Computers are amazing. They seem to have it all. They fly aircraft and spaceships, and control power stations and hazardous chemical plants. Companies cannot be run without them, and many medical procedures cannot be performed in their absence. They serve lawyers and judges who seek judicial precedents, and help scientists and engineers to perform immensely involved mathematical computations. They route and control millions of simultaneous telephone calls and manage the remarkable movement of Internet data in enormous global networks. They execute tasks with great precision — from map-reading and typesetting to image processing, robot-aided manufacturing and integrated circuit design. They help individuals in many boring daily chores and at the same time provide entertainment through computer games or the delight of surfing the Web. Moreover, the computers of today are hard at work helping design the even more powerful computers of tomorrow.

It is all the more remarkable, therefore, that the digital computer — even the most modern and complex one — is merely a large
collection of switches, called bits, each of which can be on or off. On is denoted by 1 and off by 0. Typically, the value of a bit is determined by some electronic characteristic, such as whether a certain point has a positive or negative charge. In a technical sense, a computer can really execute only a small number of extremely simple operations on bits, like flipping a bit’s value, zeroing it, or testing it (that is, doing one thing if the bit is on and another if it is off).

Computers may differ in size, i.e., in the number of bits available, and in internal organization, as well as in the types of elementary operations allowed and the speed at which they are performed. They can also differ in outward appearance and in their connections with the external world. However, appearances are peripheral when compared to the bits and their internal arrangement. It is the bits that ‘sense’ the input stimuli arriving from the outside world, and it is the bits that ‘decide’ how to react to them by output stimuli. The inputs can arrive via keyboards, touch screens, control panels, electronic communication lines, or even microphones, cameras, and chemical sensors. The outputs are fed to the outside world via display screens, communication lines, printers, loudspeakers, beepers, robot arms, or whatever.

How do they do it? What is it that transforms simple operations like flipping zeros and ones into the incredible feats computers perform? The answer lies in the concepts that underlie the science of computing: the computational process, and the algorithm, or program, that causes it to take place.

**algorithms**

Imagine a kitchen, containing a supply of ingredients, an array of baking utensils, an oven, and a (human) baker. Baking is a process that produces a cake, from the ingredients, by the baker, aided by the oven, and, most significantly, according to the recipe. The ingredients are the input to the process, the cake is its output, and the recipe is the algorithm. In the world of electronic computation, the recipes, or algorithms, are embodied in software, whereas the utensils and oven represent the hardware. See Fig. 1.1.

Just like computers carrying out bit operations, the baker with his or her oven and utensils, has very limited direct abilities. This cake-baking hardware can pour, mix, spread, drip, knead, light the oven, open the oven door, measure time, measure quantities, etc. It cannot directly bake cakes. The recipes — those magical prescriptions that convert the limited abilities of novice bakers and kitchen hardware into cakes — are at the heart of the matter; not the ovens or the bakers.

![Fig. 1.1. Baking a cake.](image-url)
In our world, recipes are called algorithms, and the study, knowledge, and expertise that concerns algorithms has been termed algorithmics.\(^1\)

The analogy with cooking can be understood as follows: the recipe, which is an abstract entity, is the algorithm; the formal written version of the recipe, such as is found in a particular cookbook, is analogous to a computer program — the precise representation of an algorithm, written in a special computer-readable formalism called a programming language. It is important to realize that, just as a recipe remains the same whether written in English, French, or Latin, and regardless of where and by whom it is carried out, so does an algorithm remain the same whether written in Fortran, C, Cobol, or Java, and regardless of the computer it runs on, be it an ultra-light laptop or a room-size mainframe. The generic term software actually refers to programs rather than to the abstract notion of algorithms, since software is written for real computers. However, we shall blur the distinction, since the story told in the following chapters applies just as well to both.

**basic instructions**

Let us take the gastronomical analogy a little further. Here is a recipe for chocolate mousse.\(^2\) The ingredients — that is, the recipe’s input — include 8 ounces of semi-sweet chocolate pieces, 2 tablespoons of water, a 1/4 cup of powdered sugar, 6 separated eggs, and so on. The output is described as six to eight servings of delicious mousse fine au chocolat.


