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Preface 
This document describes the Nachos programming projects used for V22.0202-001, the one-semester 
Honors Computer Systems Organization II course at New York University.  
 
The document borrows heavily from the project guide created by Jeff Chase (chase@cs.duke.edu) for use 
in CPS 110, the undergraduate Introduction to Operating Systems course at Duke University. I have made 
only minor modifications to the original document, primarily in formatting and making the policies, 
assignments, and document references suitable for use at New York University. 

I have left Jeff Chase’s preface to the original document unchanged. This appears in the document with 
the title: “Preface to the Original Document (Jeff Chase)”, immediately following this page. 

 

Vijay Karamcheti 
January 9, 2002 
New York 
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Preface to the Original Document (Jeff Chase) 
This document describes the Nachos programming projects used for CPS 110, the one-semester 
undergraduate operating systems course at Duke University. It includes a full description of all of the 
assignments, and some related material useful for orienting students and guiding them through the 
exercises and around some common pitfalls. It is intended to supplement other materials about Nachos, 
including A Road Map Through Nachos and Darrell Anderson's Nachos Resource Page on the CPS 110 
course web. 

Nachos is an instructional operating system conceived and implemented by Dr. Tom Anderson and his 
associates at the University of California at Berkeley. I have had the privilege of knowing Tom as a 
colleague and as a fellow graduate student at the University of Washington in Seattle, where he has now 
returned as a Professor. This is not the first time that I have found myself trying to improve in some small 
way on something that he has done, nor do I believe it will be the last. 

Almost all of the content in these projects derives directly from the Berkeley projects included with the 
Nachos distribution, and more recent versions available on the Web. The Berkeley projects were first 
used at Duke in Fall 1994 by Dr. Thomas Narten, the author of A Road Map Through Nachos. His 
materials were adapted by Dr. Carla Ellis and her teaching assistants for her offerings of CPS 110 in the 
1995-1997 academic years. I have reorganized, modified, and extended her materials based on my 
experiences teaching the course in the Fall of 1997 and in subsequent semesters. 

The current CPS 110 projects are generally easier for students than the Berkeley projects. At this time we 
do not use the assignments pertaining to file system internals or networking, leaving projects in those 
areas to follow-on courses. We have made an effort to divide the projects into evenly-sized chunks that 
start early and build functionality regularly through the semester, and to provide enough step-by-step 
guidance to draw students into Nachos slowly without overwhelming them. The more guidance we offer, 
the more our students can accomplish with a given amount of effort, leading to a more satisfying 
experience for everyone. 

Note to students. While we have made an effort to simplify these projects for you, most Duke 
undergraduates find these projects sufficiently difficult to dominate their lives during the one-semester 
course. A common misconception from earlier semesters is that we are sadistic individuals who enjoy 
seeing students suffer. Actually, this is not the case. We enjoy seeing students who are proud of what they 
have accomplished and excited by the power that flows from a relatively small set of simple abstractions 
in an operating system, even a toy one like Nachos.  

Our goal in developing and refining these projects is to minimize the amount of busy work and 
orientation time for you, while maximizing the learning value of the projects. Even so, the projects 
demand that you invest a large amount of effort to learn the internals of an operating system that you will 
never use again in your life. However, we are confident that in doing so you will learn more about all 
operating systems and software systems in general, and not just Nachos. 

Even so, we are committed to continuing to refine these projects. Your responsibility is to do the best job 
that you can with them, maintain a positive attitude, and take the time to constructively suggest ways we 
can make life easier and more productive for students in subsequent offerings of the course. You can tell 
us in person, send e-mail, or fill out the anonymous suggestion form on the course web. We will not 
lower the bar, but we will do what we can to help you over it. 
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1 Nachos Project Policies and Mechanisms 
In this course, we will have a Nachos lab due every two weeks, starting two weeks after the first day of 
classes. The one exception is Lab 6, which is due three weeks after it is handed out. This section defines 
the course procedures and policies for doing the Nachos labs and assigning grades. Please read it 
carefully. 

The specific details of each assignment are covered in Section 3 (See Nachos Lab Assignments). You will 
find the information in Section 2 (See Working With Nachos) valuable for some or all of the assignments. 
The system call definitions in Section 4 (See Nachos System Call Interface) will be important for Labs 4 
and 5. By the end of the semester you will have read everything in this document. 

1.1 Project Teams 

The projects are done in teams of 2-3 students. Form your project groups amongst yourselves before the 
first assignment is due. You may reorganize your groups at any time during the semester by mutual 
consent. 

From our perspective, the ideal teams would feature an even distribution of the strongest students and the 
less strong students. If your preparation for the course is weak, then try to team up with some students 
who are better prepared and more confident. If you are a more capable student, please consider it your 
personal mission to share your talent with other students to help make the semester more fun and more 
productive for everybody. Although projects are graded on a team basis, we have plenty of opportunities 
to observe what is happening, and to account for team imbalances in the final grading. 

1.2 Demo Interviews 

Most of our evaluation of your labs will occur in demo/interview sessions for each assignment during a 
scheduled slot shortly after the due date. Typically, you will schedule your demo either with the instructor 
or one of the teaching assistants. Instructions for scheduling demos will be given in class and on the 
course web page. Please try to spread your demos evenly between the instructor and the teaching assistant 
so that we all get to know each other. 

