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Abstract

This paper offers a gentle introduction to probability for linguists, as-

suming little or no background beyond what one learns in high school.

The most important points that we emphasize are: the conceptual differ-

ence between probability and frequency, the use of maximizing probability

of an observation by considering different models, and Kullback-Leibler

divergence.

Nous offrons une introduction élémentaire à la théorie des probabilités

pour les linguistes. En tirant nos exemples de domaines linguistiques, nous

essayons de mettre en valeur l’utilité de comprendre la différence entre les

probabilités et les fréquences, l’évaluation des analyses linguistiques par

la calculation de la probabilité quelles assignent aux données observées,

et la divergence Kullback-Leibler.

1 Introduction

Probability is playing an increasingly large role in computational linguistics and
machine learning, and I expect that it will be of increasing importance as time
goes by.1 This presentation is designed as an introduction, to linguists, of some
of the basics of probability. If you’ve had any exposure to probability at all,
you’re likely to think of cases like rolling dice. If you roll one die, there’s a
1 in 6 chance—about 0.166—of rolling a “1”, and likewise for the five other
normal outcomes of rolling a die. Games of chance, like rolling dice and tossing
coins, are important illustrative cases in most introductory presentations of
what probability is about. This is only natural; the study of probability arose
through the analysis of games of chance, only becoming a bit more respectable
when it was used to form the rational basis for the insurance industry. But
neither of these applications lends itself to questions of linguistics, and linguists
tend to be put off by examples like these, examples which seem to suggest that
we take it for granted that the utterance of a word is a bit like the roll of a
die—which it’s not, as we perfectly well know.

The fact is, there are several quite different ways to think about probabilistic
models and their significance. From a historical point of view, the perspective
that derives from analyzing games of chance is the oldest. It assumes that there
is a stochastic element in the system that we are interested in modeling. In some

1This paper is based on an informal presentation, and I have maintained some of that style
in the present write-up, as you will see.
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2 SOME BASICS

cases, linguists adopt such a point of view; variable rules may be best viewed in
such a light.

The second way that probability enters into scientific models—second, in a
chronological sense (starting in the late 18th century)—is when we acknowledge
that there is noise in the data, and we want to give a quantitative account of
what the relationship is between the actual observations and the parameters
that we infer from it. This is probability the most familiar view of probability
for anyone who has used probability and statistics in the context of the social
sciences.

The third way is only as old as the 20th century, and it will lie behind
what we do here. It is closely tied to information theory, and is linked to two
notions—two notions whose relationship is not at all obvious. First of all, we use
probability theory in order to talk in an explicit and quantitative way about the
degree of certainty, or uncertainty, that we possess about a question. Putting it
slightly differently, if we wanted to develop a theory of how certain a perfectly
rational person could be of a conclusion in the light of specific data, we’d end up
with something very much like probability theory. Second of all—though we will
not explicitly discuss this in the present paper—probability can be associated
with the computational complexity of an analysis. Let’s focus on the first of
these two.

Many of the linguistic examples we consider will be along the lines of what a
speech recognition system must deal with, which is to say, the task of deciding
(or guessing) what word has just been uttered, given knowledge of what the
preceding string of words has been coming out of the speaker’s mouth. Would
you be willing to consider the following suggestions?

Let us suppose that we have established that the person is speaking English.
Can we draw any conclusions independent of the sounds that the person is
uttering at this moment? Surely we can. We can make an estimate of the
probability that the word is in our desk-top Webster’s Dictionary, and we can
make an estimate of the probability that the word is the, and an estimate of
the probability that the word is—let’s choose another word—telephone. We can
be quite certain, in fact, that the is the most likely word to be produced by
an English speaker; as much as five percent of a speaker’s words may be thes.
As this rather stark example suggests, the approach we will take to linguistic
analysis will not emphasize the difference between a speaker’s knowledge and
that application to the real world of speech. Needless to say, that is a classic
distinction in linguistics, from the time of de Saussure down to our own day, by
way of Chomsky, but it is one that will not play a role in what we do here. Put
another way, we are looking for the structure of language as it is spoken, and if
that is different from the structure of language as it is known, then so be it. At
least the outline of what we will be doing is clear.2

2 Some basics

Let’s take a look at—or review—some of the very basics of probability.
We’re going to try to look at language from the roll-of-the-die point of view

for a little while. It’s not great, but it might just be the best way to start.

2If you are interested in seeing a discussion of the some of the general issues that emerge
from this point of view, you are welcome to take a look at [2].
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2 SOME BASICS

The very first notion to be familiar with is that of a distribution: a set of
(non-negative) numbers that add up to 1.0. In every discussion of probability,
distributions play a central role, and one must always ask oneself what is be-
ing treated as forming a distribution. Probabilities are always members of a
distribution.

Let’s consider the roll of a die. There are six results of such a roll, and
we typically assume that their probabilities must be equal; it follows that their
probabilities must be 1/6, since they add up to 1.0: they form a distribution.
We call a distribution in which all values are the same a uniform distribution.
We always assume that there is a universe of basic outcomes, and each outcome
has associated with it a probability. The universe of basic outcomes is normally
called the sample space. The sum of the probabilities of all of the outcomes
is 1.0. Any set of the outcomes has a probability, which is the sum of the
probabilities of the members of the subset. Thus the probability of rolling an
even number is 0.5.

In this simplest case, we took the universe of outcomes to consist of 6 mem-
bers, the numbers 1 through 6. But this is not necessary. We can take the
universe of outcomes to be all possible outcomes of two successive rolls of a die.
The universe then has 36 members, and the outcome “The first roll is a 1” is not
a single member of the universe of outcomes, but rather it is a subset consisting
of 6 different members, each with a probability of 1/36. These six are:

• The first roll is 1 and the second is 1;

• The first roll is 1 and the second is 2;

• The first roll is 1 and the second is 3;

• The first roll is 1 and the second is 4;

• The first roll is 1 and the second is 5;

• The first roll is 1 and the second is 6.

The probability of each of these 6 is 1
36 , and they add up to 1

6 .
It is not hard to see that if a universe consists of N rolls of a die (N can

be any positive number), the number of outcomes in that universe will be 6N .

(And the probability of any particular sequence is
(

1
6

)N
, if the distribution is

uniform).
Be clear on the fact that whenever we pose a question about probability, we

have to specify precisely what the universe of outcomes (i.e., the sample space)
is that we’re considering. It matters whether we are talking about the universe
of all possible sequences of 6 rolls of a die, or all possible sequences of 6 or fewer
rolls of a die, for example. You should convince yourself that the latter universe
is quite a bit bigger, and hence the probability of any die-roll that is 6 rolls long
will have a lower probability in that larger universe than it does in the universe
consisting only of 6 rolls of a die. We will shortly change our perspective from
rolling dice to uttering (or emitting) words, and it will be important to bear
in mind the difference in the probability of a 5-word sequence, for example,
depending on whether we are consider the universe of all 5-word sequences, or
the universe of all word sequences of length 5 or less.
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We have just completed our introduction to the most important ideas re-
garding probabilistic models. Never lose sight of this: we will be constructing
a model of a set of data and we will assign a distribution to the basic events
of that universe. We will almost certainly assign that distribution via some
simpler distributions assigned to a simpler universe. For example, the complex
universe may be the universe of all ways of rolling a die 6 or fewer times, and
the simpler universe will be single rolls of a fair, six-sided die. From the simple,
uniform distribution on single rolls of a die we will build up a distribution on a
more complex universe.