This is the ‘software’ relevant to the preparation of the mousse; it is the algorithm that prescribes the process that produces mousse from the ingredients. The process itself is carried out by the person preparing the mousse, together with the ‘hardware’, in this case the various utensils: double boiler, heating apparatus, beater, spoons, timer, and so on.

---

\(^1\) The word ‘algorithm’ is derived from the name of the Arabic/Persian mathematician of the ninth century, Mohammed al-Khowârizmî, who is credited with providing the step-by-step rules for carrying out the fundamental operations of decimal arithmetic. In Latin the name became Algoritmus, from which ‘algorithm’ is derived. Historically, the first nontrivial algorithm was invented somewhere between 400 and 300 BC by the great Greek mathematician Euclid. The Euclidian algorithm, as it is called, finds the greatest common divisor (gcd) of two positive integers, i.e. the largest integer that exactly divides them both. For example, the gcd of 80 and 52 is 16. The word ‘algorithmics’ was apparently coined by J. E. Traub (1964). *Iterative Methods for the Solution of Equations*, Prentice Hall. It was proposed as the name for the relevant field of study by D. E. Knuth (1985), ‘Algorithmic Thinking and Mathematical Thinking’, *American Math. Monthly* 92, 170–181, and by the present author in *Algorithmics: The Spirit of Computing*, Addison-Wesley (1987).

One of the basic instructions, or basic actions, present in this recipe is 'stir in powdered sugar'. Why does the recipe not say 'take a little powdered sugar, pour it into the melted chocolate, stir it in, take a little more, pour, stir,...'? Even more specifically, why does it not say 'take 2,365 grains of powdered sugar, pour them into the melted chocolate, pick up a spoon and use circular movements to stir it in,...'? Or, to be even more precise, why not 'move your arm towards the ingredients at an angle of 14°, at an approximate velocity of 18 inches per second,...'? The answer, of course, is obvious. The 'hardware' knows how to stir powdered sugar into melted chocolate, and does not need further details.

This begs the question of whether the hardware knows how to prepare sugared and buttered chocolate mixture, in which case the entire first part of the recipe could be replaced by the simple instruction 'prepare chocolate mixture'. Taking this to the extreme, perhaps the hardware knows how to do the whole thing. This would make it possible to replace the entire recipe by 'prepare chocolate mousse', indeed a perfect recipe for producing the chocolate mousse; it is clear and precise, contains no mistakes, and is guaranteed to produce the desired output just as required.

Obviously, the level of detail is very important when it comes to an algorithm's elementary instructions. The actions that the algorithm asks to be carried out must be tailored to fit the capabilities of the hardware that does this carrying out. Moreover, the actions should also match the comprehension level of a human. This is because humans construct algorithms, humans must become convinced that they operate correctly, and humans are the ones who maintain those algorithms and possibly modify them for future use.

Consider another example, which is closer to conventional computation: multiplying integers manually. Suppose we are asked to multiply 528 by 46. The usual 'recipe' for this is to first multiply the 8 by the 6, yielding 48, to write down the units digit of the result, 8, and to remember the tens digit, 4. The 2 is then multiplied by the 6, and the 4 is added, yielding 16. The units digit 6 is then written down to the left of the 8 and the tens digit 1 is remembered. And so on.

The same questions can be asked here too. Why 'multiply the 8 by the 6'? Why not 'look up the entry appearing in the eighth row and sixth column of a multiplication table', or 'add 6 to itself 8 times'? Similarly, why can't we solve the entire problem in one stroke by the simple and satisfactory algorithm 'multiply 528 by 46'? This last question is rather subtle: we are allowed to multiply 8 by 6 directly, but not 528 by 46. Why?

Again, the level of detail plays a crucial part in our acceptance of the multiplication algorithm. We assume that the relevant hardware (in this case, ourselves) is capable of carrying out 8 times 6 directly, but not 528 times 46, so that the former can be used as a basic instruction in an algorithm for carrying out the latter.

