Files and Dictionaries

Wouldn't it be easier to read it from a file?

WWWWWWWWWWWWWWWWW

Y cw
w C Y
w R w
W OWWWWWWW Y
W OWWWWWWW w
W WwW wWw w
W WW WwW C w
W WwW wWw w
w w
wC cw
w WWW
w c WWW

WWWWWWWWWWWWWWWWW

Opening and closing files in Python

Specifying the starting configuration of the grid-world agent

def init_world():
make rectangle of empty cells
for y in range(YSIZE)
_world[y:] = [[" '] * XSIZE]

add some obstacles
obstacle 1

_world[YSIZE-2][XSIZE-2] = 'w'
_world[YSIZE-1][XSIZE-2] = 'w'
_world[YSIZE-2][XSIZE-1] = 'w'
_world[YSIZE-1][XSIZE-1] = 'w'

obstacle 2
for y in [3,4]:
for x in range(2,9):
_world([yl[x] = 'w'
for y in [5,6,7]:
_world[y][2] = 'w'
_world[y][3] = 'w'
_world([5][7] = 'w'

w
_world[5][8] W

What do we need?

open files: give a file name and create a file object
close files: get rid of the file object and close connection to file

read from files: access the file content using the file object

Reading from files in Python - read()

infile = open('somefilename','r')

some code that reads from the infile file object

infile.close()

Reading from files in Python - readlines()

infile = open('somefilename','r')

reads the whole file content into a string

wholetext = infile.read()

infile.close()

Reading from files in Python - readline()

infile = open('somefilename','r')
reads the whole file content into a list of
strings corresponding to the lines

lines = infile.readlines()

infile.close()

infile = open('somefilename','r')
reads one line (the next available line) into a
string

line = infile.readline()

infile.close()

Reading from files in Python - file objects as iterators

Reading the starting configuration from a file

infile = open('somefilename','r')

reads one line at a time into a string

continues until the end of the file is reached

for line in infile

do something with the line that was read

e.g., print it

print line

infile.close()

Reading the starting configuration from a file

WWWWWWWWWWWWWWWWW

w cw
w C w
w R w
W WWWWWWW w
W OWWWWWWW w
WoowWw wWw w
W wWw WW C w
WoowWw ww w
w w
wC cw
w WWW
w c WWW

WWWWWWWWWWWWWWWWW

Reading the starting configuration from a file

WWWWWWWWWWWWWWWWW

w cw
w C w
w R w
W WWWWWWW w
W WWWWWWW w
WowWw ww w
W wWw WW C w
WoowWw ww w
w w
wC cw
w WWW
w c WWW

WWWWWWWWWWWWWWWWW

Exercise

def read_start_config (file)
world = []

infile = open(file,'r")

for line in infile
row = process_line(line)

world.append(row)

infile.close()

return world

WWWWWWWWWWWWWWWWW

w cw
w C w
w R w
W WWWWWWW w
W OWWWWWWW w
WoowWw wWw w
W wWw WW C w
wWoowWw ww w
w w
wC cw
w WWW
w c WWW

WWWWWWWWWWWWWWWWW

Exercise

def process_line (line)

row = []

for char in line :

if char != '\n':

row.append(char)

return row

Write a function that reads in a given file and returns a list of

the different words occurring in this file. (That is, if a word

occurs two or more times in the text, it should only appear once

in the list.)

Download 'example_text.txt', which contains an excerpt of a
novel by Jane Austen, and use this file to test your function.

Hint: You may want to use the built-in string method split.
(Check the documentation: http://docs.python.org/lib/string-

methods.html)

Hint: Remember that the operator in can be used to test
whether a list contains a given value.

Exercise 2

def read_words (file)

words = []

infile = open(file,'r"')

for line in infile

line = line.split()

for word in line:

if not

(word in words):

words.append (word)

infile.close()

return words

Exercise 2

Now, count how many times each word occurs.

Now, count how many times each word occurs.

= need a way to associate numbers with words

Dictionaries

..are ...

- collections of objects/values (like lists)
- not ordered (unlike lists)

- accessed by key instead of position

Example: associating registered users with their password

bill : 12345

tony : FlyingCow
alan : alan$
nick : asel5iiagn

Dictionaries in Python

d = {'bill':'12345', 'tony':'FlyingCow', 'alan':'Salasn'}
d = {}

d['alan'] # accessing entries

d['alan'] = 'NewPASSWD' # changing entries

d['nick'] = 'aselS5iiagn' # adding entries

del d['tony'] # deleting entries

d.has_key('bill") # checking whether a given key exists

Example: reading passwords from a file

d = {}

pfile

= open('passwords.txt', 'r')
for line in pfile :

name_pw_list = line.split()
name = name_pw_1list[0]

pw = name_pw_list[1]

d[name] = pw

pfile.close()

Exercise 2 - more things to do

- Write a function that prints out the dictionary in a prettier
way; e.g., one word and its count per line.

Sort the words alphabetically.

Sort them by how often they occur.

Dictionaries in Python

Example: reading passwords from a file

File format:

bill 12345
tony FlyingCow

alan alasn

nick aselS5iiagn

Exercise 2

Now, count how many times each word occurs.

That is:

- Write a function that reads in a given file and counts how
many times each word appears in the text. Return an object
that associates words (the different words in the text) with
numbers (the number of times that word appears).

- Use 'example_text.txt', the excerpt from the Jane Austen novel,

to test your function.

Exercise 2 - more things to do

+ Write a function that prints out the dictionary in a prettier
way; e.g., one word and its count per line.

+ Sort the words alphabetically.
+ Sort them by how often they occur.
2 need a way to iterate over dictionaries

2 need a way to sort them (by key and by value)

Making lists from dictionaries

d = {'Emma':50, 'the':300, 'walked':10}

d.keys() # returns a list containing all keys
d.values() # returns a list containing all values
d.items() # returns a list containing all

key-value pairs as tuples

Printing dictionary objects sorted by key

Printing dictionary objects sorted by value

Exercise

+ Implement a function that takes a dictionary and creates a list of the
dictionary items which is sorted by the value of each key-value pair and
prints out the 50 most frequent words with their frequency.

+ Use example_text.txt to test your program. Read it into a dictionary
using the function provided in count_words.py, then use your newly
implemented function to print out the 50 most frequent words.

+ Then download the texts text1.txt, text2.txt and text3.txt and look at
the 50 most common words in those texts. (Don't look into the files. Just
look at the 50 most common words that you get back.) What do you
notice? Are there any differences? Can you make any guesses about who
wrote those texts or what kind of text your are dealing with?

Tuples

>>> d = {'Emma':50, 'the':300, 'walked':10}

>>> d.items()

[("Emma', 50), ('walked':10), ('the', 300)]

\ J \ J
Y Y

tuples

Tuples are like lists, except that they are immutable.

Printing dictionary objects sorted by key

d = {'Emma':50, 'the':300, 'walked':10}

k_v_pairs = d.items()
k_v_pairs.sort()
for (k,v) in k_v_pairs:

print k, v

Printing dictionary objects sorted by value

d = {'Emma':50, 'the':300, 'walked':10}

v_k_pairs = []

for (k,v) in d.items():
v_k_pairs.append((v,k))

v_k_pairs.sort()
for (v,k) in v_k_pairs:

print k, v