A word on notation, or a bit more than notation: It should always be
possible to write an equation summing probabilities over the distribution so they

add up to 1.0:
∑

i

pi = 1.0. You should be able to write this for any problem

that you tackle.
We can imagine the universe to consist of a sequence of rolls of a die any-

where in length from 1 roll to (let us say) 100. The counting is a little more
complicated, but it’s not all that different. And each one of them is equally
likely (and not very likely, as you can convince yourself). As we look at sam-
ple spaces with more and more members, the probabilities of each member will
tend to get smaller and smaller. When we look at real linguistic examples, the
probabilities that we calculate will be very small, so small that we will have
to use scientific notation. This does not mean that something is going wrong!
Quite the contrary: when a model assigns a lot of small probabilities, that is
our quantitative way of saying that there are a lot of possibilities out there, and
since we know that the number of things that we can say in a language is large—
and really, infinite—it should not be at all surprising that the probabilities we
assign to any particular utterance will be quite small.

Let’s make the die bigger. Let us suppose, now, that we have a large die
with 1,000 sides on it. We choose the 1,000 most frequent words in a large
corpus—say, the Brown corpus. Each time we roll the die, we choose the word
with the corresponding rank, and utter it. That means that each time the die
comes up “1” (which is only once in a thousand rolls, on average), we say the
word the. When it comes up “2”, we say of —these are the two most frequent
words. And so forth.

If we start rolling the die, we’ll end up with utterances like the following:

320 990 646 94 756 (1)

which translates into:

whether designed passed must southern (2)

because I’ve picked a way to associate each number with one of the top 1,000
words in the Brown corpus: I use each word’s ranking, by frequency, in a list.

That’s what this worst of random word generators would generate. But
that’s not what we’re thinking about grammars probabilistically for—not at
all. Rather, what we’re interested in is the probability that this model would
assign to a particular sentence that somebody has already uttered. Let’s use,
as our example, the sentence: In the beginning was the word. There are six
words in this sentence, and it just so happens that all six are among the 1,000
most common words in the Brown corpus. So the probability that we might
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assign to this sentence—if we assume a uniform distribution over these 1,000
words, which means, if we assign a probability equal to 0.001 to each word—
is 1

1000 × 1
1000 × 1

1000 × 1
1000 × 1

1000 × 1
1000 , which can also be expressed more

readably as 10−18. There are 1,000 = 103 events in the universe of strings of
one word in length, and 1,000,000 = 106 events in the universe of strings of 2
words in length, and 1018 events in the universe of strings of 6 words. That
is why each such event has a probability of the reciprocal of that number. (If
there are K events which are equally likely, then each has the probability 1/K.)

I hope it is already clear that this model would assign that probability to
any sequence of six words (if the words are among the lexicon that we possess).
Is this good or bad? It’s neither the one nor the other. We might say that
this is a terrible grammar of English, but such a judgment might be premature.
This method will assign a zero probability to any sequence of words in which
at least one word does not appear in the top 1000 words of the Brown corpus.
That may sound bad, too, but do notice that it means that such a grammar will
assign a zero probability to any sentence in a language that is not English. And
it will assign a non-zero probability to any word-sequence made up entirely of
words from the top 1,000 words.

We could redo this case and include a non-zero probability for all of the
47,885 distinct words in the Brown Corpus. Then any string of words all of

which appear in the corpus will be assigned a probability of
(

1
47,885

)N

, where

N is the number of words in the string, assuming a sample space consisting of
sentences all of length N. A sentence of 6 words would be assigned a probability
of (1/47, 885)6, which just so happens to be about (2.08×10−5)6, or 8.3×10−29.
We’ll get back to that (very small) number in a few paragraphs.

Or—we could do better than that (and the whole point of this discussion is
so that I can explain in just a moment exactly what “doing better” really means
in this context). We could assign to each word in the corpus a probability equal
to its frequency in the corpus. The word the, for example, appears 69,903 out of
the total 1,159,267 words, so its probability will be approximately .0603—and
other words have a much lower probability. leaders occurs 107 times, and thus
would be assigned the probability 107

1,159,267 = .000 092 (it is the 1,000th most

frequent word). Is it clear that the sum of the probabilities assigned to all of
the words adds up to 1.00? It should be.

Pause for important notation. We will use the notation CountC(a) to
mean the number of times the symbol a occurs in the corpus C, and when we
want to use less space on the page, we will use the bracket notation [x]C to
mean exactly the same thing. When it is perfectly clear which corpus we are
talking about, we may leave out the C and write Count(a) or [x].

This is very important, and most of what we do from now on will assume
complete familiarity with what we have just done, which is this: we have a
universe of outcomes, which are our words, discovered empirically (we just took
the words that we encountered in the corpus), and we have assigned a probability
to them which is exactly the frequency with which we encountered them in
the corpus. We will call this a unigram model (or a unigram word model, to
distinguish it from the parallel case where we treat letters or phonemes as the
basic units). The probabilities assigned to each of the words adds up to 1.0

(Note that “s” is the possessive s, being treated as a distinct word.)
Now let’s ask what the probability is of the sentence “the woman arrived.”
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word count frequency
1 the 69903 0.068271
2 of 36341 0.035493
3 and 28772 0.028100
4 to 26113 0.025503
5 a 23309 0.022765
6 in 21304 0.020807
7 that 10780 0.010528
8 is 10100 0.009864
9 was 9814 0.009585
10 he 9799 0.009570
11 for 9472 0.009251
12 it 9082 0.008870
13 with 7277 0.007107
14 as 7244 0.007075
15 his 6992 0.006829
16 on 6732 0.006575
17 be 6368 0.006219
18 s 5958 0.005819
19 I 5909 0.005771
20 at 5368 0.005243

Figure 1: Top of the unigram distribution for the Brown Corpus.

To find the answer, we must, first of all, specify that we are asking this question
in the context of sentence composed of 3 words—that is, sentence of length 3.
Second, in light of the previous paragraph, we need to find the probability of
each of those words in the Brown Corpus. The probability of the is 0.068 271;
pr(woman) = 0.000 23; pr(arrived) = .000 06. These numbers represent their
probabilities where the universe in question is a universe of single words being
chosen from the universe of possibilities—their probabilities in a unigram word
model. What we are interested in now is the universe of 3-word sentences. (By
the way, I am using the word “sentence” to mean “sequence of words”—use of
that term doesn’t imply a claim about grammaticality or acceptability.) We
need to be able to talk about sentences whose first word is the, or whose second
word is woman; let’s use the following notation. We’ll indicate the word number
in square brackets, so if S is the sentence the woman arrived, then S[1] = “the”,
S[2] = “woman”, and S[3] = arrived. We may also want to refer to words in a
more abstract way—to speak of the ith word, for example. If we want to say the
first word of sentence S is the ith word of the vocabulary, we’ll write S[1] = wi.

We need to assign a probability to each and every sequence (i.e., sentence)
of three words from the Brown Corpus in such a fashion that these probabilities
add up to 1.0. The natural way to do that is to say that the probability of a
sentence is the product of the probabilities: if S = “the woman arrived” then

pr(S) = pr(S[1] = the) × pr(S[2] = woman) × pr(S[3] = arrived) (3)

and we do as I suggested, which is to suppose that the probability of a word is
independent of what position it is in. We would state that formally:
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For all sentences S, all words w and all positions i and j:

pr(S[i] = wn) = pr(S[j] = wn). (4)

A model with that assumption is said to be a stationary model. Be sure
you know what this means. For a linguistic model, it does not seem terribly
unreasonable, but it isn’t just a logical truth. In fact, upon reflection, you will
surely be able to convince yourself that the probability of the first word of a
sentence being the is vastly greater than the probability of the last word in
the sentence being the. Thus a stationary model is not the last word (so to
speak) in models. It is very convenient to make the assumption that the model
is stationary, but it ain’t necessarily so.

