Artificial Life (Alife)

Themes

- emergence
- · reproduction
- evolution

Evolution - examples

· learning to walk

The Game of Life - Rules

- · A cell that is alive and has less than two life neighbors, dies.
- A cell that is alive and has more than three life neighbors, dies.
- A cell that is dead and has exactly three life neighbors comes to life.
- · All other cells keep their status.

What is Artificial Life?

- studies life by recreating biological phenomena within a computer
- biology: analytic Alife: synthetic
- · not: modeling chemical processes
- · simulating emergent behavior

Emergence - examples

- · swarm behavior
- · gathering food

Cellular Automata

- · a grid
- · some cells are alive, some are dead
- in the next generation, some cells will die, others will come to live

a set of simple rules determines how the status of cells changes,
 based on the status of their current neighbors

Implementing the Game of Life

- Download gol.py from the course website: http://cs.union.edu/~striegnk → teaching → Can Computers Think?
- Complete the function life_neighbors, which counts how many life neighbors a cell has.
- Complete the function update_board, which computes what the board will look like in the next generation.

Counting Life Neighbors (try 1)

```
def life_neighbors(board,x,y) :
    n = 0
    if board[y-1][x-1]:
        n += 1
    if board[y-1][x]:
        n += 1
    if board[y-1][x+1]:
        n += 1
    if board[y][x-1]:
        n += 1
    .
    .
    return n
```

Counting Life Neighbors (short)

```
def life_neighbors(board,x,y) :
    n = 0
    for i in range(x-1,x+2):
        for j in range(y-1,y+2):
            if board[j%YSIZE][i%XSIZE]
            and (i != x or j != y):
            n += 1
    return n
```

Counting Life Neighbors (fixed)

```
def life_neighbors(board,x,y) :
  if y==0:
     yminus1 = YSIZE - 1
     yplus1 = y+1
  elif y==YSIZE-1:
                                     if board[y-1][x-1]:
                                       n += 1
                                     if board[y-1][x]:
     yplus1 = 0
                                     n += 1
if board[y-1][x+1]:
     yminus1 = y-1
                                     if board[y][x-1]:
     yplus1 = y+1
                                       n += 1
  n = 0
                                     return n
```

Updating the board