Another point illustrated by these examples is that different problems are naturally associated with different kinds of basic actions. Recipes entail stirring, mixing, pouring, and heating; multiplying numbers entails addition, digit multiplication, and remembering a digit; looking up a telephone number might entail turning a page, moving a finger down a list, and comparing a given name to the one being pointed out. Interestingly, we shall see later that when it comes to algorithms intended for computers these differences are inessential.

**the text vs. the process**

Suppose we are given a list of personnel records, one for each employee in the company. Each record contains an employee's
name, some other details, and his or her salary. We are interested in the total sum of the salaries of all employees. Here is an algorithm for this:

1. make a note of the number 0;
2. proceed through the list, adding the current employee's salary to the noted number;
3. having reached the end of the list, produce the noted number as output.

Clearly, the algorithm does the job. The 'noted' number can be thought of as a sort of empty box containing a single number, whose value can change. Such an object is often called a variable. In our case, the noted number starts out with the value zero. After the addition in line 2 is carried out for the first employee, its value is that employee's salary. After the addition for the second employee, its value is the sum of the salaries of the first two employees, and so on. At the end, the value of the noted number is the sum of all salaries (see Fig. 1.2).

It is interesting that the text of this algorithm is short and is fixed in length, but the process it describes varies with the size of the employee list, and can be very, very long. Two companies, the first with 10 employees and the second with a million, can both use the very same algorithm to sum their respective employees' salaries. The process, though, will be much faster for the first company than for the second. Moreover, not only is the text of the algorithm short and of fixed size, but both companies require only a single variable (the noted number) to do the job. So the quantity of 'utensils' is also small and fixed. Of course, the value of the noted number will be larger for a larger company, but only a single number is required to be 'noted' all along.

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Brown</td>
<td>$21,000</td>
</tr>
<tr>
<td>Mary White</td>
<td>$34,400</td>
</tr>
<tr>
<td>Mike Green</td>
<td>$18,000</td>
</tr>
<tr>
<td>Joan Silver</td>
<td>$26,000</td>
</tr>
</tbody>
</table>

Fig. 1.2. Summing salaries.

Thus we have a fixed algorithm, that requires no change in order to be used in different situations (i.e. for each and every different input list), but the processes it prescribes can differ in length and duration for different input situations.

inputs

Even the simple example of salary summation shows a variety of possible inputs: small companies, large companies, companies in which some salaries are zero, or ones in which all salaries are equal. The algorithm might also have to deal with unusual or even bizarre inputs, such as companies with no employees at all or with employees who receive negative salaries (that is, the employee pays the company for the pleasure of working for it).

Actually, the salary algorithm is supposed to perform satisfactorily for an infinite number of perfectly acceptable lists of employees. This is an extreme way of appreciating the 'short-algorithm-for-lengthy-process' principle. Not only the contrast in duration, or
length, is interesting; the very number of processes prescribed by a single algorithm of fixed length can be large, and most often is infinite.\(^3\)

An algorithm's inputs must be legal relative to its purpose. This means that the New York Times list of bestsellers would be unacceptable as an input to the salary summation algorithm, just as peanut butter and jelly are unacceptable as ingredients for the mousse recipe. This means that we need a specification of the allowed inputs. Someone must decide precisely which employee lists are legal and which ones are not, where an employee record ends and another begins, where exactly in each record the salary is to be found and whether it is given in longhand (for example, $32,000) or in some abbreviated form (e.g. $32K), and so on.

**What do algorithms solve?**

All this leads us to the central notion underlying the world of algorithmics and computation — the algorithmic problem, which is what an algorithm is designed to solve. The description of an algorithmic problem must include two items (see Fig. 1.3):

- a precise definition of the set of legal inputs;
- a precise characterization of the required output as a function of the input.

---

3 This issue of an infinite number of potential inputs doesn't quite fit the recipe analogy, since although a recipe should work perfectly well no matter how many times it is used, ingredients are usually described in fixed quantities. Hence, the recipe really has only one potential input. However, the chocolate mousse recipe could have been made generic, to fit varying but proportional quantities of ingredients.