Sometimes we may be a bit sloppy, and instead of writing “pr(S[i] = wn)”
(which in English would be “the probability that the ith word of the sentence
is word number n”) we may write “pr(S[i])”, which in English would be “the
probability of the ith word of the sentence.” You should be clear that it’s the
first way of speaking which is proper, but the second way is so readable that
people often do write that way.

You should convince yourself that with these assumptions, the probabilities
of all 3-word sentences does indeed add up to 1.0.

Exercise 1. Show mathematically that this is correct.
As I just said, the natural way to assign probabilities to the sentences in our

universe is as in (1); we’ll make the assumption that the probability of a given
word is stationary, and furthermore that it is its empirical frequency (i.e., the
frequency we observed) in the Brown Corpus. So the probability of the woman

arrived is 0.068 271 × 0.000 23 × .00006 = 0.000 000 000 942 139 8, or about
9.42 × 10−10.

What about the probability of the sentence in the beginning was the word?
We calculated it above to be 10−18 in the universe consisting of all sentences of
length 6 (exactly) where the words were just the 1,000 most frequency words in
the Brown Corpus, with uniform distribution. And the probability was 8.6 ×
10−29 when we considered the universe of all possible sentences of six words
in length, where the size of the vocabulary was the whole vocabulary of the
Brown Corpus, again with uniform distribution. But we have a new model
for that universe, which is to say, we are considering a different distribution
of probability mass. In the new model, the probability of the sentence is the
product of the empirical frequencies of the words in the Brown Corpus, so the
probability of in the beginning was the word in our new model is:

.021 × .068 × .00016 × .0096 × .021 × .00027

= 2.1 × 10−2 × 6.8 × 10−2 × 1.6 × 10−4 × 9.6 × 10−3 × 2.1 × 10−2 × 2.7 × 10−4

= 1243 × 10−17 = 1.243 × 10−14.

That’s a much larger number than we got with other distributions (remem-
ber, the exponent here is -14, so this number is greater than one which has a
more negative exponent.)

The main point for the reader now is to be clear on what the significance of
these two numbers is: 10−18 for the first model, 8.6×10−29 for the second model,
and 1.243×10−14 for the third. But it’s the same sentence, you may say—so why
the different probabilities? The difference is that a higher probability (a bigger
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3 PROBABILITY MASS

number, with a smaller negative exponent, putting it crudely) is assigned to the
sentence that we know is an English sentence in the frequency-based model. If
this result holds up over a range of real English sentences, this tells us that the
frequency-based model is a better model of English than the model in which all
words have the same frequency (a uniform distribution). That speaks well for
the frequency-based model. In short, we prefer a model that scores better (by
assigning a higher probability) to sentences that actually and already exist—we
prefer that model to any other model that assigns a lower probability to the
actual corpus.

In order for a model to assign higher probability to actual and existing
sentences, it must assign less probability to other sentences (since the total
amount of probability mass that it has at its disposal to assign totals up to
1.000, and no more). So of course it assigns lower probability to a lot of un-
observed strings. On the frequency-based model, a string of word-salad like
civilized streams riverside prompt shaken squarely will have a probability even
lower than it does in the uniform distribution model. Since each of these words
has probability 1.07 × 10−5 (I picked them that way—), the probability of the
sentence is (1.07 × 10−5)6 = 1.4 × 10−30.That’s the probability based on using
empirical frequencies. Remember that a few paragraphs above we calculated
the probability of any six-word sentence in the uniform-distribution model as
8.6 × 10−29; so we’ve just seen that the frequency-based model gives an even
smaller probability to this word-salad sentence than did the uniform distribution
model—which is a good thing.

You are probably aware that so far, our model treats word order as irrelevant—
it assigns the same probability to beginning was the the in word as it does to
in the beginning was the word. We’ll get to this point eventually.

3 Probability mass

It is sometimes helpful to think of a distribution as a way of sharing an abstract
goo called probability mass around all of the members of the universe of basic
outcomes (that is, the sample space). Think of there being 1 kilogram of goo,
and it is cut up and assigned to the various members of the universe. None
can have more than 1.0 kg, and none can have a negative amount, and the
total amount must add up to 1.0 kg. And we can modify the model by moving
probability mass from one outcome to another if we so choose.

I have been avoiding an important point up till now, because every time we
computed the probability of a sentence, we computed it against a background
(that is, in a sample space of) other sentences of the same length, and in that
context, it was reasonable to consider a model in which the probability of the
string was equal to the product of the probabilities of its individual words. But
the probability mass assigned by this procedure to all words of length 1 is 1.0;
lilkewise, to all words of length 2 is 1.0; and so on, so that the total probability
assigned to all words up to length N is N—which isn’t good, because we never
have more than 1.0 of probability mass to assign altogether, so we have given
out more than we have to give out.

What we normally do in a situation like this—when we want to consider
strings of variable length—is to first decide how much probability mass should
be assigned to the sum total of strings of length n—let’s call that λ(n) for the
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moment, but we’ll be more explicit shortly—and then we calculate the proba-
bility of a word on the unigram model by divide the product of the probabilities
of its letters by λ(n). We can construct the function in any way we choose, so

long as the sum of the λ’s equals 1:

∞∑

n=1

λ(n) = 1. The simplest way to do this

is to define λ(n) to be
(1 − a)n−1

a
, where a is a positive number less than 1 (in

fact, you should think of a as the probability of a white space). This decision
makes the probability of all of the words of length 1 be 1

a
, and then ratio of

the total probability of words whose length is k + 1 to the total probability of
words whose length is k is always 1

1−a
. This distribution over length overesti-

mates the density of short words, and we can do better—but for now, you need
simple bear in mind that we have to assume some distribution over length for
our probabilities to be sensible.

An alternative way of putting this is to establish a special symbol in our
alphabet, such as # or even the simple period ‘.’ and set conditions on where
it can appear in a sentence: it may never appear in any position but the last
position, and it may never appear in first position (which would also be the
last position, if it were allowed, of course). Then we do not have to establish a
special distribution for sentence length; it is in effect taken care of by the special
sentence-final symbol.

4 Conditional probability

I stressed before that we must start an analysis with some understanding as to
what the universe of outcomes is that we are assuming. That universe forms
the background, the given, of the discussion. Sometimes we want to shift the
universe of discussion to a more restricted sub-universe—this is always a case
of having additional information, or at least of acting as if we had additional
information. This is the idea that lies behind the term conditional probability.
We look at our universe of outcomes, with its probability mass spread out over
the set of outcomes, and we say, let us consider only a sub-universe, and ignore
all possibilities outside of that sub-universe. We then must ask: how do we
have to change the probabilities inside that sub-universe so as to ensure that
the probabilities inside it add up to 1.0 (to make it a distribution)? Some
thought will convince you that what must be done is to divide the probability
of each event by the total amount of probability mass inside the sub-universe.

There are several ways in which the new information which we use for our
conditional probabilities may come to us. If we are drawing cards, we may
somehow get new but incomplete information about the card—we might learn
that the card was red, for example. In a linguistic case, we might have to
guess a word, and then we might learn that the word was a noun. A more
usual linguistic case is that we have to guess a word when we know what the
preceding word was. But it should be clear that all three examples can be
treated as similar cases: we have to guess an outcome, but we have some case-
particular information that should help us come up with a better answer (or
guess).

Let’s take another classic probability case. Let the universe of outcomes
be the 52 cards of a standard playing card deck. The probability of drawing
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WORD:

any particular card is 1/52 (that’s a uniform distribution). What if we restrict
our attention to red cards? It might be the case, for example, that of the card
drawn, we know it is red, and that’s all we know about it; what is the probability
now that it is the Queen of Hearts?

