Could a computer learn and respond in a humanlike w
feming the bioneural network of the human body into aaz i
ing system? This idea, sparked by Al maverick Marvin A(:Ip
fook 1001 and now is a serious line of inquiry in the field ;:;;s
inquiries have expanded a whole new appreciation of -

of human perception. the mirac

o
*es
.

" How Neural
“Netuorks Learn

e

from Experience

-t

ool

" Geoffrey E- Hinton

he brain is a remarkable computer. It interprets impre-

cise information from the senses at an incredibly rapid

rate. It discerns a whisper in a noisy room, a face in a

mly lit alley and a hidden agenda in a political statement.
Most impressive of all, the brain learns—without any explicit
structions—to create the internal representations that make

these skills possible.

Much is still unknown about how the brain trains itself to
process information, so theories abound. To test these

hypotheses, my colleagues and | have attempted to mimic the =
brain’s learning processes by creating netwarks of artificial ~ ks
neurons. We construct these neural networks by first trying to -
deduce the essential features of neurons and their intercon-. -
nections. We then typically program a computer to simulate.”

these features. :
Because our knowledge of neurons is incomplete and our
computing power is limited, our models are necessarily gross:
idealizations of real networks of neurons. Naturally, we enthu
siastically debate what features are most essential in simulat

44 / Understanding Artificial Intelligence

ing neurons. By testing these features in artificial neural net-

works, we have been successful at ruling out all kinds of theg--

ries about how the brain processes information. The models

are also beginning to reveal how the brain may accomplish its -

remarkable feats of learning.

In the human brain, a typical neuron collects signals from:
others through a host of fine structures called dendrites. The
neuron sends out spikes of electrical activity through a long,
thin strand known as an axon, which splits into thousands of

branches. At the end of each branch, a structure called 2

synapse converts the activity from the axon into electricg] -
effects that inhibit or excite activity in the connected neurons,
When a neuron receives excitatory input that is sufficiently:
large compared with its inhibitory input, it sends a spike of -

electrical activity down its axon. Learning occurs by changin
the effectiveness of the synapses so that the influence of on
neuron on another changes.

Artificial neural networks are typically composed of inter
connected “units,” which serve as model neurons. The func
tion of the synapse is modeled by a modifiable weight, which i
associated with each connection. Most artificial networks do
not reflect the detailed geometry of the dendrites and axons
and they express the electrical output of a neuron as a single
number that represents the rate of firing—its activity.

The network of neurons in the brain provides people with
the ability to assimilate information. Will simulations of such
networks reveal the underlying mechanisms of learning? -

Each unit converts the pattern of incoming activities that it
receives into a single outgoing activity that it broadcasts to
other units. It performs this conversion in two stages. First, it
multiplies each incoming activity by the weight on the connec-
tion and adds together all these weighted inputs to get a quan-
tity called the total input. Second, a unit uses an input-output
function that transforms the total input into the outgoing act

ity.

How Neural Networks Learn from Experience / 45

The behavior of an artificial neural network depends on
both the weights and the input-output function that is speci-
fied for the units. This function typically falls into one of three
categories: linear, threshold or sigmoid. For linear units, the
output activity is proportional to the total weighted input. For
threshold units, the output is set at one of two levels, depend-
ing on whether the total input is greater than or less than some
threshold value. For sigmoid units, the output varies continu-
ously but not linearly as the input changes. Sigmoid units bear
a greater resemblance to real neurons than do linear or thresh-
old units, but all three must be considered rough approxima-
tions.

To make a neural network that performs some specific task,
we must choose how the units are connected to one another,
and we must set the weights on the connections appropriately.
The connections determine whether it is possible for one unit
to influence another. The wéights specify the strength of the
influence.

The commonest type of artificial neural network consists of
three groups, or layers, of units: a layer of input units is con-
nected to a layer of “hidden” units, which is connected to a
layer of output units. The activity of the input units represents
the raw information that is fed into the network. The activity of

- each hidden unit is determined by the activities of the input

units and the weights on the connections between the input
and hidden units. Similarly, the behavior of the output units
depends on the activity of the hidden units and the weights

- between the hidden and output units.

