of Cshared c : {r1}

2. {cook(c)} {c} c : {r1 , r2} c : {r1}

3. {cook(c), of(c, r1 )} {c, r1} c : {r1 , r2} c : {r1}

r1 : {r1 , r2} r1 : {r1}

4. {cook(c), of(c, r1 ), ∅ c : {r1} c : {r1}

italian(r1 )} r1 : {r1} r1 : {r1}

Example 3. Here is an example in which the algorithm fails because
the familiarity condition cannot be satisfied. Consider the following
situation:

Cshared : book(b),
∀x[book(x) → ∃yz[page(y) ∧ page(z) ∧ of(y, x) ∧ of(z, x)

∧ y 6= z]]
∀xy[in(x, y) → bridge(x, y)]

Cprivate : cockroach(c), in(c, b)

Imagine that we need to refer to entity c, the cockroach. c is not
hearer old, but c is related to a hearer old entity, namely the book b.
So, the set of speaker anchors is {b}. However, the shared knowledge
does not include any information which would tell the hearer that all
books contain cockroaches or that all cockroaches are related to books.
So, there is no literal that could be added to the description while pre-
serving the familiarity condition. This means that it is not possible to
build a definite description and the algorithm fails. Other mechanisms
have to be used to build an appropriate referring expression.
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6.3. Implementation

There is a proof of concept implementation of the extended algorithm
in the functional language Mozart Oz. It uses RACER, an automated
reasoning system for description logics (DL), to carry out the necessary
inferences on the discourse context. In this section, we will look at
how these inferences are formulated as queries to the DL reasoning
system. We will first give a brief introduction to description logics and
describe how the different components of the discourse context can
be represented as a DL knowledge base. Then, we will show how the
functionality provided by typical DL reasoning systems nicely supports
the reasoning tasks required by the extended algorithm.

Description Logics
Description logic (DL) is a family of logics in the tradition of knowledge
representation formalisms such as KL-ONE (Woods and Schmolze,
1992). DL is a fragment of first-order logic which only allows unary
and binary predicates (concepts and roles) and only very restricted
quantification. A knowledge base consists of a T-Box, which contains
axioms relating the concepts and roles, and one or more A-Boxes, which
state that individuals belong to certain concepts, or are related by
certain roles.

T-Box statements have the form C1 ⊑ C2 , where C1 and C2 are
concept expressions. Concepts denote sets of individuals and the state-
ment means that denotation of C1 is a subset of the denotation of C2 ,
that is, C2 subsumes C1 . So, we can, for example, write cook ⊑ human
to express cooks are human. Concepts can be combined by the Boolean
connectives ⊓ (and), ⊔ (or), and ¬. For example, animal ⊑ ¬human.
Finally, we can use roles (binary predicates) and their inverses in combi-
nation with the quantifiers ∀ and ∃ to relate two concepts: restaurant ⊑
∃part of−1 .cook expresses that every restaurant is related to a cook via
an (inverse) part of relation. More expressive DLs furthermore allow
number restrictions on roles such as horse ⊑ (= 4 part of−1 ).leg, which
means horses have exactly four legs.

That was the T-Box. The A-Box contains statements such as rabbit(a)
or love(b, c) to express that the individual a is an instance of the concept
rabbit, and the individual b and c are related through the role love.

We will represent the world knowledge as a T-Box and the discourse
model and the speaker’s model as A-Boxes.

Theorem provers for description logics support a range of different
reasoning tasks. Among the basic reasoning tasks are, for example, sub-
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sumption checking (Does one concept subsume another?), and instance
and relation checking (Does a given individual belong to a certain
concept?/Are two individuals related through a certain relation?). In
addition, description logic systems usually provide some retrieval func-
tionality which, for example, allows to compute all atomic concepts that
a given individual belongs to or all individuals that belong to a given
concept. This is very useful for our purposes as retrieval of concepts
allows easy access to all properties of an object and instance retrieval
provides an elegant way for computing the speaker and hearer anchors.

There is a wide range of different description logics which add dif-
ferent extensions to a common core. Of course, the more expressive
these extensions become, the more complex the reasoning problems
are. In the last few years, new systems such as FaCT (Horrocks) and
RACER (Haarslev and Möller) have shown that it is possible to achieve
surprisingly good average-case performance for very expressive (but
still decidable) logics. In this paper, we employ the RACER system
because it allows for A-Box inferences.