The sub-universe consisting of the red cards has probability mass 0.5, and the
Queen of Hearts lies within that sub-universe. So if we restrict our attention to
the 26 outcomes that comprise the “red card sub-universe,” we see that the sum
total of the probability mass is only 0.5 (the sum of 26 red cards, each with 1/52
probability). In order to consider the sub-universe as having a distribution on
it, we must divide each of the 1/52 in it by 0.5, the total probability of the sub-
universe in the larger, complete universe. Hence the probability of the Queen
of Hearts, given the Red Card sub-Universe (given means with the knowledge
that the event that occurs is in that sub-universe), is 1/52 divided by 1/2, or
1/26.

This is traditionally written: p(A|B) = probability of A, given B = pr(A & B)
pr(B)

5 Guessing a word, given knowledge of the pre-

vious word:

Let’s assume that we have established a probability distribution, the unigram
distribution, which gives us the best estimate for the probability of a randomly
chosen word. We have done that by actually measuring the frequency of each
word in some corpus. We would like to have a better, more accurate distribution
for estimating the probability of a word, conditioned by knowledge of what the
preceding word was. There will be as many such distributions as there are
words in the corpus (one less, if the last word in the corpus only occurs there
and nowhere else.) This distribution will consist of these probabilities:

pr(S[i] = wj given that S[i − 1] = wk), (5)

which is usually written in this way:

pr(S[i] = wj |S[i − 1] = wk) (6)

The probability of the in an English corpus is very high, but not if the
preceding word is the— or if the preceding word is a, his, or lots of other words.

I hope it is reasonably clear to you that so far, (almost) nothing about
language or about English in particular has crept in. The fact that we have
considered conditioning our probabilities of a word based on what word pre-
ceded is entirely arbitrary; as we see in Table 4, we could just as well look at
the conditional probability of words conditioned on what word follows, or even
conditioned on what the word was two words to the left. In Table 5, we look at
the distribution of words that appear two words to the right of the. As you see,
I treat punctuation (comma, period) as separate words. Before continuing with
the text below these tables, look carefully at the results given, and see if they
are what you might have expected if you had tried to predict the result ahead
of time.

What do we see? Look at Table 2, words following the. One of the most
striking things is how few nouns, and how many adjectives, there are among the
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word count count / 69,936
0 first 664 0.00949
1 same 629 0.00899
2 other 419 0.00599
3 most 419 0.00599
4 new 398 0.00569
5 world 393 0.00562
6 united 385 0.00551
7 state 271 0.00418
8 two 267 0.00382
9 only 260 0.00372
10 time 250 0.00357
11 way 239 0.00342
12 old 234 0.00335
13 last 223 0.00319
14 house 216 0.00309
15 man 214 0.00306
16 next 210 0.00300
17 end 206 0.00295
18 fact 194 0.00277
19 whole 190 0.00272
20 American 184 0.00263

Figure 2: Top of the Brown Corpus for words following the.

word count count / 36,388
1 the 9724 0.267
2 a 1473 0.0405
3 his 810 0.0223
4 this 553 0.01520
5 their 342 0.00940
6 course 324 0.00890
7 these 306 0.00841
8 them 292 0.00802
9 an 276 0.00758
10 all 256 0.00704
11 her 252 0.00693
12 our 251 0.00690
13 its 229 0.00629
14 it 205 0.00563
15 that 156 0.00429
16 such 140 0.00385
17 those 135 0.00371
18 my 128 0.00352
19 which 124 0.00341
20 new 118 0.00324

Figure 3: Top of the Brown Corpus for words following of.
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5 GUESSING A WORD, GIVEN KNOWLEDGE OF THE PREVIOUS

WORD:

word count count / 69,936
1 of 9724 0.139
2 . 6201 0.0887
3 in 6027 0.0862
4 , 3836 0.0548
5 to 3485 0.0498
6 on 2469 0.0353
7 and 2254 0.0322
8 for 1850 0.0264
9 at 1657 0.0237
10 with 1536 0.0219
11 from 1415 0.0202
12 that 1397 0.0199
13 by 1349 0.0193
14 is 799 0.0114
15 as 766 0.0109
16 into 675 0.00965
17 was 533 0.00762
18 all 430 0.00615
19 when 418 0.00597
20 but 389 0.00556

Figure 4: Top of the Brown Corpus for words preceding the.

word count count / 69,936
1 of 10861 0.155
2 . 4578 0.0655
3 , 4437 0.0634
4 and 2473 0.0354
5 to 1188 0.0170
6 ’ 1106 0.0158
7 in 1082 0.0155
8 is 1049 0.0150
9 was 950 0.0136
10 that 888 0.0127
11 for 598 0.00855
12 were 386 0.00552
13 with 370 0.00529
14 on 368 0.00526
15 states 366 0.00523
16 had 340 0.00486
17 are 330 0.00472
18 as 299 0.00428
19 at 287 0.00410
20 or 284 0.00406

Figure 5: Top of the Brown Corpus for words 2 to the right of the.
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6 MORE CONDITIONAL PROBABILITY: BAYES’ RULE

most frequent words here—that’s probably not what you would have guessed.
None of them are very high in frequency; none place as high as 1 percent of the
total. In Table 3, however, the words after of, one word is over 25%: the. So
not all words are equally helpful in helping to guess what the next word is. In
Table 4, we see words preceding the, and we notice that other than punctuation,
most of these are prepositions. Finally, in Table 5, we see that if you know a
word is the, then the probability that the word-after-next is of is greater than
15%—which is quite a bit.

Exercise 2: What do you think the probability distribution is for the 10th
word after the? What are the two most likely words? Why?

Conditions can come from other directions, too. For example, consider the
relationships of English letters to the phonemes they represent. We can ask
what the probability of a given phoneme is—not conditioned by anything else—
or we can ask what the probability of a phoneme is, given that it is related to
a specific letter.

6 More conditional probability: Bayes’ Rule

Let us summarize. How do we calculate what the probability is that the nth
word of a sentence is the if the n − 1st word is of ? We count the number of
occurrences of the that follow of, and divide by the total number of of s.

Total number of of : 36,341
Total number of of the: 9,724
In short,

pr(S[i] = the |S[i − 1] = of) =
9724

36341
= 0.267 (7)

What is the probability that the nth word is of, if the n + 1st word is the?
We count the number of occurrences of of the, and divide by the total number
of the: that is,

pr(S[i] = of |S[i + 1] = the) =
9, 724

69, 903
= 0.139 (8)

This illustrates the relationship between pr(A|B) “the probability of A given
B” and pr(B|A) “the probability of B given A”. This relationship is known as
Bayes’ Rule. In the case we are looking at, we want to know the relationship
between the probability of a word being the, given that the preceding word was
of —and the probability that a word is of, given that the next word is the.

pr(S[i] = of |S[i + 1] = the) =
pr(S[i] = of & S[i + 1] = the)

pr(S[i + 1] = the)
(9)

and also, by the same definition:

pr(S[i] = the |S[i − 1] = of) =
pr(S[i] = of &S[i + 1] = the)

pr(S[i − 1] = of)
(10)

Both of the preceding two lines contain the phrase:

pr(S[i] = of &S[i + 1] = the).

13



7 THE JOY OF LOGARITHMS

Let’s solve both equations for that quantity, and then equate the two remaining
sides.

pr(S[i] = of |S[i + 1] = the) × pr(S[i + 1] = the) = pr(S[i] = of &S[i + 1] = the)

pr(S[i] = the |S[i − 1] = of) × pr(S[i − 1] = of) = pr(S[i] = of &S[i + 1] = the)

Therefore:

pr(S[i] = of |S[i + 1] = the) × p(S[i + 1] = the) (11)

= pr(S[i] = the |S[i − 1] = of) × pr(S[i−] = of)

And we will divide by “pr(S[i + 1] = the )”, giving us:

pr(S[i] = of |S[i + 1] = the) =
pr(S[i] = the|S[i − 1] = of) × p(S[i − 1] = of)

pr(S[i + 1] = the)
(12)

The general form of Bayes’ Rule is:

pr(A|B) = pr(B|A)pr(A)
pr(B)

7 The joy of logarithms

It is, finally, time to get to logarithms—I heave a sigh of relief. Things are much
simpler when we can use logs. Let’s see why.