---

When we discuss an algorithmic problem as applied to a particular input (like the salary summation problem applied to some concrete list of employees), we call it an instance of the problem.

Here now are some additional examples of algorithmic problems. Each one is defined, as is proper, by its set of legal inputs and a description of the desired output. They are numbered, and we will refer to them at various points in the following chapters.

### Problem 1

**Input:** Two integers, \(x\) and \(y\).

**Output:** The number \(x + y\).

This is a simple problem that calls for an arithmetic calculation on two input numbers.
Problem 2

Input: A positive integer K.
Output: The sum of the integers from 1 to K.

This problem also involves arithmetic, but the number of elements it deals with varies, and itself depends on the input.

Problem 3

Input: A positive integer K.
Output: 'Yes' if K is prime and 'No' if it isn't.

This is what we shall be referring to as a decision problem. It calls for deciding the status of its input number. (Recall that a prime number is a positive integer that can be divided without a remainder only by 1 and itself. For example, 2, 17, and 113 are primes, whereas 6, 91, and 123 are not. Non-primes are termed composite.) Solving this problem will surely involve arithmetic, but it does not provide a numeric output, only a 'Yes' or a 'No'.

Problem 4

Input: A list L of words in English.
Output: The list L sorted in alphabetic (lexicographic) order.

This is a non-arithmetic problem, but like Problem 2 it has to deal with a varying number of elements in this case - words.

Problem 5

Input: Two texts in English.
Output: A list of the words common to the two texts.

This too involves words, rather than numbers. We assume that texts have been defined appropriately, say, as a string of symbols consisting of letters, spaces and punctuation marks. A word in a text would be a string of letters enclosed by spaces or punctuation marks.

Problem 6

Input: A road map of cities with distances attached to road segments, and two designated cities therein, A and B.
Output: A description of the shortest possible path (trip) between A and B.

This is a search problem, involving points and distances between them. It calls for some kind of optimization process to find the shortest path.

Problem 7

Input: A road map of cities, with distances attached to road segments, and a number K.
Output: Yes if it is possible to take a trip that passes through all the cities, and whose total length is no greater than K miles, and 'No' if such a trip is impossible.

This too asks to search for a short path, but between two points but, rather, a path that traverses all points. Also, this problem is not phrased as requiring an optimization (i.e., find the best path), but as a decision problem that asks just whether there is some path shorter than the given limit.
Problem 8

Input: A program P written in Java, with integer input variable X and output variable Y, and a number K.
Output: The number 2K if the program P always sets Y's value to be equal to X, and 3K if not.

This problem is about algorithms, in their formal sense, as programs. It wants to know something about the behavior of a given program in general, not of a particular input.

So algorithmic problems have all kinds of inputs: numbers, words, texts, maps, and even other algorithms or programs. Also, some problems are truly computational in nature, some involve rearrangements (sorting), some require information retrieval (finding common words), some are optimization problems (shortest path), and some are decision problems (primality testing and all-point trips). Thus, a decision problem is a yes/no algorithmic problem. Decision problems appear not to compute, retrieve or optimize, only to decide, determining whether some property is true or false. Some algorithmic problems are hybrids: Problem 8, for example, combines decision with computation; its output is the result of one of two simple computations, but which of these it will be depends on a property of the input that has to be decided.

All these sample problems have infinite sets of legal inputs. To solve them, we have to be able to deal with arithmetic on all numbers, with sorting all lists of words, with finding the shortest trip in all city maps, etc. Put another way, each problem requires that we devise a method, a common procedure or recipe, that will solve any given instance of the problem. The number of potential instances is infinite. Such a method constitutes an algorithm.

