Natural Language Generation for Embodied Conversational Agents

Day 2

Kristina Striegnitz

ESSLLI 2008
Hamburg, Germany

Today

- Overview of Natural Language Generation (NLG)
- Realizing Multimodal Utterances
- Where do the representations come from?
 - BEAT - a text-to-embodied-speech system
 - a grammar based approach

Natural Language Generation (NLG)

- Communicative goal
- NLG System
 - natural language text

Example:
- describe object X
- summarize the weather from date X to date Y
Natural Language Generation (NLG)

- communicative goal → natural language text

also called: document planning, text planning
- selects the content that needs to be expressed (content determination)
- organizes it into a structure based on relations between pieces of content (document structuring)
- produces a text plan

Natural Language Generation (NLG)

- communicative goal → natural language text

also called: sentence planning, utterance planning
- decides how to distribute content over sentences (aggregation)
- decides how to refer to individuals (referring expression generation)
- produces a sequence of sentence plans

- uses grammatical constraints to specify sequence of words
- "formats" the output according to output mode
- produces the finished output
Natural Language Generation (NLG)

- Communicative goal
- NLG System
- Natural language text

Domain & Situation
- (Entities and their properties, background knowledge, ...)

User
- (Assumed user's knowledge and intentions, ...)

Discourse
- (Salience of entities, dialogue state, ...)

Language
- (Grammar, lexicon, ...)

NL Generation vs. NL Understanding

David McDonald:

- Natural language generation is a process of making choices.
- Natural language understanding is a process of managing hypotheses.

Architectures of NLG systems

- Dale & Reiter's (standard) pipeline architecture:

 ![Diagram](https://via.placeholder.com/150)

 - Communicative goal
 - Document Planning
 - Micro-planning
 - Surface Realization
 - Natural language text

- Integrated architecture (e.g., Appelt 1985)

 ![Diagram](https://via.placeholder.com/150)

 - Communicative goal
 - Uniform planning process for document planning, microplanning, surface realization
 - Natural language text

- Feedback (e.g., Rubinoff 1992, Reithinger 1991, Hovy 1988)

 ![Diagram](https://via.placeholder.com/150)

 - Communicative goal
 - Document Planning
 - Micro-planning
 - Surface Realization
 - Natural language text
A Psycholinguistically Motivated Architecture (Levelt 1989)

SAIBA Multimodal Behavior Generation Framework

(SAIBA = Situation, Agent, Intention, Behavior, Animation)

Intent Planning → FML → Behavior Planning → BML → Behavior Realization

Function Markup Language → Behavior Markup Language

NLG for ECAs

- dialogue, not monologue
- output is not just words, also multimodal behavior
- When is the multimodal behavior generated?
 - text first then multimodal behavior, or
 - both together
- need to know what determines the use of different multimodal behaviors

Communicative goal → Document Planning → Micro-planning → Surface Realization → Natural Language text

Today

- Overview of Natural Language Generation (NLG)
- Realizing Multimodal Utterances
- Where do the representations come from?
 - BEAT – a text-to-embodied-speech system
 - a grammar based approach
Exercise: Animate your friend

Volunteer: The class will give you instructions on how to behave: move, pose, speak ... Follow their instructions as closely as possible.

Class: You will see a video of a person speaking. “Animate” the volunteer to behave exactly like the person in the video. I.e., give him/her instructions on how to move, pose, speak, etc. so that in the end he/she will behave like the person in the video.

The Behavior Markup Language (BML)

- effort to create a standard XML interface between behavior planning and behavior realization for ECAs
- ECA researchers from Europe and the US
- work in progress

```xml
<bml>
  <gaze target="PERSON1"/>
  <speech>
    Welcome to my humble abode
  </speech>
</bml>
```

- goal is to be independent of a particular realizer
- provide a set of core descriptive elements and the possibility to add more detailed levels of description

http://wiki.mindmakers.org/projects:BML:main
Specifying gesture in BML (1)

type: POINT, BEAT, CONDUIT, GENERIC, LEXICALIZED

hand: LEFT, RIGHT, BOTH

amplitude: SMALL, MEDIUM, LARGE, EXTRA-LARGE

power: WEAK, NORMAL, FORCEFUL

Specifying gesture in BML (2 - lexicalized)

type: POINT, BEAT, CONDUIT, GENERIC, LEXICALIZED

lexeme: predefined animations

Specifying gesture in BML (3 - pointing)

type: POINT, BEAT, CONDUIT, GENERIC, LEXICALIZED

target: person or object in the environment

Specifying gesture in BML (4 - generic)

type: POINT, BEAT, CONDUIT, GENERIC, LEXICALIZED

handshape: most common handshapes

orientation:

- extended finger direction,
- palm direction

location: vertical, horizontal, distance

Kristina Striegnitz, Union College - ESSLLI 2008 Aug 11-15
Specifying gesture in BML (5 - movement)

- **Type:** POINT, BEAT, CONDUIT, GENERIC, LEXICALIZED
- **Movement trajectory:** straight, curved, circular, rectangular, triangular, wave-like, zigzag,...
- **Movement direction:** relative to speaker
- **Repetition:** number of times stroke is repeated

Specifying gesture in BML (5 – two handed)

- **Type:** POINT, BEAT, CONDUIT, GENERIC, LEXICALIZED
- **Hand:** LEFT, RIGHT, BOTH
- **Two handed:** coordination of the two arms; mirror, alternate, parallel, ...