We expect that all members of each team will participate equally in the demos. As a general rule, every 
team member will attend every demo, but we will allow a few exceptions if you cannot reconcile your 
schedules. We expect that any subset of team members can carry out a demo; absence of your strongest 
team member is not a valid excuse to postpone a demo. At the start of each demo, the instructor or TA 
will designate a "primary spokesperson" for the demo. The primary spokesperson will sit at a workstation 
(or stand at a whiteboard) and lead the conversation about your project. Any team member should feel 
free to add comments during the demo, and we may choose to address our questions to any team member. 

Many students are nervous about the demos early in the semester. There would seem to be good reason 
for this: we will review your code, ask you to show us that the code works, attempt to uncover bugs, and 
generally put you on the spot to explain what you did and why. Most students find that once they start 
talking they have plenty to say, and that we are happy to reward students who work hard on the 
assignments. If you do a good job on each assignment, then the demos will be fun. 
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1.3 What to Hand In 

Please e-mail a short writeup (1-2 pages) for each assignment to the instructor before the deadline with 
the string nachos project writeup N in the subject line, where N is the assignment number. The message 
should cc: the TA and all project team members. The first line of your message should be the full 
pathname of your team's source code directory. You should also make every effort to sign up with the TA 
for your demos before the deadline; please state the date and time of the scheduled demo in the second 
line of the message. The rest of the message should give an overview of your approach to the assignment, 
and a summary of the status, i.e., what works and what does not. 

Writeups should be brief. Do not spend too much effort on your writeups: the course is time-consuming 
enough as it is. The purpose of the writeup is to give you an opportunity to "come clean" about any 
problems with your work, and to add information that may be useful in grading. If you had specific 
problems or issues, approaches you tried that didn't work, or concepts that were not fully implemented, 
then an explanation in your writeup may help us to assign partial credit. If your code looks good and your 
demo interview goes well, then we might not even read your writeup. 

Expect that your source code will be automatically archived at deadline time. This allows us to keep a 
snapshot of the state of your code at deadline, and to keep a record of Nachos project work from semester 
to semester. You should not count on us for backup copies of your source code. You are strongly 
encouraged to use version control tools such as CVS or RCS, but please leave clean and up-to-date 
versions of your .c and .h files in the directory for us to look at. Try to make it obvious which files contain 
the code you want us to grade you on. 

1.4 Grading 

Our goal is to give every team credit for the work they have done, while giving the most credit to the 
teams that do the best work on each assignment. Your grade is based partly on your explanation of your 
work during the demo. Your implementation is graded on completeness, correctness, programming style, 
and thoroughness of testing. Bugs that were not uncovered by your testing cost more than bugs you are 
aware of and tell us about in advance. We typically give less than half-credit for projects that do not build 
or do not run. 

Note that in this course we do NOT grade your labs by how fast they execute. Performance concerns are 
critical in many software systems, but correctness ALWAYS comes first. As an unbending rule, you 
should strive for solutions that are simple, direct, elegant, structurally sound, easy to extend, and 
obviously correct. Simple solutions can save you endless nights of debugging time. These solutions are 
also the easiest to grade, and they demonstrate that you understand the principles and know what is 
"right". 

Each project is graded on a 100-point scale. You should be pleased with any grade above an 80. Grades 
below 70 indicate trouble. If you are in trouble, feel free to stop by during office hours to talk about it 
with the instructor (or send e-mail). The TA will send out e-mail to you with your grade at most a few 
days after all demos are complete. 

1.5 Extensions, Late Work, Partial Credit, and Solutions 

Extensions. We will not grant penalty-free extensions for individual teams on the Nachos projects. In 
general, if one member of your group is sick, has a death in the family, spends an extra day on the beach 
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during spring break, has four midterms on the day before the project is due, is stuck in K-ville, has a job 
interview or a hangover, or just flakes out, then the other team members are expected to pick up the slack. 
Get started early and schedule your time carefully. 

Late work. You are permitted to continue working on each assignment after the deadline, and between 
the deadline and the demo. If you change code after the deadline, please send e-mail to the instructor and 
the TA before the interview, telling us about any changes you have made after the deadline. Generally, we 
will give about half credit for work done after the deadline, but we reserve the right to assign any degree 
of partial credit that seems appropriate. 

Availability of Solutions. In previous semesters that similar assignments have been used (at NYU or at 
other universities) all but a few groups have produced code that is solid enough to build on for subsequent 
labs. It has never been necessary to hand out solutions. We would rather have you expend the effort to fix 
your own bugs for each lab, rather than heaving your first attempt and using our canned solution instead. 
If you take the time to fix up mistakes, we will give you some points back during the demo for the next 
lab. 

1.6 Working With Your Team 

One purpose of college is to learn about life. Most of the work that you do in your life, and in this course, 
will be in teams. Conflicts among team members are a fact of life. Good strategies for avoiding and 
coping with these conflicts are crucial to your success in this course, and in life. 