Many algorithmic problems in the real everyday world are not so easy to define. Sometimes the difficulty is in specifying the required output, as when asking for the best move from a legal board position in chess (what exactly is 'best'?). In other cases, describing the inputs can be complicated. Suppose 20,000 newspapers are to be distributed to 1000 delivery points in 100 towns using 50 trucks. The input contains the road distances between the towns and between the delivery points in each town, the number of newspapers required at each point, the present location of each truck, details of available drivers, including their present whereabouts, and each truck's newspaper carrying ability, gasoline capacity and miles-per-gallon performance. The output is to be a list, matching drivers and destinations to trucks, in a way that minimizes the total cost to the distributing company. Actually, the problem calls for an algorithm that works for any number of newspapers, towns, delivery points, and trucks.

Some problems have hard-to-pin-down inputs as well as hard-to-specify outputs, such as the ones required to predict the weather or to evaluate stock market investments.

In this book, we shall stick to simple-looking algorithmic problems, usually with easy to describe inputs and outputs. In fact, for the most part, we will concentrate on decision problems. So describing our problems will be easy, and the outputs will usually be just 'Yes's and 'No's.

isn't our setup too simplistic?

Aren't we overly simplifying things? Computers are busy struggling with tasks far more complicated than merely reading a simple input, doing some work, producing a 'Yes' or a 'No' and quitting. Aren't we greatly weakening our presentation by avoiding modern
real-world computational frameworks, such as interactive computing, distributed systems, real-time embedded systems, graphics-intensive applications, multimedia, and the entire world of the Internet.

To me, the author, you might be saying under your breath: ‘Are you just another one of those stuffy academics? Don’t you know anything about computing? Stop giving us this chit-chat about simple input/work/output computations. Just get real, will you?’

The answer is: indeed, yes. We are simplifying things, and in fact quite radically. But for a very good reason. Remember that we are dealing with the bad news. This book is not about making things better, smaller, stronger, or faster. It is about showing that very often things cannot be improved in these ways. That things can become very, very nasty. That certain tasks are simply impossible. Now, given that we are after bad news here, our arguments and claims become stronger, not weaker, by considering a simpler class of problems! We will be showing that even in a simple computational framework, things can be devastatingly bad; all the more so in an intricate and seemingly more powerful one. The fact that computers are hopelessly limited is more striking with a simple input-output paradigm for computation than with a more complex one. Moreover, since the book is devoted almost exclusively to decision problems, we are also implying that the bad news has nothing to do with the need for complicated and lengthy outputs. The desire to generate even a simple ‘Yes’ or ‘No’ is enough to yield real nightmares.

solving algorithmic problems

An algorithmic problem is solved when an appropriate algorithm has been found. What is ‘appropriate’? Well, the algorithm must provide correct outputs for all legal inputs: if the algorithm is executed, or run, on any one of the legal inputs defined in the problem, it must produce the output specified in the problem for that input. A solution algorithm that works well for some of the inputs is not good enough.

Finding solutions to most of the sample problems described earlier is easy. Computing \( P^2 + 3K \) is trivial (assuming, of course, that we have basic operations for addition and multiplication), and likewise summing the integers from 1 to \( K \). In the latter case, of course, we must use a counter to keep track of how far we have gone and to stop the process when we have dealt with \( K \) itself.

To test whether a number \( K \) is prime (Problem 3), we divide it by all the integers from 2 to \( K - 1 \), stopping and saying ‘No’ if one of them is found to divide \( K \) without a remainder, and stopping and saying ‘Yes’ only when all the divisions have been completed and they have all yielded a remainder.\(^4\)

Problem 4 can be solved by numerous different sorting algorithms. A simple one involves repeatedly searching for the smallest element in the input list \( L \), removing it from \( L \) and adding it to the accumulating output list. The process stops when the original list is empty. Problems 6 and 7 can both be solved by considering all possible paths between cities (that is, one-way paths between \( A \)

\(^4\) Of course, this algorithm can be improved: we can stop the process of testing for divisors at \( \sqrt{K} \), the square root of \( K \), rather than at \( K - 1 \). The reason is that if \( K \) has a clean divisor that is larger than \( \sqrt{K} \) it must also have one that is smaller. We can also avoid testing multiples of the numbers already tested, thus further expediting the process. Some of the other problems can also be solved more efficiently than the ways we mention. However, efficiency and practicality of algorithms are not addressed until later in the book, so we shall not dwell on these issues right now. Here we impose only the minimal requirement — that the algorithm does, in fact, solve the problem, providing correct outputs for all legal inputs, even though it might do so inefficiently.
and $B$ in Problem 6, and round-trip paths that traverse all the cities in Problem 7), and computing their lengths. Since the number of cities is finite, the number of paths is finite too, so that an algorithm can be set up to run through them all. This has to be done with care, however, so as not to miss any paths, and not to consider paths more times than is needed.