In everything linguistic that we have looked at, when we need to compute
the probability of a string of words (or letters, etc.), we have to multiply a
string of numbers, and each of the numbers is quite small, so the product gets
extremely small very fast. In order to avoid such small numbers (which are hard
to deal with in a computer), we will stop talking about probabilities, much of
the time, and talk instead about the logarithms of the probabilities—or rather,
since the logarithm of a probability is always a negative number and most human
beings prefer to deal with positive numbers, we will talk about -1 times the log

of the probability, since that is a positive number. Let’s call that the positive

log probability, or plog for short. If the probability is p, then we’ll write the
positive log probability as p̃. This quantity is also sometimes called the inverse

log probability.
Notation: if p is a number greater than zero, but less than or equal to 1:

p̃ = −log p. If E is an event, then Ẽ = −log pr(E).
As a probability gets very small, its positive log probability gets larger, but

at a much, much slower rate, because when you multiply probabilities, you just
add positive log probabilities. That is,

log( pr(S[1]) × pr(S[2]) × pr(S[3]) × pr(S[4]) ) (13)

= −1 × (S̃[1] + S̃[2] + S̃[3] + S̃[4]) (14)

And then it becomes possible for us to do such natural things as inquiring
about the average log probability—but we’ll get to that.

At first, we will care about the logarithm function for values in between 0
and 1. It’s important to be comfortable with notation, so that you see easily

14



7 THE JOY OF LOGARITHMS

that the preceding equation can be written as follows, where the left side uses
the capital pi to indicate products, and the right side uses a capital sigma to
indicate sums:

log

[
4∏

i=1

pr(S[i] )

]
=

4∑

i=1

log pr(S[i] ) (15)

We will usually be using base 2 logarithms. You recall that the log of a
number x is the power to which you have to raise the base to get the number x.
If our logs are all base 2, then the log of 2 is 1, since you have to raise 2 to the
power 1 to get 2, and log of 8 is 3, since you have to raise 2 to the 3rd power in
order to get 8 (you remember that 2 cubed is 8). So for almost the same reason,
the log of 1/8 is -3, and the positive log of 1/8 is therefore 3.

If we had been using base 10 logs, the logs we’d get would be smaller by a
factor of about 3. The base 2 log of 1,000 is almost 10 (remember that 2 to the
10th power, or 210, is 1,024), while the base 10 log of 1,000 is exactly 3.

It almost never makes a difference what base log we use, actually, until we
get to information theory. But we will stick to base 2 logs anyway.

Exercise 3: Express Bayes’ Rule in relation to log probabilities.
Interesting digression: There is natural relationship between the real

numbers R (both positive, negative, and 0) along with the operation of addition,
on the one hand, and the positive real numbers R along with operation of
multiplication:

Reals R

exp

��

OO

log

ks +3 operation : addition

exp

��

OO

log

Positive realsR+ ks +3 operation : multiplication

And it is the operations of taking logarithms (to a certain base, like 2) and
raising that base to a certain power (that is called exponentiation, abbreviated
exp here) which take one back and forth between these two systems.

We call certain combinations of a set and an operation groups, if they satisfy
three basic conditions: there is an identity operator, each element of the set
has an inverse, and the operation is associative. Zero has the special property
with respect to addition of being the identity element, because one can add
zero and the result is unchanged; 1 has the same special property (of being the
identity element) with respect to multiplication. Each real number r in R has
an additive inverse (a number which you can add to r and get 0 as the result);
likewise, each positive real r in R+ has a multiplicative inverse, a number which
you can multiply by r and get 1 as the result. The exp and log mappings also
preserve inverses and identities.

So there’s this natural relationship between two groups, and the natural re-
lationship maps the identity element in the one group to the identity element
in the other—and the relationship preserves the operations. This “natural re-
lationship” maps any element x in the “Positive reals + multiplication” group
to log x in the “reals + addition” group, and its inverse operation, mapping
from the multiplication group to the addition group is the exponential opera-
tion, 2x. So: a× b = exp (log(a) + log(b)). And similarly, and less interestingly:
a + b = log( exp(a) exp(b) ).
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8 ADDING LOG PROBABILITIES IN THE UNIGRAM MODEL

Reals R

exp

��

OO

log

ks +3 operation : addition

exp

��

OO

log

ks +3 identity : 0

exp

��

OO

log

Positive realsR+ ks +3 operation : multiplication ks +3 identity : 1

This is a digression, not crucial to what we are doing, but it is good to see
what is going on here.

Exercise 4: Explain in your own words what the relationship is between
logarithms and exponentiation (exponentiation is raising a number to a given
power).

8 Adding log probabilities in the unigram model

The probability of a sentence S in the unigram model is the product of the prob-
abilities of its words, so the log probability of a sentence in the unigram model
is the sum of the log probabilities of its words. That makes it particularly clear
that the longer the sentence gets, the larger its log probability gets. In a sense
that is reasonable—the longer the sentence, the less likely it is. But we might
also be interested in the average log probability of the sentence, which is just
the total log probability of the sentence divided by the number of words; or to

put it another way, it’s the average log probability per word =
1

N

N∑

i=1

S̃[i]. This

quantity, which will become more and more important as we proceed, is also
called the entropy—especially if we’re talking about averaging over not just one
sentence, but a large, representative sample, so that we can say it’s (approxi-
mately) the entropy of the language, not just of some particular sentence.

We’ll return to the entropy formula, with its initial
1

N
to give us an average,

but let’s stick to the formula that simply sums up the log probabilities:

N∑

i=1

S̃[i].

Observe carefully that this is a sum in which we sum over the successive words
of the sentence. When i is 1, we are considering the first word, which might be
the, and when i is 10, the tenth word might be the as well.

In general, we may be especially interested in very long corpora, because it
is these corpora which are our approximation to the whole (nonfinite) language.
And in such cases, there will be many words that appear quite frequently, of
course. It makes sense to re-order the summing of the log probabilities—because
the sum is the same regardless of the order in which you add numbers—so that
all the identical words are together. This means that we can rewrite the sum of
the log probabilities as a sum over words in the vocabulary (or the dictionary—a
list where each distinct word occurs only once), and multiply the log probability
by the number of times it is present in the entire sum. Thus (remember the
tilde marks positive logs):
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9 LET’S COMPUTE THE PROBABILITY OF A STRING

sum over words in string :

N∑

i=1

S̃[i] (16)

=
V∑

j=1

count(wordj) w̃ordj (17)

If we’ve kept track all along of how many words there are in this corpus (call-
ing this ”N”), then if we divide this calculation by N, we get, on the left, the

average log probability, and, on the right:
V∑

j=1

count(wj)

N
w̃j . That can be con-

ceptually simplified some more, because
count(wj)

N
is the proportional frequency

with which word wj appears in the list of words, which we have been using as

our estimate for a word’s probability. Therefore we can replace
count(wj)

N
by

pr(wj), and end up with the formula:

V∑

j=1

pr(wordj) w̃ordj (18)

which can also be written as

−

V∑

j=1

pr(wordj) logpr(wordj) (19)

.
This last formula is the formula for the entropy of a set, and we will return

to it. We can summarize what we have just seen by saying, again, that the
entropy of a language is the average plog of the words.