Team strategies. With the Nachos projects, some strategies are better than others for coordinating the 
activities of your team. A common error is to attempt a superficial division of the lab requirements among 
the team members, with each member responsible for fulfilling specific requirements. This might work in 
the first few labs, but teams often suffer painful losses of points for the mistakes of individual team 
members. In the later labs, the various requirements are so intertwined that you cannot reasonably divide 
the work until you understand all of the pieces of your system and how they fit together. You should meet 
as a group to work out a solid high-level design, before you partition the work and before you start 
coding. If you take the time to do this phase well, then your group will have a more effective and 
equitable division of labor, you will spend much less time (re)writing and (re)debugging code, you will 
learn more, and we will all be happier with the result. 

Slackers, dictators, and irreconcilable differences. We run the course on the premise that you are all 
adults who are capable of coordinating your efforts effectively without our intervention. In practice this 
occasionally turns out not to be the case. If you feel that a team member is not pulling their weight or is 
otherwise behaving unreasonably, you are free to voice your concerns to the instructor. We may or may 
not choose to take steps to deal with the problem, but in any case your comments and identity will be held 
in confidence. If your team develops "irreconcilable differences", then a "divorce" may be the only 
solution. 

Divorces and other team reorganizations. You may reorganize your groups at any time during the 
semester. Each reorganization requires mutual consent of all parties involved, and/or the approval of the 
instructor. Please state and justify your intention in an e-mail message to the instructor and the TA, with a 
cc: to all team members involved. We reserve the right to deny any request to reorganize teams. In 
particular, we strongly discourage reorganizations whose purpose is to abandon weaker team members in 
order to combine the stronger members of each team.  

Teams and grades. Conflicts among team members are often amplified by stress about grades. It is true 
that the success of your Nachos team determines a large component of your final grade in this course, 



 8

even if mistakes made by your team are "not your fault". This is life, and life is not always fair. However, 
in managing this course we will try very hard to understand what is happening in each team and to assign 
a fair grade to each individual at the end of the semester. Problems with teams will tend to matter less in 
the final grading than most students expect. 

1.7 What Parts of Nachos Should We Modify? 

Some students find the nature of the Nachos projects confusing, because there is a significant amount of 
code already written and it is not always clear what to change or where to make additions. Nachos is 
designed so that the changes for each assignment are reasonably localized, and we will tell you which 
areas are important for each assignment. In most cases, you will be adding new code to the existing 
framework, mostly in new procedures or classes that you define and create. In a few cases, you will be 
extending or "filling in" C++ classes or methods that are already defined. Very rarely will it be necessary 
to delete or rewrite code that already exists (this does happen in Lab 4), or to add code in areas outside of 
the focus of each assignment. 

In general, we do not prohibit you from modifying any part of Nachos that you feel is necessary to 
modify. However, we are telling you now that the simplest and most direct solutions for each assignment 
do not require you to modify code outside of the primary area of focus for each assignment. Also, under 
no circumstances should you modify the behavior of the "hardware" as defined by the machine simulation 
software in the machine subdirectory described in Section 2.4 (See The Nachos MIPS Simulator). It is 
acceptable to change #define directives that determine the machine or system parameters (e.g., size of 
physical memory or size of the default stack), but any code that implements the machine itself is strictly 
off limits. If you are unsure about this, then please ask. 
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2 Working With Nachos 
This section contains general information that will help you understand Nachos and complete the projects. 
Much of it will not make sense to you at first. You should browse through this at the beginning of the 
semester, and then return to each of the subsections as they become relevant during the semester. A great 
deal of additional information about Nachos is available through the Nachos resource page. 

Before you do any Nachos work, you should be familiar with Section 1 (See Nachos Project Policies and 
Mechanisms), which defines the course procedures for all of the Nachos assignments. Section 3 (See 
Nachos Lab Assignments) gives specific instructions for each assignment. 

2.1 Installing and Building Nachos 

You will develop, test, and demo your code on an ITS Solaris SPARC machine. The Nachos resource 
page on the course web includes an HTML source code browser and updated instructions for a full 
installation of the Nachos release we will use this semester. This web page also contains an appropriately 
modified version of Nachos that can be installed and run on a Linux/x86 machine. While you might find 
the latter convenient for development purposes, note that you will be expected to submit your lab on the 
Solaris machine, so you should make sure that your code runs on the latter as well. 

Install your Nachos copy into a directory of your choice under your home directory on the Solaris 
machine. Wherever it goes, please give us read access to it using the chmod command. We must have 
access to your code in order to give you credit for each assignment. Refer to the course web page for 
additional details about how to set this up. 

The Nachos code directory includes several subdirectories with source code for different pieces of the 
Nachos system. The subdirectories include Makefiles that allow you to automatically build the right 
components for specific assignments using the make command (make sure that you are using GNU 
make). The relevant subdirectories are threads for Labs 1-3, userprog for Labs 4-5, and vm for Lab 6. If 
you type make in one of these directories, it will execute a sequence of commands to compile and link 
Nachos, yielding an executable program called nachos in that directory. All of your testing will be done 
by running these nachos executables built from your modified Nachos code. 

You should study the Makefiles to understand how dependency identification and recompilation work. 
The dependency information determines which .cc files are rebuilt when a given .h file changes. The 
dependency lines in each subdirectory Makefile (e.g., nachos/threads/Makefile) are created 
automatically using the make depend facility. For example, if you type cd threads; make depend, this 
will regenerate the dependency information in the threads/Makefile . It is extremely important to keep 
your dependency information up to date. 