As mentioned, we shall return to several of these sample problems in the following chapters.

**programming**

An important issue that we should address, although it is not really critical to the central concerns of the book, is the way algorithms are executed by real computers. How do computers bridge the gap between their extremely modest capability to carry out operations on bits and the high-level actions humans use to describe algorithms? For example, how can bit manipulation be made to accomplish even such a simple-looking task as *proceed through the list, adding the current employee’s salary to the noted number*? What list? Where does the computer find the list? How does it proceed through the list? Where exactly is the salary to be found? How is the ‘noted number’ accessed? And so on.

We have already mentioned that algorithms must be presented to the computer in a rigorous, unambiguous fashion, since when it comes to precision and unambiguity, *proceed through the list* is not much better than ‘beat egg whites until foamy’. This rigor is achieved by presenting the computer with a program, which is a carefully formulated version of the algorithm, suitable for computer execution. It is written in a programming language, which provides the notation and rules by which one writes programs for the computer.

A programming language must have a rigid syntax, allowing the use of only special words and symbols. Any attempt to stretch this syntax might turn out to be disastrous. For example, if ‘input $K$’ is written in a language whose input commands are of the form ‘read $K$’, chances are that the result will be something like ‘SYNTAX ERROR E4514 IN LINE 108’. And of course, we cannot hope to address the computer with the like of ‘please read a value for $K$ from the input’, or ‘how about getting me a value for $K$’. These might result in a long string of obscure error messages. It is true that nice, talkative instructions, such as the ones we find in recipes, are more pleasant and perhaps less ambiguous than their terse and impersonal equivalents. It is also true that we strive to make computers as user-friendly as possible. But since we are still far from computers that can understand free-flowing natural language like English (see Chapter 7), a formal, concise, and rigid set of syntactic rules is essential.

An algorithm for summing the numbers from 1 to $K$ might be written in a typical programming language as follows:

```plaintext
input $K$
$X_0 = 0$
for $Y$ from 1 to $K$ do
    $X_i = X + Y$
end
output $X$
```

The intended meaning of this program is as follows. First, $K$ is received as an input and the variable $X$ (a ‘noted number’) is assigned an initial value of zero. Its role will be to accumulate the running sum we are calculating. Next, a loop is carried out, calling for its body — in our case the $X_i = X + Y$ that appears between the
for command and the end — to be executed again and again. The loop is controlled by the variable Y, which starts out with the value 1 and increases repeatedly by 1 until it reaches K, which is the last time the \( X := X + Y \) is executed. This causes the computer to consider all the integers from 1 to K, in that order, and in each iteration through the loop the integer considered is added to the current value of \( X \). In this way \( X \) accumulates the required sum. When the loop is completed, the final sum is output.

Of course, this is what we intend the program to mean, which is not enough. The computer must somehow be told about the intended meaning of programs. This is done by a carefully devised semantics that assigns an unambiguous meaning to each syntactically allowed phrase in the programming language. Without this, the syntax is worthless. If meanings for instructions in the language have not been provided and somehow 'explained' to the computer, the program segment ‘for Y from 1 to K do’ might, for all we know, mean 'subtract Y from 1 and store the result in K', instead of it being the controlling command of the loop, as we intended. Worse still, who says that the keywords from, to, do, for example, have anything at all to do with their meaning in English? Maybe the very same program segment means 'erase the computer’s entire memory, change the values of all variables to zero, output "TO HELL WITH PROGRAMMING LANGUAGES", and stop'. Who says that '=' stands for 'assign to', and that '+' denotes addition? And on and on. We might be able to guess what is meant, since the language designer probably chose keywords and special symbols intending their meaning to be similar to some accepted norm. But a computer cannot be made to act on such assumptions.