9 Let’s compute the probability of a string

Let’s express the count of a letter p in a corpus with the notation [p] (as I
promised we would do eventually), and we’ll also allow ourselves to index over
the letter of the alphabet by writing li—that is, li represents the ith letter of the
alphabet. Suppose we have a string S1 of length N1. What is its probability?
If we assume that the probability of each letter is independent of its context,
and we use its frequency as its probability, then the answer is simply:

∏

l∈A

(
[li]

N1

)[li]

(20)

Suppose we add 10 e’s to the end of string S1. How does the probability of
the new string S2 compare to S1? Let’s call S2’s length N2, and N2 = N1 + 10.
The probability of S2 is:

∏

l∈A, l 6=e

(
[li]

N2

)[li] ( [e] + 10

N2

)[e]+10

(21)
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9 LET’S COMPUTE THE PROBABILITY OF A STRING

Let’s take the ratio of the two:

∏

l∈A

(
[li]

N1

)[li]

∏

l∈A, l 6=e

(
[li]

N2

)[li] ( [e] + 10

N2

)[e]+10
(22)

=

pr1(e)
[e]N

[e]−N1

1

∏

l∈A,l 6=e

[li]
[li]

pr1(e)
[e]+10N

[e]+10−N1

2

∏

l∈A, l 6=e

[li]
[li]

(23)

but N2 = N1 + 10, so this equals

(
pr1(e)

pr2(e)

)[e]

(pr2(e))
−10

(
N1

N2

)[e]−N1

(24)

taking logs:
[e]∆(e) − 10logpr2(e) − (N1 − [e])∆(N) (25)

where the ∆ function is the log ratio of the values in the before (= State 1)and
the after (= State 2) condition (state 1 in the numerator, state 2 in the denom-
inator). This is a very handy notation, by the way—we very often will want
to compare a certain quantity under two different assumptions (where one is
“before” and the other is “after”, intuitively speaking), and it is more often
than not the ratio of the two quantities we care about.

Putting our expression above in words:

the difference of the log probabilities is the sum of three terms, each
weighted by the size of the parts of the string, which are: the original
e′s; 10 new e′s; and everything else. The first is weighted by the ∆
function; the second by the information content of the new e′s; and
the last by a value of approximately [e] bits!

Exercise 5: When x is small, loge(1 + x) is approximately x, where e is the
base of the natural logarithms, a number just slightly larger than 2.718. (“loge”
is also written conventionally ln.) You can see this graphically, since the first
derivative of the loge or ln function is 1 at 1, and its value there is 0. If that’s
not clear, just accept it for now. Changing the base of our logarithms means
multiplying by a constant amount, as we can see in the following. alogax = x,
by definition. Also, a = eln a by definition. Plugging the second in the first,
we see that (eln a)logax = x. Since the left-hand side also equals e(ln a)(loga x),
we see that e(ln a)(logax) = x. Taking natural logarithms of both sides, we have
(ln a)(logax) = ln x, which was what we wanted to see: changing the base of a
logarithm from c to d amounts to dividing by logc d. Can you change find the
expression that generalizes loge(1+x) ≈ x to any base, and in particular express
the approximation for log2(1 + x)? If you can, then rewrite (25), replacing ∆
with the result given by using this approximation.
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10 MAXIMIZING PROBABILITY OF A SENTENCE, OR A CORPUS

10 Maximizing probability of a sentence, or a

corpus

We will now encounter a new and very different idea, but one which is of capital
importance: the fundamental goal of analysis is to maximize the probability of
the observed data. All empirical learning centers around that maxim. Data is
important, and learning is possible, because of that principle.

When we have a simple model in mind, applying this maxim is simple; when
the models we consider grow larger and more complex, it is more difficult to
apply the maxim.

If we restrict ourselves at first to the unigram model, then it is not difficult
to prove—but it is important to recognize—that the maximum probability that
can be obtained for a given corpus is the one whose word-probabilities coincide
precisely with the observed frequencies. It is not easy at first to see what the
point is of that statement, but it is important to do so. There are two straight-
forward ways to see this: the first is to use a standard technique, Lagrange
multipliers, to maximize a probability-like function, subject to a constraint,
and the second is to show that the cross-entropy of a set of data is always at
least as great as the self-entropy. We will leave the first method to a footnote
for now. 3

Let us remind ourselves that we can assign a probability to a corpus (which

3For a large class of probabilistic models, the setting of parameters which maximizes the
probability assigned to a corpus is derived from using the observed frequencies for the pa-
rameters. This observation is typically proved by using the method of Lagrange multipliers,
the standard method of optimizing an expression given a constraint expressed as an equation.
There is a geometric intuition that lies behind the method, however, which may be both more
interesting and more accessible. Imagine two continuous real-valued functions f and g in Rn;
f(x) is the function we wish to optimize, subject to the condition that g(x) = c, for some
constant c. In the case we are considering, n is the number of distinct symbols in the alphabet
A = {ai}, and each dimension is used to represent values corresponding to each symbol. Each
point in the (n-dimensional) space can be thought of as an assignment of a value to each of
the n-dimensions. Only those points that reside on a certain hyperplane are of interest: those
for which the values for each dimension are non-negative and for which the sum is 1.0. This
statement forms our constraint g: g(x) =

∑n
i=1 xi = 1.0, and we are only interested in the

region where no values are negative. We have a fixed corpus C, and we want to find the set of
probabilities (one for each symbol ai) which assigns the highest probability to it, which is the
same as finding the set of probabilities which assigns C the smallest plog. So we take f(x) to

be the function that computes the plog of S, that is, f(x) =
n∑

i=1

CountS(ai) plog(xi).

The set of points for which g(x) = c forms an n-1 dimensional surface in Rn (in fact, it
is flat), and the points for which f(x) is constant likewise form n-1 dimensional surfaces,
for appropriate values of x. Here is the geometric intuition: the g-surface which is optimal
must be tangent to the f -surface at the point where they intersect, because if they were not
tangent, there would be a nearby point on the f -surface where g was even better (bigger
or smaller, depending on which optimum we are looking for); this in fact is the insight that
lies behind the method of Lagrange multipliers. But if the two surfaces are tangent at that
optimal point, then the ratio of the corresponding partial derivatives of f and g, as we vary
across the dimensions, must be constant; that is just a restatement of the observation that
the vectors normal to each surface are pointing in the same direction. Now we defined g(x)

as a very simple function; its partial derivatives are all 1 (i.e., for all i, ∂g
∂xi

= 1), and the

partial derivations of f(x) are ∂f
∂xi

= −
CountS(ai)

xi
for all i. Hence at our optimal point,

CountS(ai)
xi

= k for some constant k, or xi = k CountS(ai), which is to say, the probability of

each word is directly proportional to its count in the corpus, hence must equal
CountS(ai)∑
j CountS(aj)

.
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10 MAXIMIZING PROBABILITY OF A SENTENCE, OR A CORPUS

is, after all, a specific set of words) with any distribution, that is, any set of
probabilities that add up to 1.0. If there are words in the corpus which do
not get a positive value in the distribution, then the corpus will receive a total
probability of zero (remind yourself why this is so!), but that is not an impossible
situation. (Mathematicians, by the way, refer to the set which gets a non-zero
probability as the support of the distribution. Computational linguists may say
that they are concerned with making sure that all words are in the support of
their probability distribution.)

Suppose we built a distribution for the words of a corpus randomly—ensuring
only that the probabilities add up to 1.0. (Let’s not worry about what “ran-
domly” means here in too technical a way.) To make this slightly more concrete,
let’s say that these probabilities form the distribution Q, composed of a set of
values q(wordi), for each word in the corpus (and possibly other words as well).
Even this randomly assigned distribution would (mathematically) assign a prob-
ability to the corpus. It is important to see that the probability is equal to

multiplying over words in string:

N∏

i=1

q(S[i]) (26)

and this, in turn, is equal to

multiplying over words in vocabulary:

V∏

j=1

q(wordj)
count(wordj) (27)

Make sure you understand why this exponent is here: when we multiply
together k copies of the probability of a word (because that word appears k
times in a corpus), the probability of the entire corpus includes, k times, the
probability of that word in the product which is its probability. If we now switch
to thinking about the log probability, any particular word which occurs k times
in the corpus will contribute k times its log probability to the entire sum which
gives us the (positive) log probability:

V∑

j=1

count(wordj)w̃ordj (28)

What should be clear by now is that we can use any distribution to assign
a probability to a corpus. We could even use the uniform distribution, which
assigns the same probability to each word.