A few simple guidelines wil help you avoid build problems, which can consume hours of frustrating 
debugging time tracking bugs that do not really exist. First, always be sure that you run make depend 
any time the header file dependencies change (e.g., you introduce a new .cc file or include new header 
files in an existing .cc file), or any time the location of the source code changes (e.g., you cp or mv the 
source tree from one directory to another). Second, always make sure you are running the right copy of 
the nachos executable, presumably one you just built. If in doubt, change directories to the correct 
directory, and execute Nachos with ./nachos . 
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2.2 Tracing and Debugging Nachos Programs 

There are at least three ways to trace execution: (1) add printf (or fprintf)  statements to the code, (2) use 
the gdb debugger or another debugger of your choosing, and (3) insert calls to the DEBUG function that 
Nachos provides. 

Many people debug with printfs because any idiot can do it, whereas even smart people need to spend a 
few hours learning to use a debugger. However, investing those few hours will save you many more hours 
of debugging time that could be better spent watching TV or doing just about anything else. Printfs can 
be useful, but be aware that they do not always work right, because data is not always printed 
synchronously with the call to printf . Rather, printf buffers ("saves up") printed characters in memory, 
and writes the output only when it has accumulated enough to justify the cost of invoking the operating 
system's write system call to put the output on your screen. If your program crashes while characters are 
still in the buffer, then you may never see those messages print. If you use printf , it is good practice to 
follow every printf with a call to fflush to avoid this problem. 

2.2.1 The DEBUG Primitive 

If you want to debug with print statements, the nachos DEBUG function (declared in threads/utility.h ) 
is your best bet. In fact, the Nachos code is already peppered with calls to the DEBUG function. You can 
see some of them by doing an fgrep DEBUG *h *cc in the threads subdirectory. These are basically print 
statements that keep quiet unless you want to hear what they have to say. By default, these statements 
have no effect at runtime. To see what is happening, you need to invoke nachos with a special command-
line argument that activates the DEBUG statements you want to see. 

See main.cc for a specification of the flags to the nachos command. The relevant one for DEBUG is -d . 
The -d flag followed by a space and a series of debug flags cause the DEBUG statements in nachos with 
those debug flags to be printed when they are executed. For example, the t debug flag activates the 
DEBUG statements in the threads directory. The machine subdirectory has some DEBUG statements 
with the i and m debug flags. See threads/utility.h for a description of the meanings of the current debug 
flags. 

For a quick peek at what's going on, run nachos -d ti to activate the DEBUG statements in threads and 
machine . If you want to know more, add some more DEBUG statements. You are encouraged to 
sprinkle your code liberally with DEBUG statements, and to add new debug flag values of your own. 

2.2.2 Miscellaneous Debugging Tips 

The ASSERT function, also declared in threads/utility.h , is extremely useful in debugging, particularly 
for concurrent code. Use ASSERT to indicate that certain conditions should be true at runtime. If the 
condition is not true (i.e., the expression evaluates to 0), then your program will print a message and crash 
right there before things get messed up further. ASSERT early and often! ASSERTs help to document 
your code as well as exposing bugs early. 

One of the first concepts you will learn in this course is the idea of a thread. Your Nachos programs will 
execute as multiple independent threads, each with a separate call stack. When you trace the execution 
path of your program, it is helpful to keep track of the state of each thread and which procedures are on 
each thread's execution stack. You will notice that when one thread calls SWITCH, another thread starts 
running (this is called a context switch ), and the first thing the new thread does is to return from 
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SWITCH.  Because gdb and other debuggers are not aware of the Nachos thread library, tracing across a 
call to SWITCH might be confusing sometimes. 

Warning : Each Nachos thread is assigned a small, fixed-size execution stack (4K bytes by default). This 
may cause bizarre problems (such as segmentation faults at strange lines of code) if you declare large data 
structures (e.g., int buf[1000] ) to be automatic variables (local variables or procedure arguments). You 
will probably not notice this during the semester, but if you do, you may change the size of the stack by 
modifying the #define in threads/thread.h . 

2.2.3 Defining New Command-Line Flags for Nachos 

In addition to defining new debug flags as described in Section 2.2.1 (See The Debug Primitive), it is easy 
to add your own command-line flags to Nachos. This allows you to initialize the value of a global 
variable of your choosing from the command line, in order to control the program's behavior at runtime. 
Directions for doing this are available on the course web site. 

2.3 Controlling the Order of Execution in Nachos 

Many bugs in concurrent code are dependent on the order in which threads happen to execute at runtime. 
Sometimes the program will run fine; other times it will crash out of the starting gate. A program that 
works once may fail on the next run because the system happened to run the threads in a different order. 
The exact interleaving may depend on all sorts of factors beyond your control, such as the OS scheduling 
policies, the exact timing of external events, and the phases of the moon. The Nachos labs require you to 
write a lot of properly synchronized code, so it is important to understand how to test your code and make 
sure that it is solid. 

2.3.1 Context Switches 

On a multiprocessor, the executions of threads running on different processors may be arbitrarily 
interleaved, and proper synchronization is even more important. In Nachos, which is uniprocessor-based, 
interleavings are determined by the timing of context switches from one thread to another. On a 
uniprocessor, properly synchronized code should work no matter when and in what order the scheduler 
chooses to run the threads on the ready list. The best way to find out if your code is "properly 
synchronized" is to see if it breaks when you run it repeatedly in a way that exhaustively forces all 
possible interleavings to occur. To experiment with different interleavings, you must somehow control 
when the executing program makes context switches.  

