
� �

��������	��
����
�

�����������
�����
��
��

� �

���
���

� �

�������
�
��������������������
��

� �

���������
�
���������
���
��������
���

� �

��������������
��

� �

��������������
��

� to calculate the output, take the weighted sum of the

inputs and apply the activation function

� �

��������������
��

� to calculate the output, take the weighted sum of the

inputs and apply the activation function

� input: 1 -> output: -1
� input: -1 -> output: 1

� �

���
��
��������

� �

��
����
��
��������

� �

��
����
��
��������

� �

���
�����

1) Design a neuron that takes two inputs (plus the bias) and

outputs 1 if both inputs are 0 and outputs 0 otherwise.

2) Design a neuron that takes two inputs (plus the bias) and

outputs 0 if both inputs are 1. In all other cases it outputs 1.

� �

	����
�����
�����
�

� �

����
�����������
���
��������
���

� �

����
�������
��

�����������
��������
����
���

� �

��
��
���������
���

� �

 !"����
�����

����
����������
#
$�$�%�&�
$�&�%�$
&�$�%�$
&�&�%�&

� �

 !"����
�����

$

$

'$

'$
$

$

&()

&()

&()

� �

��
��
���
���
��
�
�

feed-forward:

recurrent:

Most common: feed-forward networks with one hidden layer.

� �

*��
������������
������
+

• pattern recognition/classification

• clustering (grouping of similar patterns)

• function approximation

• prediction/forecasting

• optimization

• associative memory (memory which can be accessed by its

content rather than by address)

• control

� �

,��
��
�
�"������
���

a neural network for character recognition:

• what's the input?

• what's the output?

� �

�������"������
���

���

���
��#�!
�����-
����
��.��
�
�
�/�,��
�
���
��������	��������0���
�
������
� �

�������"������
���

���
��#�!
�����-
����
��.��
�
�
�/�,��
�
���
��������	��������0���
�
������

� �

�������"������
���

���
��#�!
�����-
����
��.��
�
�
�/�,��
�
���
��������	��������0���
�
������
� �

���
�����

2) Design a neuron that takes two inputs (plus the bias) and

outputs 1 if both inputs are 0 or the first input is 0 and the

second 1. Otherwise, it outputs 0.

$

'$

$

'$
$

$

$()

'&()

&()
1) What is the behavior

of this neural

network? What input

patterns get mapped

to what outputs?

Would it be possible

to achieve the same

effect with just one

neuron?

� �

*��
�����
��������
��������
��+

� �

*��
�����
��������
��������
��+

• Given :

example inputs + the desired output for each of these inputs

• Learning strategy (backpropagation):

1. randomly assign small weights

2. for each pattern:

– feed pattern into the NN

– compare actual output to desired output and

 adjust weights to make actual output closer to desired

6. repeat from step 2 until the weight changes get very small

(or some other stopping criterion is met)

� �

��1��
����
��������
�

actual output: [o1, o2, ..., on]

desired output: [t1, t2, ..., tn]

error:

goal: minimize the error

• Adjust the weights of on the output units and then of the

hidden units:

$

2
�
��$

�

�� ���
� �
2

�
���
��

���
	
�

���

� �

���
�����

• Download bpnn.py and bpnn_tester.py.

• bpnn_tester.py defines a function test1 which shows you how

to use the bpnn module to build, train and test neural

networks.

• Add a function which builds, trains and tests a neural network

that computes a boolean and.

• Add a function which builds, trains and tests a neural network

that decides whether the inputs represent a binary number

which is divisible by 3. Use four input units – this will allow

you to represent the numbers 0,...,15.

� �

,��
��
�
�"������
���

a neural network for character recognition:

• what's the input?

• what's the output?

� �

����
����
�
��
�������
�����

• Download digits.zip and decompress it. optdigits.names

contains a description of the data, the other three files contain

data for training and testing.

• Download handwritten_digits.py.

• Complete the program so that it builds, trains, and tests a

neural network that can distinguish between the digit '8' and

the digit '9'.

A function to read in the training and testing data from the

files is already provided. All you have to do is to build, train,

and test the neural network.

� �

���
����#����
���������
���������������

If we wanted to design a neural network to control our wall-

following stimulus-response agent,

• what would be the inputs?

• what would be the outputs?

• how many input and output neurons would we need?

"

� �

���
����#����
���������
����������������3��
���$

Using the bpnn module, write code to build, train, and test a

neural network that learns how to find and follow a wall. That is,

given a sequence of inputs representing the sensory information

the agent has, this neural net should produce an output

representing the direction in which the agent should take its

next step.

Use the training patterns that I provide in wall_data.txt for

training and also testing purposes. Try out different numbers of

hidden units - what works best?

� �

���
����#����
���������
����������������3��
����2�����4

Now integrate this code into our simulation of a wall following agent,

such that a neural network is trained and then used to guide the agent.

2) First, download our old code for the wall following agent and plan

what changes you need to make. What do you need to add? What do

you need to change? Where does the network get built? Where do

you use the network to predict the next step?

3) Then implement this. To do this you need the method update that

neural networks built with bpnn have. The method update takes a

list of inputs and returns the list of outputs for those inputs. That is

after a network n has been created and trained you can use the

statement outputs = n.update(inputs) to calculate the outputs

the trained network produces give the list of inputs inputs.

� �

5��������
�
��������

Everything we have done.

• algorithms, control flow, expressions and statements, variables and

assignment, functions, conditional statements and loops, lists,

dictionaries, tuples, searching and sorting lists, recursion, files.

• Turing test, Searle's Chinese room, different views on the purpose of

AI (thinking/acting humanly/rationally)

• rational agents, stimulus response agents, artificial life, n-grams,

neural nets