Now we can better understand the idea that we may use a distribution
for a given corpus whose probabilities are defined exactly by the frequencies
of the words in a given corpus. It is a mathematical fact that this “empirical
distribution” assigns the highest probability to the corpus, and this turns out to
be an extremely important property. (Important: you should convince yourself
now that if this is true, then the empirical distribution also assigns the lowest
entropy to the corpus.)

Exercise 6: Show why this follows.
It follows from what we have just said that if there is a “true” probability

distribution for English, it will assign a lower probability to any given corpus
that the empirical distribution based on that corpus, and that the empirical
distribution based on one corpus C1 will assign a lower probability to a different
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10 MAXIMIZING PROBABILITY OF A SENTENCE, OR A CORPUS

corpus C2 than C2’s own empirical distribution. Putting that in terms of entropy
(that is, taking the positive log of the probabilities that we have just mentioned,
and dividing by N , the number of words in the corpus), we may say that the
”true” probability distribution for English assigns a larger entropy to a corpus C
than C’s own empirical distribution, and that C1’s empirical distribution assigns
a higher entropy to a different corpus C2 than C2’s own empirical distribution
does.

These notions are so important that some names have been applied to these
concepts. When we calculate this formula, weighting one distribution D1(like
an observed frequency distribution) by the log probabilities of some other dis-
tribution D2, we call that the cross-entropy ; and if we calculate the difference
between the cross-entropy and the usual (self) entropy, we also say that we are
calculating the Kullback-Leibler (or “KL”) divergence between the two distribu-
tions. Mathematically, if the probability assigned to wordi by D1 is expressed
as pr1(wordi) (and likewise for D2—its probabilities are expressed as pr2), then
the KL divergence is

V∑

j=1

pr1(wordj)log pr1(wordj) − pr1(wordj) logpr2(wordj) (29)

The tricky part is being clear on why pr1 appears before the log in both
terms in this equation. It is because there, the pr1, which comes from D1,
is being used to indicate how many times (or what proportion of the time)
this particular word occurs in the corpus we are looking at, which is entirely
separate from the role played by the distribution inside the log function—that
distribution tells us what probability to assign to the given word.4

The KL divergence just above can be written equivalently as

V∑

j=1

pr1(wordj)log
pr1(wordj)

pr2(wordj)
(30)

A common notation for this is: KL(D1||D2). Note that this relationship is
not symmetric: KL(D1||D2) is not equal to KL(D2||D1).

Here’s one direct application of these notions to language. Suppose we have a
set of letter frequencies (forming distributions, of course) from various languages
using the Roman alphabet. For purposes of this illustration, we’ll assume that
whatever accents the letters may have had in the original, all letters have been
ruthlessly reduced to the 26 letters of English. Still, each language has a differ-
ent set of frequencies for the various letters of the alphabet, and these various
distributions are called Di. If we have a sample from one of these languages
with empirical distribution S (that is, we count the frequencies of the letters
in the sample), we can algorithmically determine which language it is taken
from by computing the KL divergence KL(S||Di). The distribution which pro-
duces the lowest KL divergence is the winner—it is the correct language, for its
distribution best matches that of the sample.

4Solomon Kullback and Richard Leibler were among the original mathematicians at the
National Security Agency, the federal agency that did not exist for a long time. Check out
the page in Kullback’s honor at http://www.nsa.gov/honor/honor00009.cfm
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12 ESSENTIAL INFORMATION THEORY

11 Conditional probabilities, this time with logs

We have talked about the conditional probability of (for example) a word w,
given its left-hand neighbor v, and we said that we can come up with an empirical
measure of it as the total number of v +w biwords, divided by the total number
of v’s in the corpus:

pr(S[i] = w|S[i − 1] = v) =
pr(vw)

pr(v)
(31)

Look at the log-based version of this: .

logpr(S[i] = w|S[i − 1] = v) = log pr(vw) − log pr(v) (32)

12 Essential Information Theory

Suppose we have given a large set of data from a previously unanalyzed language,
and four different analyses of the verbal system are being offered by four different
linguists. Each has an account of the verbal morphology using rules that are
(individually) of equal complexity. There are 100 verb stems. Verbs in each
group use the same rules; verbs in different groups use entirely different rules.

Linguist 1 found that he had to divide the verbs into 10 groups with 10 verbs
in each group. Linguist 2 found that she had to divide the verbs into 10 groups,
with 50 in the first group, 30 in the second group, 6 in the third group, and 2
in each of 7 small groups. Linguist 3 found that he had just one group of verbs,
with a set of rules that worked for all of them. Linguist 4 found that she had
to divide the verbs into 50 groups, each with 2 stems in it.

Rank these four analyses according how good you think they are—sight
unseen.

Hopefully you ranked them this way:

Best: Linguist 3
Linguist 2
Linguist 1

Worst: Linguist 4

And why? Because the entropy of the sets that they created goes in that
order. That’s not a coincidence—entropy measures our intuition of the degree

of organization of information.

The entropy of a set is −
∑

pr(ai) log pr(ai) , where we sum over the prob-
ability of each subset making up the whole—and where the log is the base2 log.

• The entropy of Linguist 1’s set of verbs is−1×10× 1
10 × log 1

10 = log(10) =
3.32.

• The entropy of Linguist 2’s set of verbs is −1× 1
2 × log 1

2 +0.3× log(0.3)+
0.06× log(0.06)+0.14× log(0.02)) = 0.346+0.361+0.169+0.548 = 1.42.

• The entropy of Linguist 3’s set of verbs is −1 × 1 × log(1) = 0.

• The entropy of Linguist 4’s set of verbs is −1×50× 1
50 × log(0.02) = 3.91.

Thus, in some cases—very interesting ones, in my opinion—the concept of
entropy can be used to quantify the notion of elegance of analysis.
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13 ANOTHER APPROACH TO ENTROPY

13 Another approach to entropy

The traditional approach to explaining information and entropy is the following.
A language can be thought of as an organized way of sending symbols, one at
a time, from a sender to a receiver. Both have agreed ahead of time on what
the symbols are that are included. How much information is embodied in the
sending of any particular symbol?

Suppose there are 8 symbols that comprise the language, and that there is
no bias in favor of any of them— hence, that each of the symbols is equally
likely at any given moment. Then sending a symbol can be thought of as being
equivalent to be willing to play a yes/no game—essentially like a child’s Twenty
Questions game. Instead of receiving a symbol passively, the receiver asks the
sender a series of yes/no questions until he is certain what the symbol is. The
number of questions that is required to do this—on average—is the average
information that this symbol-passing system embodies.

The best strategy for guessing one of the 8 symbols is to ask a question along
the lines of “Is it one of symbols 1, 2, 3, or 4?” If the answer is Yes, then ask “Is
it among the set: symbols 1 and 2?” Clearly only one more question is needed
at that point, while if the answer to the first question is No, the next question
is, “Is it among the set: symbols 5 and 6?” And clearly only one more question
is needed at that point.

If a set of symbols has N members in it, then the best strategy is to use
each question to break the set into two sets of size N

2 , and find out which set
has the answer in it. If N = 2k, then it will take k questions; if N = 2k + 1, it
may take as many as k+1 questions.