Context switches can be either voluntary or involuntary. Voluntary context switches occur when the 
thread that is running explicitly calls Thread::Yield or some other routine to causes the scheduler to 
switch to another thread. Note that the thread must be running within the Nachos kernel in order to make 
a voluntary context switch. A thread running in the kernel might initiate a voluntary switch for any of a 
number of reasons, e.g., perhaps as part of an implementation of some higher level facility, or maybe the 
programmer was just being nice.  

In contrast, involuntary context switches occur when the inner Nachos modules ( Machine and Thread ) 
decide to switch to another thread all by themselves. In a real system, this might happen when a timer 
interrupt signals that the current thread is hogging the CPU. Nachos does involuntary context switches by 
taking an interrupt from a simulated timer, and calling (you guessed it) Thread::Yield when the timer 
interrupt handler returns. 
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2.3.2 Voluntary Context Switches with Thread::Yield 

One way to test concurrent code is to pepper it with voluntary context switches by explicitly calling 
Thread::Yield at various interesting points in the execution. These voluntary context switches emulate 
what would happen if the system just happened to do an involuntary context switch via a timer interrupt at 
that exact point.  

Properly synchronized concurrent code should run correctly no matter where the yields happen to occur. 
At the lowest levels of the system, there is some code that absolutely cannot tolerate an unplanned context 
switch, e.g., the context switch code itself. This code protects itself by calling a low-level primitive to 
disable timer interrupts. However, you should be able to put an explicit call to Thread::Yield anywhere 
that interrupts are enabled, without causing your code to fail in any way.  

2.3.3 Involuntary Context Switches with the -rs Flag 

To aid in testing, Nachos has a facility that causes involuntary context switches to occur in a repeatable 
but unpredictable way. The -rs command line flag causes Nachos to call Thread::Yield on your behalf at 
semi-random times. The exact interleaving of threads in a given nachos program is determined by the 
value of the "seed" passed to -rs . You can force different interleavings to occur by using different seed 
values, but any behavior you see will be repeated if you run the program again with the same seed value. 
Using -rs with various argument values is an effective way to force different orderings to occur 
deterministically .  

In theory, the -rs flag causes Nachos to decide whether or not to do a context switch after each and every 
instruction executes. The truth is that -rs won't help much, if at all, for the first few assignments. The 
problem is that Nachos only makes these choices for instructions executing on the simulated machine, 
i.e., "user-mode" code in later assignments. In the synchronization assignments, all of the code is 
executing within the Nachos "kernel". Nachos may still interrupt kernel-mode threads "randomly" if -rs is 
used, but these interrupts can only occur at well-defined times: as it turns out, they can happen only when 
the code calls a routine to re-enable interrupts on the simulated machine. Thus -rs may change behavior 
slightly, but many possibly damaging interleavings will unfortunately never be tested with -rs . If we 
suspect that your code has a concurrency race during the demo, we may ask you to run test programs with 
new strategically placed calls to Thread::Yield . 

2.4 The Nachos MIPS Simulator 

As discussed in class, true support for user programs and a protected kernel requires that we give each of 
you your own machine. This is because your kernel will need complete control over how memory is 
managed and how interrupts and exceptions (including system calls) are handled. Since we cannot afford 
to give you a real machine, we will give you a simulated machine that models a MIPS CPU. You will use 
the simulated MIPS machine in Labs 4-6 to execute test programs, as discussed in Section 2.5 (See 
Creating Test Programs for Nachos Kernels). Your nachos executable will contain a MIPS simulator that 
reads the test program executables as data and interprets them, simulating their execution on a real MIPS 
machine booted with your Nachos kernel. 

2.4.1 The MIPS CPU Simulator  

The simulated MIPS machine is really just a big procedure that is part of the Nachos distribution. This 
procedure understands the format of MIPS instructions and the expected behavior of those instructions as 
defined by the MIPS architecture. When the MIPS simulator is executing a ``user program'' it simulates 



 13

the behavior of a real MIPS CPU by executing a tight loop, fetching MIPS instructions from a simulated 
machine memory and ``executing'' them by transforming the state of the simulated memory and simulated 
machine registers according to the defined meaning of the instructions in the MIPS architecture 
specification. The simulated machine's physical memory and registers are data structures in your nachos 
program. 

2.4.2 Interactions Between the Kernel and the Machine  

Your Nachos kernel can control the simulated machine in the same way that a real kernel controls a real 
machine. Like a real kernel on a real machine, your kernel can direct the simulated machine to begin 
executing code in user mode at a specific memory address. The machine will return control to the kernel 
(by calling the Nachos kernel procedure ExceptionHandler ) if the user program executes a system call 
trap instruction, or if an interrupt or other machine exception occurs.  

Your Nachos kernel will need to examine and modify the machine state in order to service exceptions and 
run user programs. Your kernel may also find it useful to examine and modify the page table data 
structure that is used by the simulated machine to translate virtual addresses in the current user program, 
or to switch the page table in effect, e.g., before switching control to a different user process. All of the 
machine state -- registers, memory, and page tables -- are simply arrays in your Nachos kernel address 
space, accessible through the Machine object. See the definitions in machine/machine.h .  