Example specification

- **Type:** generic
- **Hand:** both
- **Two handed:** mirror
- **Handshape:** open hand
- **Location:** center, center, medium
- **Orientation:** palm inward, finger forward

Synchronization

- Many non-verbal behaviors follow the “rhythm” of speech.
- They often depend crucially on their timing wrt. words and other non-verbal behaviors.
Synchronization in BML

- all behaviors are associated with 7 sync-points (in some cases several sync-points fall together, e.g., for gaze ready=stroke start)
- additional sync-points can be specified (e.g., in speech to synchronize with arbitrary words)

Example specification

```
<speech id="s">
  and now take <sync id="t1"/> this bar and make it <sync id="t2"/> this big <sync id="t3"/>
</speech>
<gesture id="g1" type="POINT" target="obj" stroke="s:t1"/>
<gesture id="g2" type="GENERIC" stroke-start="t2" stroke-end="t3">
  hand="both"
  two handed="mirror"
  handshape=open hand"
  location="center, center, medium"
  orientation="palm inward, finger forward"
</gesture>
```

BML realization: requirements

- blending of behaviors, e.g., head shakes and gaze
- tight synchronization
 - length of non-verbal behaviors needs to adapt to timing constraints
 - starting and/or end phase may disappear or merge with starting/end phase of previous or next gesture

for more:

Today

- Overview of Natural Language Generation (NLG)
- Realizing Multimodal Utterances
- Where do the representations come from?
 - BEAT – a text-to-embodied-speech system
 - a grammar based approach
BEAT: the Behavior Expression Animation Toolkit

[Cassell, Vilhjalmsson, Bickmore 2001]

input: text

output: – a sequence of instructions that can be sent to different animation and speech synthesis systems
– specifying words, intonation, non-verbal behaviors and synchronization

Kristina Striegnitz, Union College - ESSLII 2008 Aug 11-15
BEAT: knowledge bases

- object knowledge
 - definitions of classes of objects and instances
 - possibly gesture specification for attributes/properties of object classes and instances
- action (verb) knowledge
 - gesture specifications for verbs

BEAT: architecture

![BEAT architecture diagram]

BEAT: behavior generation

- phase 1: suggestion
 - rules that introduce non-verbal behavior → overgeneration
 - e.g.: associate a beat gesture with rhematic objects
 - associate an eyebrow raise with rhematic objects
 - associate an iconic gesture with rhematic objects that have “unusual” features (as specified in the object knowledge base)
- phase 2: selection
 - rules for filtering out behaviors
 - e.g.: for conflicting behaviors, keep the one with the higher priority

BEAT: behavior generation output

![BEAT behavior generation output diagram]
BEAT: architecture

- Discourse Model
- Knowledge Base
- Word Timing
- Language Tagging
- Behavior Generation
 - Behavior Suggestion
 - Behavior Selection
 - Behavior Scheduling
- Generator Set
- Filter Set
- Translator
- Animation

SPUD

- Integrates aspects of microplanning with realization
- Concise utterances
 - "remove the rabbit from the hat"
- General idea:
 - (parse) tree fragments associated with semantics and pragmatic constraints
 - Build a tree from these fragments which is syntactically and pragmatically appropriate and fulfills all communicative goals

Excursion: LTAG - Lexicalized Tree Adjoining Grammar

- **LTAG with semantics and pragmatics**
 - Semcon: (like(self,ag,pat))
 - Semcon: (name(self,mary))
 - Semcon: (animate(ag))
 - Semcon: (hearer-old(self))
 - Semcon: (hearer-new(self))
SPUD - generation strategy

- generation happens with respect to knowledge bases encoding:
 - shared knowledge
 - speaker's knowledge
 - pragmatic/discourse information
- a tree fragment can be use if
 - all pragmatic constraints are satisfied by the pragmatic knowledge base
 - the semantics is completely entailed by shared and/or speaker's knowledge
- we are done when
 - all syntactic constraints have been satisfied (no open substitution nodes)
 - all entities from the shared knowledge are uniquely identified

SPUD - example

- speaker's intent: remove(e, hearer, rab, h)
- shared knowledge:
SPUD - example

- speaker's intent: remove(e, hearer, rab, h)
- shared knowledge:

```
(S, e) \
/\      
(NP, hearer) (VP, e)
       /\      
      (VP, rab) (VP, hats)
        /\        
       (DET) (DET) 
      the rabbit from the hat
```

SPUD - integrating gestures

structure for synchronizing gestures with syntactic phrases:

- **SYNC**
 - **G**
 - **C**

example lexical entry requiring a gesture:

- syntax:
 - S
 - NP:
 - VP
- gesture
- phrase synchronized with gesture
- semantics: have(o, x)
- pragmatics: hearer-new(x) ∧ theme(o)

SPUD - lexical entries for gestures

A "word" entry with the same semantics. Gestures can be semantically redundant or complementary:

- **syntax**:
 - S
 - NP: x
 - VP
- semantics: surround(x, p)

```
syntax:
\[ S \rightarrow NP: x \rightarrow VP \rightarrow NP: p \]
semantics: surround(x, p)
```

SPUD - building a multi-modal utterance specification

- semantics: have(o, x)
- pragmatics: hearer-new(x) ∧ theme(o)

- adjoin
- substitute
- surrounding

```
semantics: surround(x, p)
```
Today

- Overview of Natural Language Generation (NLG)
- Realizing Multimodal Utterances
- Where do the representations come from?
 - BEAT - a text-to-embodied-speech system
 - a grammar based approach

- Tomorrow: Referring Expression Generation