Note that if we did all our arithmetic in base 2, then the number of questions
it would take to choose from N symbols would be no more than the number
of digits in N (and occasionally it takes 1 fewer). 8 = 10002, and it takes 3
questions to select from 8 symbols; 9 = 10012, and it takes 4 questions to select
from 9 symbols; 15 = 11112, and it takes 4 questions to select from 15 symbols.

Summarizing: the amount of information in a choice from among N possi-
bilities (possible symbols, in this case) is log N bits of information, rounding up
if necessary. Putting it another way—if there are N possibilities, and they each
have the same probability, then each has probability 1/N, and the number of
bits of information per symbol is the positive log probability (which is the same
thing as the log of the reciprocal of the probability).

Exercise 7: Why is the positive log probability the same thing as the log
of the reciprocal of the probability?

But rarely is it the case that all of the symbols in our language have the same
probability, and if the symbols have different probabilities, then the average
number of yes/no questions it takes to identify a symbol will be less than log
N. Suppose we have 8 symbols, and the probability of symbol 1 is 0.5, the
probability of symbol 2 is 0.25, and the probability of the other 6 is one sixth of
the remaining 0.25, i.e., 1/24 each. In this case, it makes sense to make the first
question be simply, “Is it Symbol #1?” And half the time the answer will be
“yes”. If the answer is “No,” then the question could be, “Is it Symbol #2?” and
again, half the time the answer will be “Yes.” Therefore, in three-fourths of the
cases, the average number of questions needed will be no greater than 2. For the
remaining six, let’s say that we’ll take 3 more questions to identify the symbol.
So the average number of questions altogether is (0.5×1)+(0.25×2)+(0.25×5) =
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14 MUTUAL INFORMATION

0.5 + 0.5 + 1.25 = 2.25. (Make sure you see what we just did.) When the
probabilities are not uniformly distributed, then we can find a better way to
ask questions, and the better way will lower the average number of questions
needed.

All of this is a long, round-about way of saying that the average information
per symbol decreases when the probabilities of the symbols is not uniform. This
quantity is the entropy of the message system, and is the weighted average of the
number of bits of information in each symbol, which obeys the generalization
mentioned just above: the information is -1 times the log of the probability of
the symbol, i.e., the positive log probability. The entropy is, then:

−
∑

i

pr(xi) log pr(xi)

14 Mutual information

Mutual information is an important concept that arises in the case of a sample
space consisting of joint events: each event can be thought of as a pair of more
basic events. One possible example would be the input and the output of some
device (like a communication channel), and this was the original context in which
the notion arose; another, very different example could be successive letters, or
successive words, in a corpus. Let’s consider the case of successive words, which
is more representative of the sort of case linguists are interested in.

The joint event, in this case, is the occurrence of a biword (or bigram, if
you prefer). of the is such an event; so is the book, and so on. We can compute
the entropy of the set of all the bigrams in a corpus. We can also consider the
separate events that constitute the joint event: e.g., the event of the occurring
as a left-hand member of a biword. That, too, has an observed frequency, and
so we can compute its entropy—and of course, we can do that for the right-hand
words of the set of bigrams. We want to know what the relationship is between
the entropy of the joint events and the entropy of the individual events.

If the two words comprising a biword are statistically unrelated, or inde-
pendent, then the entropy of the joint event is the sum of the entropies of the
individual events. We’ll work through that, below. But linguistically, we know
that this won’t in fact be the case. If you know the left-hand word of a bigram,
then you know a lot about what is likely to be the right-hand word: that is
to say, the entropy of the possible right-hand words will be significantly lower
when you know the left-hand word. If you know that the left-hand word is the,
then there is an excellent chance that the right-hand word is first, best, only

(just look at Table 2 above!). The entropy of the words in Table 2 is much
lower than the entropy of the whole language. This is known as the conditional

entropy : it’s the entropy of the joint event, given the left-hand word. If we com-
pute this conditional entropy (i.e., right-hand word entropy based on knowing
the left-hand word) for all of the left-hand words of the biword, and take the
weighted mean of these entropies, what you have computed is called the mutual

information: it is an excellent measure of how much knowledge of the first word
tells you about the second word (and this is true for any joint events).

Mutual information between two random variables X,Y , where X can take
on the different values xi, and Y can take on the different values yi (don’t be
fooled if the name we use to label the index might change):
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14 MUTUAL INFORMATION

∑

i

pr(xi)
∑

j

−pr(yj |xi) log pr(yj |xi) (33)

(While we’re at it, don’t forget that p(yj |xi) =
pr(xiyj)
pr(xi)

= pr(bigram)
pr(word) )

It is certainly not obvious, but the following is true: if you compute the
conditional entropy of the left-hand word, given the right-hand word, and com-
pute the weighted average over all possible right-hand words, you get the same
quantity, the mutual information. Mutual information is symmetric, in that
sense.

There is a third way of thinking about mutual information which derives
from the following, equivalent formula for mutual information, and this way of
thinking of it makes it much clearer why the symmetry just mentioned should
be there:

∑

i,j

pr(xiyj)log
pr(xiyj)

pr(xi)pr(yj)
(34)

where pr(xi) is the probability of xi, which is to say,
∑

j pr(xiyj). This last
expression, (34), can be paraphrased as: the weighted difference between the
information of the joint events (on the one hand) and the information of the
separate events (on the other). That is, if the two events were independent,

then
pr(xiyj)

pr(xi)pr(yj)
would be 1.0, and the log of that would be zero.

So far, all of our uses of mutual information have been weighted averages (we
often find it handy to refer to this kind of average as an ensemble average, which
borrows a metaphor from statistical physics). However, in computational lin-

guistics applications, it is often very useful to compute
pr(xiyj)

pr(xi)pr(yj)
for individual

bigrams. The most straightforward way to use it is to compare the log proba-
bility assigned to a string of words under two models: (1) a unigram model, in
which each word is assigned a plog, a positive log probability (remember this

formula from above—
N∑

i=1

−log pr(S[i])—and (2) a bigram model, in which each

word is assigned a positive log probability, conditioned by its left-hand neigh-

bor. We can’t write the following
N∑

i=1

−log pr(S[i] | S[i − 1])5, since we do not

seem to have a zero-th word to condition the first word on. The usual thing to
do (it’s perfectly reasonable) is to assume that all of the strings we care about
begin with a specific symbol that occurs there and nowhere else. Then we can

perfectly well use the following formula:

N∑

i=2

−log pr(S[i] | S[i − 1])

We will end all of this on a high note, which is this: the difference between
the plog (positive log) probability of a string on the unigram model and the
plog of the same string on the bigram model is exactly equal to the sum of the
mutual informations between the successive pairs of words. Coming out of the
blue, this seems very surprising, but of course it isn’t really. For any string S,

5This is a good example of abusing the notation: I warned you about that earlier, and now
it’s happened.
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the difference between the unigram plogs (given by the first overbrace) and the
bigram plots (given by the second overbrace) is:

︷ ︸︸ ︷[ ∑
−log pr(S[i])

]
−

︷ ︸︸ ︷[∑
−log pr(S[i] | pr(S[i − 1])

]

=
∑ [

−log pr(S[i]) + log
pr(S[i − 1]S[i])

pr(S[i − 1])

]

=
∑

log
pr(S[i − 1]S[i])

pr(S[i − 1])pr(S[i])

(35)

And the last line is just the sum of the mutual information between each of
the successive pairs.

15 Conclusion

My goal in this paper has been to present, in a form convivial to linguists,
an introduction to some of the quantitative notions of probability that have
played an increasingly important role in understanding natural language and in
developing models of it. We have barely scratched the surface, but I hope that
this brief glimpse has given the reader the encouragement to go on and read
further in this area (see, for example, [1]).
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