2.4.3 I/O Devices and Interrupts  

The Nachos distribution extends the MIPS CPU simulator to simulate some devices, e.g., disks, a timer, 
and a console. Nachos maintains a queue of interrupts that are scheduled to occur (e.g., completion of a 
pending disk operation), and simulates delivery of these interrupts by calling kernel interrupt handler 
procedures at the appropriate times.  

Why does Nachos hang when I enable the console? The current version of Nachos has an annoying 
``feature'' that has caused problems for some groups. The Nachos kernel will not shut down if there are 
pending I/O operations, even if there are no threads or processes ready to run. This is the behavior you 
would expect, but Nachos simulates a console by using the interrupt queue to repeatedly poll for 
characters typed on the console -- thus there is always a pending I/O operation on the console. This means 
that if you create a Console object as required for the later assignments, then Nachos will never shut 
down when it is done running your test programs. Instead it will idle just like a real kernel, waiting for 
console input. Feel free to kill it with ctrl-C . It is bad manners to leave idle Nachos processes running, 
since they chew up a lot of CPU time. 

2.5 Creating Test Programs for Nachos Kernels 

In later assignments you will need to create test programs to test your Nachos kernel. The test programs 
for a Nachos kernel are C programs that compile into executables for the MIPS R2000 architecture. These 
executable programs run on a simulated MIPS machine using the SPIM machine simulator linked with 
your nachos executable, as described in Section 2.4 (See The Nachos MIPS Simulator). 

Because the user programs are compiled for the MIPS architecture, they will not run directly on the 
SPARC CPU that you run Nachos on. In fact, since they use Nachos system calls rather than Unix system 
calls, they cannot even execute correctly on a real MIPS CPU running an operating system such as IRIX 
or DEC Ultrix. They are built specifically to execute under Nachos. The bizarre nature of these 
executables introduces some special considerations for building them.  
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The Makefile in the test directory takes care of all the details of producing the Nachos user program 
executables. The user programs are compiled using a gcc cross-compiler that runs on Solaris/SPARC but 
generates code for the MIPS processor. The compiled code is then linked with the MIPS assembly 
language routines in start.s . (Look at these routines and be sure your understand what they do.) Finally, 
the programs are converted into a MIPS executable file format called NOFF, using the supplied program 
coff2noff .  

To run the test programs, you must first build a Nachos kernel that supports user-mode programs. The 
raw Nachos release has skeletal support for running a single user program at a time; you will extend 
Nachos to support multiprogramming, virtual memory, and file system calls during the course of the 
semester. To build a Nachos kernel that can run user programs, edit your Nachos makefile to uncomment 
the ``cd userprog'' lines (if commented), then run make to build a new Nachos executable within the 
userprog directory. You may then use this kernel to execute a user program using the nachos -x option. 
The argument to -x is the name of the test program executable, produced as described above.  

The Nachos distribution includes several sample test programs. For example, look at test/halt.c , which 
simply asks the operating system to shut the ``machine'' down using the Nachos Halt system call. Run the 
halt program with the command nachos -x halt , or nachos -x ../test/halt . It may be useful to trace the 
execution of the halt program using the debug flag described in Section 2.2 (See Tracing and Debugging 
Nachos Programs). The test directory includes other simple user programs to test your kernels in the later 
assignments. For these exercises we also expect you to extend these tests and add some of your own.  

2.5.1 Troubleshooting Test Programs 

Some students have difficulty building new test programs. The following guidelines will help you avoid 
trouble. 

1. Don't screw around with the build process. Place your source code in the test directory, and 
extend the existing Makefile to build them. Do not remove any of the files in the distributed 
version of the test directory. In particular, do not remove the file called script or any other files 
used by the build process.  

2. Recognize that your Nachos test programs are extremely limited in what they can do. In 
particular, their only means of interacting with the outside world is to request services from your 
Nachos kernel. For example, your test programs cannot call printf, malloc or any other C library 
routine. If you attempt to call these routines, your program will fail to link. If you somehow 
succeed in linking library routines into your executable image, the resulting program will not 
execute because these routines will use Unix system calls, which are not recognized by your 
Nachos kernel.  

3. The Nachos distribution includes a warning that global variables may not work correctly. It is 
safest to avoid the use of global variables in your Nachos test programs.  

4. In the past, some students have excused their difficulties with Nachos test programs by informing 
us that they ``do not know C''. As students in the Honors section, we expect you to pick up on 
your own the small amount of C and C++ required by this course. Just don't try anything fancy: 
unlike C++, C does not have classes, operator overloading, streams, new , or delete . In addition, 
a C compiler may not permit you to declare items in the middle of a procedure, which is poor 
programming practice anyway. If you follow these guidelines and use the existing test programs 
as a starting point, then you should be OK. If you find that you are having problems because you 
don't know C, then learn it.  
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3 Nachos Lab Assignments 
This section covers the details of the Nachos assignments. Before starting any assignment, you should be 
familiar with the material in Section 1 (See Nachos Project Policies and Mechanisms), which presents the 
policies and procedures that apply to all of the Nachos assignments. You will find the information in 
Section 2 (See Working With Nachos) valuable for some or all of the assignments. The system call 
definitions in Section 4 (See Nachos System Call Interface) are important for Labs 4 and 5. 
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3.1 Lab 1: The Trouble with Concurrent Programming 

This assignment consists of two parts. In the first part, you will write, compile, and run a simple C++ 
program to create, and add and remove elements from a priority-sorted doubly linked list. In the second 
part, you are to use this program to become familiar with Nachos and the code of a working (but 
incomplete) thread system. In subsequent assignments, you will this thread system, but for now, you will 
merely use what is supplied to experience the joys of concurrent programming.  