DL Reasoning for the Extended Algorithm
The core reasoning task in the extended algorithm is to compute the
set of hearer anchors. In a DL setting, this is straightforwardly im-
plemented by using the instance retrieval mechanism. Recall that this
mechanism returns all instances of a given concept. We first create a
DL concept which approximates the characterization of hearer anchors
given in Section 5. That is, given a target t and a description Γ, we
create concepts which approximates the following formulas

P (t,Γ) (direct hearer anchors)
λx.∃y[bridge(x, y) ∧ P (t,Γ)(y)] (indirect hearer anchors)

(Remember that P (t,Γ) is the property that is attributed to entity t
by the set of literals Γ.) Using instance retrieval, we can then gather all
objects belonging to this concept or which are related to an instance
of this concept via a bridging relation.

To construct the approximating DL concept from the set Γ of lit-
erals representing the semantic content of the definite description, we
use the following strategy. Assuming that we want to compute the
hearer anchors of object o, we first collect all unary properties of o
in Γ and conjoin the predicate symbols to form a concept expression.
These properties are deleted from the set Γ. Then, we take one by
one the binary properties relating o to some other object o′ via a
relation R, we (recursively) build a concept expression Co′ for o′ and
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conjoin ∃R.Co′ with the previously constructed part. For example, for
Γ = {cook(c), part of(c, r), restaurant(r), italian(r)} and target c we will
build the following DL concept:

cook ⊓ ∃part of.(restaurant ⊓ italian)

The resulting concept is only an approximation of the corresponding
first order formula. This is due to the restricted expressive power of
DL, which cannot capture reflexivity: λx(R(x, x)) would be rendered
as ∃T.⊤. Similarly, if the same two objects are related in two different
ways, this information is lost in the DL concept: λx(∃y(R1 (x, y) ∧
R2 (x, y)) becomes (∃R1 .⊤)∧(∃R2 .⊤). As we only generate descriptions
expressing a set of positive facts about an entity, however, these two
are the only cases in which the DL concept is not equivalent to the first
order formula corresponding to the description.

To check the second part of the Uniqueness Condition, we em-
ploy number restrictions and test that it is consistent with the shared
knowledge to assume that the anchor is related to exactly one in-
stance of the DL concept corresponding to the description. For example,
to test whether it is consistent with world knowledge that an entity
a has exactly one page, we test whether the negation follows from
world knowledge. If so, it is not consistent, otherwise it is. To test
the entailment, we send the query “is a an instance of the concept
¬(= 1 part of−1 ).page” to the DL prover.

Finally, we use RACER’s functionality for retrieving properties (con-
cepts, most specific concepts, roles) of a given instance to collect all
potentially applicable properties.

The inferences that are necessary in our approach to generating
definite descriptions could also be carried out by automated theo-
rem provers for first order logic. As first order logic provers do not
provide the kind of knowledge base management and retrieval function-
ality that comes with DL systems, however, one would need additional
mechanisms for selecting applicable properties and for retrieving and
maintaining the set of hearer anchors.

7. Conclusion

In this paper, we have shown how the basic incremental algorithm
for generating definite descriptions proposed by Dale and Reiter, can
be extended to handle definite descriptions which depend on world
knowledge in such a way that their processing requires knowledge based
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reasoning. Specifically, we have shown how it can be integrated with
reasoning to generate bridging and to a certain extent, indirect coref-
erential uses of definite descriptions.

But as seen in Section 3, bridging and coreferential uses do not
exhaust the usage spectrum of definite descriptions. Larger situation
and unfamiliar uses are also very frequent. Provided the context is
extended to encode world and situational knowledge, the proposed
algorithm naturally extends to larger situation uses – these are just
uses where the entity is familiar because it is hearer old.

The unfamiliar class is more problematic. Recall that it includes
definite descriptions with sentential complements (the fact that John’s
father is bald) and containing inferables, that is, entities that are fa-
miliar by virtue of being related to some discourse old entity (the man
John met yesterday, the Iran/Iraq war). The first subclass (descriptions
with sentential complements) can be viewed as a kind of event anaphora
(the speaker is referring to John’s father’s baldness) and should prob-
ably be treated as such. The second case (containing inferables) raises
the question of how familiarity should be defined. Conceivably, the
definition of hearer anchors could be further weakened to encompass
such cases. However, doing so might lead to overgeneration. It would
therefore be important to first have a better understanding of the distri-
bution and form of containing inferables and of when explicit bridging
is acceptable.

In this paper, we are mainly interested in the knowledge based
reasoning necessary for generating inference based definite descrip-
tions. There are other factors which also play important roles for the
generation of anaphoric expressions. In particular, our account needs
to be supplemented with a notion of salience (such as the one sug-
gested by Krahmer and Theune (2001), for example) and possibly other
pragmatic mechanisms for explaining anaphora resolution preferences.
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