This simple type of network is interesting because the hid-
den units are free to construct their own representations of the

- input. The weights between the input and hidden units deter-
- mine when each hidden unit is active, and so by modifying
~ these weights, a hidden unit can choose what it represents,

We can teach a three-layer network to perform a particular

- task by using the following procedure. First, we present the

46 / Understanding Artificial Intelligence

network with training examples, which consist of a pattern of
activities for the input units together with the desiredf pattern
of activities for the output units. We then determine }.mw
closely the actual output of the network matches t?;e dem;ed
output. Next we change the weight of each 'connecuon S0 t at
the network produces a better approximation of the desired
Ou{lg;t;example, suppose we want a network to recognize hand-
written digits. We might use an array of, say, 256 sensors, each'_.
recording the presence or absence of ink in a small area of a

single digit. The network would therefore need 256 input units.

(one for each sensor), 10 output units {one for each kind of

digit) and a number of hidden units. For each kind of d%git:
recorded by the sensors, the network should produce hlgh-:

activity in the appropriate output unit and low activity in the
other output units.

To train the network, we present an image of a digit and

compare the actual activity of the 10 output units with the

desired activity. We then calculate the error, which is deﬁned'_
as the square of the difference between the actual and thf.t.:
desired activities. Next we change the weight of eaf:h connec:
tion so as to reduce the error. We repeat this training process:

for many different images of each kind of digit until the net-
work classifies every image correctly.

To implement this procedure, we need to change each:

weight by an amount that is proportional to the rate at vxihic_.
the error changes as the weight is changed. This quantity—
called the error derivative for the weight, or simply the EW—i
tricky to compute efficiently. One way to calculate the EW-.i
to perturb a weight slightly and observe how the.error changﬁ_
But that method is inefficient because it requires a separat
perturbation for each of the many weights. '

Around 1974 Paul]J. Werbos invented a much more efﬁmep
procedure for calculating the EW while he was working towar
a doctorate at Harvard University. The procedure, now kno

How Neural Networks Learn from Experience | 47

as the back-propagation algorithm, has become one of the
more important tools for training neural networks.

The back-propagation algorithm is easiest to understand if
all the units in the network are linear. The algorithm computes
each EW by first computing the EA, the rate at which the error
changes as the activity level of a unit is changed. For output
units, the EA is simply the difference between the actual and
the desired output. To compute the EA for a hidden unit in the
layer just before the output layer, we first identify all the
weights between that hidden unit and the output units to
which it is connected. We then multiply those weights by the
EAs of those output units and add the products. This sum
equals the EA for the chosen hidden unit. After calculating all
the EAs in the hidden layer just before the output layer, we can
compute in like fashion the EAs for other layers, moving from
layer to layer in a direction opposite to the way activities prop-
agate through the network. This is what gives back propagation
its name. Once the EA has been computed for 1 unit, it is
straightforward to compute the EW for each incoming connec-
tion of the unit. The EW is the product of the EA and the
activity through the incoming connection.

For nonlinear units, the back-propagation algorithm
includes an extra step. Before back-propagating, the EA must
be converted into the EI, the rate at which the error changes as

~ the total input received by a unit is changed.

The back-propagation algorithm was largely ignored for
years after its invention, probably because its usefulness was
not fully appreciated. In the early 1980s David E. Rumelhart,
then at the University of California at San Diego, and David B.
Parker, then at Stanford University, independently rediscov-
ered the algorithm. In 1986 Rumelhart, Ronald J. Williams and
I popularized the algorithm by demonstrating that it could
teach the hidden units to produce interesting representations
of complex input patterns.

The back-propagation algorithm has proved surprisingly

48 / Understanding Antificial Intelligence

good at training networks with multiple layers to perform a
wide variety of tasks. It is most useful in situations in which
the relation between input and output is nonlinear and training
data are abundant. By applying the algorithm, researchers have
produced neural networks that recognize handwritten digits,
predict currency exchange rates and maximize the yields of
chemical processes. They have even used the algorithm to
train networks that identify precancerous cells in Pap smears
and that adjust the mirror of a telescope so as to cancel out
atmospheric distortions.

Within the field of neuroscience, Richard Andersen and:

David Zipser showed that the back-propagation algorithm is a
useful tool for explaining the function of some neurons in the.

brain's cortex. They trained a neural network to respond to:
visual stimuli using back propagation. They then found that-
the responses of the hidden units were remarkably similar to

those of real neurons responsible for converting visual informa-

tion from the retina into a form suitable for deeper visual areas -

of the brain.