3.1.1 Priority Sorted Doubly Linked List (20 points) 

Write a C++ program to implement a doubly-linked list based on the following definitions: 

 
class DLLElement {
public:

DLLElement( void *itemPtr, int sortKey ); // initialize a list element

DLLElement *next; // next element on list
// NULL if this is the last

DLLElement *prev; // previous element on list
// NULL if this is the first

int key; // priority, for a sorted list
void *item; // pointer to item on the list

};

class DLList {
public:

DLList(); // initialize the list
~DLList(); // de-allocate the list

void Prepend(void *item); // add to head of list (key = min_key - 1)
void Append(void *item); // add to tail of list (key = max_key + 1)
void *Remove(int *keyPtr); // remove from head of list

// set *keyPtr to key of the removed item
// return NULL if list is empty

bool IsEmpty(); // return true if list has elements

// routines to put/get items on/off list in order (sorted by key)
void SortedInsert(void *item, int sortKey);
void *SortedRemove(int sortKey); // remove first item with key==sortKey

// return NULL if no such item exists

private:
DLLElement *first; // head of the list, NULL if empty
DLLElement *last; // last element of the list, NULL if empty

};

The doubly linked list should keep items sorted according to an integer key. You should write your 
program so that its code is contained in three files: dllist.h, dllist.cc, dllist-driver.cc. The first two files 
should provide the definitions and implementations of the two classes above, and the third file should 
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contain two functions, one of which generates N items with random keys (or to aid debugging, you might 
control the input sequence with a more carefully selected key order) and inserts them into a doubly-linked 
list, and the other which removes N items starting from the head of the list and prints out the removed 
items to the console. Both functions should take as arguments the integer N and a pointer to the list.  

To verify that you have indeed implemented the classes and the driver functions correctly, create a 
separate file containing the main function of your program. In this function, first allocate the list, and then 
make calls to the driver functions above, passing in appropriate values for the arguments. The behavior 
you need to demonstrate is that your remove function removes exactly the items you have inserted in 
sorted order. You should also do other tests to verify that your implementation does implement a doubly 
linked list. 

Although you can write, compile, and run the above program on any platform, I would prefer that you do 
your development either on the Solaris SPARC platform or the Linux/x86 platform using gcc to make 
sure that your program can interact with Nachos in the second part of this assignment. 

3.1.2 Nachos Familiarity and Understanding its Thread System (80 points) 

In this part of the assignment, you will understand how the partial thread system is used within Nachos. In 
later assignments, all use of the Nachos thread primitives will be internal to your Nachos operating 
system kernel; in fact, these primitives are quite similar to internal primitives used for managing 
processes in real operating system kernels. For now, you are using these internal Nachos primitives to run 
simple concurrent programs as applications under Unix (Solaris). If you find this confusing at this point, 
do not worry about it. 

Build a nachos executable using the make command. Run make (with no arguments) in the code 
directory; the nachos executable is deposited in the threads subdirectory. Once you are in the threads 
subdirectory with a nachos executable, you can run a simple test of Nachos, by entering the command 
nachos (if that doesn't work, try ./nachos ). 

If you examine threads/main.cc , you will see that you are executing the ThreadTest function in 
threadtest.cc . ThreadTest is a simple example of a concurrent program. In this case, there are two 
independent threads of control executing "at the same time" and accessing the same data in a process. 
Your first goal is to understand the thread primitives used by this program, and to do some experiments to 
help you understand what really happens with multiple threads at runtime. To understand the execution 
path, trace through the code for the simple test case. See the notes in  Section 2.2 (See Tracing and 
Debugging Nachos Programs) for some tips on how to do this. 

Your next goal is to show the many ways that concurrent code like this can break given a non-
deterministic ordering of thread executions at runtime. By exposing you to some of the pitfalls up front, 
when you expect them, they are less likely to bite you unexpectedly when you think your code is correct 
later in the semester. The assignment is to create your own variant of ThreadTest that starts T threads 
accessing a specific shared data structure: an unsynchronized priority-sorted doubly linked list. By 
unsynchronized we mean that your ThreadTest and your list implementation (the one you have built in 
the first part of the assignment) do not use semaphores, mutexes, interrupt disable, or other 
synchronization mechanisms that you will learn about later in the semester. The purpose of these 
mechanisms is to prevent the problems that you are supposed to illustrate and experience in this 
assignment. 

Each of your test threads will call the two driver functions in dllist-driver.cc (first inserting the items and 
then removing the items). Note that you should have created the list in your variant of the ThreadTest 
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function before starting the threads. Both T and N should be settable from the command line (directions 
for doing this are available on the course web site). The "correct" or "expected" behavior is that each item 
inserted into the list is returned by the remove primitive exactly once, that every remove call returns a 
valid item, and that the list is empty when the last thread has finished. Since the list is sorted, each thread 
expects the removed items to come off in sorted order, even though they won't necessarily be the same 
items that thread put into the list if T > 1.  