To summarize, a programming language comes complete with rigid rules that prescribe the allowed form of a legal program, and also with rules, just as rigid, that prescribe its meaning. We can now phrase, or code our algorithms in the language, and they will be unambiguous not only to a human observer, but to the computer too.

Once the program is read in by the computer, it undergoes a number of computerized transformations, aimed at bringing it down to the bit-manipulation level that the computer really 'understands'. At this point the program (or, rather, its low-level equivalent) can be run, or executed, on a given input (see Fig. 1.4).\(^5\)

**errors and correctness**

Coming up with a bright idea for an algorithm, constructing the algorithm itself carefully and then writing it up formally as a program, doesn’t mean we are done. Consider the following:

- Several years ago, around her 107th birthday, an elderly lady received a computerized letter from the local school authorities in a Danish county, with registration forms for first grade in elementary school. It turned out that only two digits were allotted to the ‘age’ field in the population database.
- In January 1990, one of AT&T’s switching systems in New York City failed, causing a major crash of the national AT&T telephone system. For nine hours, almost half of the calls made through AT&T failed to connect. As a result, the company lost

\(^5\) The main transformation among these is called compilation. The compiler, which itself is a piece of software, transforms the high-level program into a functionally equivalent program written in a low-level format called assembly language, which is much closer to the machine language of hit manipulation.
more than $60 million, not to mention the enormous losses accrued by airlines, hotels, banks, and all kinds of other establishments that rely critically on the telephone network. The failure was caused by a software flaw, and escaped detection even by the complex software-testing methods of AT&T. Moreover, although the error was in a single program, it caused a cascade of failures that avalanched through the entire system, resulting in what turned out to be essentially a collapse of the entire network.

- In June 1996, less than a minute into its first flight, the French rocket Ariane 5 self-destructed, causing direct and indirect losses of several billions of dollars, and many months of setback for the entire Ariane space program. In the words of the inquiry board, the failure was caused by 'the complete loss of guidance and attitude information 37 seconds after start of the main engine ignition sequence', and that this was 'due to specification and design errors in the software of the inertial reference system'. The error, it turned out, was in a single line of code that attempted to load a 64-bit number into a 16-bit location in the computer, causing overflow.

These are just three of numerous tales of software failures, many of which have ended in catastrophes, at times with loss of life. It is naïve to assume that the algorithms and programs we write will always do exactly what we had in mind. Getting them to be correct takes lots and lots of very hard work, and is often unsuccessful.

The correctness issue has surfaced recently in all its severity around the so called Y2K problem, or the 2000 year bug, which is expected to come to a climax at the turn of the century, when computers that used two digits for storing years will have to start dealing with dates that have a year component of 00 or 05. At the time of writing (mid-1999) no-one knows the extent of the difficulties or catastrophes this will cause; immense efforts and enormous amounts of money have been put into minimizing its impact. Put very simply, definitions of algorithmic problems in the past did not normally take into account years that go beyond 1999.

Footnote 6 can be found on p. 24.
Establishing correctness is particularly difficult because algorithms are required to produce the right outputs when run on any one of the legal inputs specified in the problem. Partial solutions are unacceptable. To use the example of testing a number for primality (Problem 3), it would be laughable if someone were to propose an algorithm that works well for half of the inputs — the even numbers. As a more extreme example, consider the following trivial algorithm for summing salaries:

1. produce 0 as output.

This 'algorithm' works perfectly well for several interesting lists of employees: those with no employees at all, those in which everyone earns $0.00, or those with a payroll that reflects a perfect balance between positive and negative salaries. Clearly, this is not good enough. Our algorithms have to work as required for all legal inputs. This is a strict requirement: we want complete, foolproof solutions. No almosts. (In Chapter 6 we shall relax this somewhat, but for now these are the rules of the game.)