Yet back propagation has had a rather mixed reception as a.:
theory of how biclogical neurons learn. On the one hand; the-
back-propagation algorithm has made a valuable contribution’
at an abstract level. The algorithm is quite good at creating

sensible representations in the hidden units. As a result

researchers gained confidence in learning procedures in which.

weights are gradually adjusted to reduce errors. Previously,
many workers had assumed that such methods would be hope
less because they would inevitably lead to locally optimal bu
globally terrible solutions. For example, a digit-recognition net
work might consistently home in on a set of weights that make
the network confuse ones and sevens even though an ideal sel
of weights exists that would allow the network to discriminat
between the digits. This fear supported a widespread belie
that a learning procedure was interesting only if it were gu

anteed to converge eventually on the globally optimal solution

How Neural Networks Learn from Experience / 49

Back propagation showed that for many tasks
gence was not necessary to achieve good perfo
. On the other hand, back Propagation se
implausible. The most obvious difficulty is

r'nust travel through the same connections in t
tion, from one layer to the Previous layer. Cle

global conver-
rmance.
ems biologically
that information
he reverse direc-
arly, this does not

ing example is proportional to the size of th

! € network becay
the amount of computation is proportional of

to the number of

of the network.

The most serious obj
of real learning is tha
desired output for eac

ection tq back propagation as g model
t It requires a teacher (o

scenes without any direct instructions.

How can a i
network learn appropriate internal representa-

50 / Understanding Artificial Intelligence

All these procedures share two characteristics: they appeal,
implicitly or explicitly, to some notion of the quality of a repre-
sentation, and they work by changing the weights to improve
the quality of the representation extracted by the hidden units. -

In general, a good representation is one that can be .

described very economically but nonetheless contains enough

information to allow a close approximation of the raw input to -
be reconstructed. For example, consider an image consisting of -

several ellipses. Suppose a device translates the image into an
array of a million tiny squares, each of which is either light or.

dark. The image could be represented simply by the positions -
of the dark squares. But other, more efficient representations

are also possible. Ellipses differ in only five ways: orientation,

vertical position, horizontal position, length and width. The -
image can therefore be described using only five parameters -

per ellipse.
Although describing an ellipse by five parameters requires

more bits than describing a single dark square by two coordi-
nates, we get an overall savings because far fewer parameters
than coordinates are needed. Furthermore, we do not lose any
information by describing the ellipses in terms of their parame-
ters: given the parameters of the ellipse, we could reconstruct
the original image if we so desired. :

Almost all the unsupervised learning procedures can be
viewed as methods of minimizing the sum of two terms, a code
cost and a reconstruction cost. The code cost is the number of
bits required to describe the activities of the hidden units. The
reconstruction cost is the number of bits required to describe
the misfit between the raw input and the best approximation to;
it that could be reconstructed from the activities of the hidden:

units. The reconstruction cost is proportional to the square'dj

difference between the raw input and its reconstruction.
Two simple methods for discovering economical codes allo

fairly accurate reconstruction of the input principal-componen

learning and competitive learning. In both approaches, we fir

How Neural Networks Learn from Experience / 5]

decide how economical the code should be and then modify
the weights in the network to minimize the reconstruction
error.

A principal-components learning strategy is based on the
idea that if the activities of pairs of input units are correlated in
some way, it is a waste of bits to describe each input activity
separately. A more efficient approach is to extract and describe
the principal components—that is,-the components of varia-
ti;)nhshared by }nany input units. If we wish to discover, say, 10
oi the principal compon i ’
o th h?ddenpunits. ponents, then we need only a single layer

Because such netwarks represent the input using only a
small number of components, the code cost is low. And
because the input can be reconstructed quite well from the
pn’ncipaI components, the reconstruction cost is small.

One way to train this type of network is to force it to recon-
struct an approximation to the input on a set of output units
Then back propagation can be used to minimize the difference.
between the actual output and the desired output. This process
resembles supervised learning, but because the desired out ut
is exactly the same as the input, no teacher is required. ’

Many researchers, including Ralph Linsker and Erkki Oja
have discovered alternative algorithms for learning principal
components. These algorithms are more biologically plausible
because they do not require output units or back propagation
Instead they use the correlation between the activity of a hid:
den unit and the activity of an input unit to determine the
change in the weight.