A frequent kind of error stems from abusing the syntax of the programming language. If we write ‘read X’ when the programming language requires ‘input X’, or even merely misspell the word input, there is no way for the computer to know what we meant, and the program will not be able to run or will produce garbage. So we must be careful with that. Nevertheless, syntax errors are but a troublesome manifestation of the fact that algorithms run by computer are required to be presented in formal attire. Much worse are logical errors. These do not mean that something is wrong with the program as is, but simply that it doesn’t solve the algorithmic problem we had in mind. Unlike syntax errors, logical errors can be notoriously elusive. They often reflect flaws in the very design of the algorithm. Someone once said that logical errors are like mermaids — the fact that you haven’t seen one doesn’t mean they don’t exist.

The quest to eliminate logical errors in algorithmics is a deep and complex topic, and is outside the scope of this book. The naïve method is to repeatedly execute the program on many different test inputs, checking the results. This process is called debugging, a name with an interesting history: one of the early computers stopped working one day and was found to have a large insect jammed in a crucial part of its circuitry. Since then, errors, usually logical errors, are affectionately termed bugs.

All this has to do with the algorithms and programs — the software. As far as hardware goes, computers make less mistakes. A hardware error is quite a rarity these days, despite the famed 1997 bug in Intel’s Pentium II chip. In fact, when our bank statement is in error and we are told that the computer made a mistake, it was most certainly not the computer that erred but one of the humans involved in the bank’s computerization process. Either incorrect data was input to the program, or the program itself, written, of course, by a human, contained an error.

---

6 Added in proof-reading (early 2000); fortunately, the morning of January 1, 2000 went by without too much trouble. Curiously, instead of applauding, and being grateful for all this work, some people have tried to claim that the whole issue was a hoax to begin with.

7 The only even prime is 2.

8 Many compilers are made to spot syntax errors, and will notify the programmer, who will typically be able to correct them with little effort.

termination

An algorithm that completes its work but produces the wrong output is just one kind of worry. When it comes to the need for our algorithms and programs to do what we expect, there is something else we have to worry about — an algorithm that doesn’t terminate at all, but, rather, keeps running on its input forever. This is clearly an error too. We don’t want our programs to loop forever, i.e. to get stuck in an infinite non-terminating computation. The execution of a program on any one of its legal inputs should terminate within a finite amount of time, and its output must be the correct one.

Often, we can see rather easily how to make sure that our algorithm terminates. As a simple example, suppose we are devising an algorithm to check the primality of a number. We might have decided, rather stupidly, to base our approach directly on the definition of a prime number, verbatim. That is, in an attempt to find a factor (a divider) of the input number, we instruct our algorithm to try to divide it by each and every number from 2 on, in turn, with no bounds set. This rather silly algorithm would clearly loop indefinitely when run on a number that was indeed prime. Fortunately, as we have seen, there are obvious ways to bound the number of candidate divisors that need to be tested, and these guarantee termination.

Contrast this example with Problem 8 of the list given earlier, in which we don’t seem to be that lucky: a solution algorithm is required to give one answer if the input program P behaves in some particular way, and another answer if it doesn’t. There appears to be no way for us to make the decision without actually running P, a process that can itself fail to terminate. Worse, it seems that we have to run P on infinitely many inputs, not just on one or two.

We shall return to this example in the next chapter.

chapter 2

sometimes we can’t do it

The message of this chapter is simple and clear. Computers are not omnipotent. They can’t do everything. Far from it.

We shall discuss problems that cannot be solved by any computer, past, present or future, running any program that can be devised, even if given unlimited amounts of time and even if endowed with unlimited storage space and other resources it might need. We shall require, of course, that algorithms and programs terminate for each legal input in a finite amount of time, but we allow that time to be unlimited. The algorithm can take as long as it wishes, and can use whatever resources it asks for in the process, but it must eventually stop and produce the right output. Nevertheless, even under these generous conditions, we shall see interesting and important problems for which there simply are no algorithms, and it doesn’t matter how smart we are, or how sophisticated and powerful our computers, our software, our programming languages and our algorithmic methods. Figure 2.1 is intended to set the stage for what is to come.