' When a neural network uses principal-components learn-
ing, a small number of hidden units cooperate in representing

the input pattern. In contrast, in competitive learning, a large

number of hidden units compete so that a single hidden unit s
;Sed to represent any particular input pattern. The selected
idden unit is the one whose incoming weights are most simi-

lar to the input pattern,

52/ Understanding Artificial Intelligence

Now suppose we had to reconstruct the input pattern solely

from our knowledge of which hidden unit was chosen. Oy
best bet would be to copy the pattern of incoming weights of
the chosen hidden unit. To minimize the reconstruction error,
we should move the pattern of weights of the winning hidden
unit even closer to the input pattern. This is what competitive
learning does. If the network is presented with training da;g
that can be grouped into clusters of similar input patterns;
each hidden unit learns to represent a different cluster, and its
incoming weights converge on the center of the cluster.
Like the principal-components algorithm, competitive lear .
ing minimizes the reconstruction cost while keeping the code
cost low. We can afford to use many hidden units because even
with a million units it takes only 20 bits to say which one won,
In the early 1980s Teuvo Kohonen introduced an important
meodification of the competitive learning algorithm. Kohonen
showed how to make physically adjacent hidden units learn to
represent similar input patterns. Kohonen’s algorithm adaptg__
not only the weights of the winning hidden unit but also the
weights of the winners neighbors. The algorithm’s ability to
map similar input patterns to nearby hidden units suggests that

a procedure of this type may be what the brain uses to create:

the topographic maps found in the visual cortex.

Unsupervised learning algorithms can be classified accord :_

ing to the type of representation they create. In principal:
components methods, the hidden units cooperate, and th.
representation of each input pattern is distributed across all of
them. In competitive methods, the hidden units compete, an
the representation of the input pattern is localized in the singl
hidden unit that is selected. Until recently, most work on unsu
pervised learning focused on one or another of these two tech
niques, probably because they lead to simple rules fg
changing the weights. But the most interesting and powerfq
algorithms probably lie somewhere between the extremes o
purely distributed and purely localized representations.

How Neural Networks Learn from Experience / 53

Horace B. Barlow has proposed a mode] in which each hid-
den unit is rarely active and the Tepresentation of each input
pattern is distributed across a small number of selected hidden
units. He and his co-workers have shown that this type of code
can be learned by forcing hidden units to be uncorrelated
while also ensuring that the hidden code allows good recon-
struction of the input.

Unfortunately, most current methods of minimizing the
code cost tend to eliminate all the redundancy among the
activities of the hidden units. As a result, the network is very
sensitive to the malfunction of a single hidden unit. This fea-
ture is uncharacteristic of the brain, which is generally not
affected greatly by the loss of a few neurons.

The brain seems to use what are known as population
codes, in which information is represented by a whole popula-
tion of active neurons. That point was beautifully demon-
strated in the experiments’ of David L. Sparks and his
co-workers. While investigating how the brain of a monkey
instructs its eyes where to move, they found that the required
movement is encoded by the activities of a whole population of
cells, each of which represents a somewhat different mave-
ment. The eye movement that is actually made corresponds to
the average of all the movements encoded by the active cells. If
some brain cells are anesthetized, the eye moves to the point
associated with the average of the remaining active cells. Pop-
ulation codes may be used to encode not only eye movements
but also faces, as shown by Malcolm P. Young and Shigeru

Yamane at the RIKEN Institute in Japan in recent experiments
on the inferior temporal cortex of monkeys.

For both eye movements and faces, the brain must repre-

£

ness, hairiness or familiarity, as well as spatial parameters such
.85 position, size and orientation. If we associate with each

54 / Understanding Antificial Intelligence

3

i re
active cells to discover the parameters of the face being rep

sented by that population code. In abstract terms, eac;h facg :
cell represents a particular point in 2 multidimensiona sga;e. ._
of possible faces, and any face can then be represente y-

activating all the cells that encode very simi.lar faces, so;hat
bump of activity appears in the multidimensional space of pos

sible faces.

Population coding is attractive because it works evenhif :
some of the neurons are damaged. It can do so because the

loss of a random subset of neurons has little effect on the pop

i i i UIons .
Y is i I, 13300

municate by sending discrete spikes called aﬁtim? R:)tir;t::iif
and in a very short time interval many of the} active nnin or
may not have time to send a spike. .Neverthe es? e}z]vebrain e
a short interval, a population code in one part o lt e ain @
still give rise to an approximately correct population |
rt of the brain. _ ' .
an::?ef‘irrff sight, the redundancy in p(.)pu%atlon iodeiezzirtr;
incompatible with the idea of constructing mtelma repan orta
tions that minimize the code cost. .Fortunate Y, w? c " o
come this difficulty by using a less dl}'ect measure of co s
If the activity that encodes a particular entity is awimmo:v
bump in which activity falls off in'a standard wag asti g
away from the center, we can describe the burr}p.o ac ity con
pletely merely by specifying its center. So a alrferhm asure
code cost is the cost of describ.ing the center o 1t itivitiei
activity plus the cost of describing how the ac:tvuaf activity :
the units depart from the desired smooth bump ;1) a ule;f
Using this measure of the code cost, we ﬁnd.t at iopof :
codes are a convenient way of extracting a h1erarc-: yut %]
gressively more efficient encodings of the sensory input. 1

How Newral Networks [eqry Jrom Experience / 55

point is best illustrated by a simple example. Consider a neural
network that is presented with an image of a face. Suppose the
network already contains one set of units dedicated to repre-
senting noses, another set for mouths and another set for eyes.
When it is shown a particular face, there will be one bump of
activity in the nose units, one in the mouth units and two in
the eye units. The location of each of these activity bumps rep-
resents the spatial parameters of the feature encoded by the
bump. Describing the four activity bumps is cheaper than
describing the raw image, but it would obviously be cheaper

still to describe a single bump of activity in a set of face units,

assuming of course that the nose, mouth and eyes are in the

correct spatial relations to form a face.

This raises an interesting issue: How can the network check
that the parts are correctly related to one another to make a
face? Some time ago Dana H. Ballard introduced 4 clever tech-
nique for solving this type of problem that works nicely with
population codes,

If we know the position, size and orientation of a nose, we
can predict the position, size and orientation of the face to
which it belongs because the spatial relation between noses
and faces is roughly fixed, We therefore set the weights in the
neural network so that a bump of activity in the nose units tries
to cause an appropriately related bump of activity in the face

- units. But we also set the thresholds of the face units so that

th

This method of checking spatial relations is intriguing
eCause it makes use of the kind of redundancy between dif-

56 / Understanding Artificial Intelligence

MW%&&MEW

MOUTH UNITS

a 118“[31 lletwolk reco; ze & fa(.‘. 1] et“i(“k kn
Iiow can gnl ey If th 1l
£ genera }’a a lelaﬁonshlp between the E}’es, ;
g T S 10se, and Nk
1141 re]atloﬂ to th.e {ace, tlle units add up O a reco, ition. !“.
ase Wll € tlle lnoutll alld nose are ou P P g
cas er L] tof llase Wlt]l TOEra
face paraIIIEIEIS (Collllllll on t}]e nght), tlle mach]ne “’lll l:l.D:

tify the pattern as a face.

How Neural Networks [egry from Experience] 57

ferent parts of an image that unsupervised learning should be
good at finding. It therefore Seems natural to try to use unsu-
pervised learning to discover hierarchical population codes for
extracting complex shapes. In 1986 Eric Saund of M.IT
demonstrated one method of learning simple population codes
for shapes. It seems likely that with a clear definition of the
code cost, an unsupervised network will be able 1o discover
more complex hierarchies by trying to minimize the cost of
coding the image. Richard Zeme] and I are now investigating
this possibility.

By using unsupervised learning to extract a hierarchy of suc-
cessively more economical re

bl

 stable states, or they may exhibit complex temporal dynam-

s that can be used to produce sequential behavior, If they set-
¢ to stable states, error derivatives can be computed using
ethods much simpler than back propagation.

Although investigators have devised some powerful learning
gorithms that are of great practical value, we still do not know
hich representations and learning procedures are actually -
ed by the brain. But sooner or later computational studies of

58 / Understanding Artificial Intelligence

leamning in artificial neural networks will converge on
methods discovered by evolution. When that happens, a lot of
diverse empirical data about the brain will suddenly mg
sense, and many new applications of artificial neural netwaork;
will become feasible. '

, useable artifi-
cial intelligence. The future of silicon-based microchips looks
dim. But the budding field of nanotechnology may provide a
speed solution with specific molecules that can be assembled into

microcircuitry.