Once you have written your test program, your job is to identify and illustrate all the kinds of incorrect or 
unexpected behaviors that can occur in this simple scenario. In your demos and writeups you will show us 
some of the difficulties caused by specific execution interleavings that could occur at runtime. The 
programming challenge is to instrument the test program and your doubly linked list implementation with 
options and outputs that demonstrate the buggy behaviors. To do this, you will modify the code to allow 
you to "force" specific interleavings to occur deterministically, and show how the program fails because 
of some of those interleavings. See the notes in Section 2.3 (See Controlling the Order of Execution in 
Nachos) for a more complete discussion of interleavings and some ways of controlling them. 

Specifically, this part of the assignment requires you to perform the following steps: 

1. Copy your dllist.h, dllist.cc, and dllist-driver.cc files into the threads subdirectory. Modify the 
definitions of THREAD_H and THREAD_C in Makefile.common in the root nachos directory 
to include these files and update the makefile dependencies. This ensures that your files are also 
compiled and linked against the nachos distribution.  

2. Create a driver file analogous to the file threadtest.cc that makes calls on your DLList class 
using the functions in dllist-driver.cc Make the changes to threads/main.cc so that an 
execution of the nachos command causes the function in the new driver file to be executed 
instead of the function ThreadTest in the file threadtest.cc.  

3. Modify your DLList class and your ThreadTest to force interleavings that illustrate interesting 
incorrect or unexpected behaviors. You should be able to enumerate and demonstrate each 
scenario during the demo, using command line flags as described in Section 2.2.3 ( See Defining 
New Command-Line Flags for Nachos), without recompiling your test program.  

4. Think about the buggy behaviors you can demonstrate, and divide them into categories. Your 
writeup should describe each category of bug, outline the interleavings that can cause it to occur, 
and explain how the interleaving caused the resulting behavior. Your treatment of the bugs should 
be thorough but it need not be exhaustive. Try to focus on the interleavings that are most 
"interesting", and avoid spending time describing or demonstrating behaviors that are 
substantially similar. The goal here is to show that you understand the concurrent behaviors, not 
to create a lot of busy work for you or for us.  



 19

3.2 Lab 2: Threads and Synchronization 

In this assignment, you will complete the Nachos thread system by adding support for locks (mutexes), 
condition variables, and build some synchronized data structures for use in the later labs. There is an 
extra-credit part to this lab, which has you modify the default nachos scheduling behavior to implement a 
non-preemptive priority-based scheduler. 

As with Lab 1, this lab also requires you to introduce one or more files of your own. As before, you will 
need to add these files to proper macro definitions in the makefile, and update the makefile dependencies. 
Note that the latter half of this assignment requires you to use the synchronization facilities you will be 
implementing in the first part. So, please try and make sure that your implementation of locks and 
condition variables is thoroughly debugged before you move on to the rest of the assignment. 

Your new classes will be based on header files provided in the course directory (subdirectory aux) and/or 
on the course web site. These header files contain initial definitions of the classes, with the signatures of 
some methods. You should copy these header files into your source pool and extend them. Feel free to 
add your own methods, definitions, and classes as needed. However, do not modify the interfaces, which 
are already defined. 

3.2.1 Implementing Mutexes and Condition Variables (60 points) 

The public interface to mutexes and condition variables is defined in synch.h , which includes important 
comments on the semantics of the primitives. The condition variable interface is clunky in some respects, 
but please just accept it as defined by synch.h . Your first mission is to define private data for these 
classes in synch.h and implement the interfaces in synch.cc . Look at SynchList to see how the 
synchronization primitives for mutexes and condition variables are used. You are to write two different 
implementations of these synchronization primitives in two different versions of the synch.h and 
synch.cc files. You should be able to switch from one version to the other by (at worst) moving these files 
around and recompiling Nachos. Each implementation is worth 30 points in this lab. 

Here are the specific steps and requirements in more detail: 

1. Implement your locks and condition variables using the sleep/wakeup primitives (the 
Thread::Sleep and Scheduler::ReadyToRun primitives). It will be necessary to disable 
interrupts temporarily at strategic points, to eliminate the possibility of an ill-timed interrupt or 
involuntary context switch. In particular, Thread::Sleep requires you to disable interrupts before 
you call it. However, you may lose points for holding interrupts disabled when it is not necessary 
to do so. Disabling interrupts is a blunt instrument and should be avoided unless necessary.  

2. Implement your locks and condition variables using semaphores as the only synchronization 
primitive. This time it is not necessary (or permitted) to disable interrupts in your code: the 
semaphore primitives disable interrupts as necessary to implement the semaphore abstraction, 
which you now have at your disposal as a sufficient "toehold" for synchronization.  

Warning : this part of the assignment seems easy but it is actually the most subtle and difficult. 
In particular, your solution should guarantee that a Signal cannot affect a subsequent Wait. 

3. Modify your DLList class from Lab 1 so that it uses synchronization primitives to ensure that the 
list is being updated consistently despite its use by multiple threads. You may want to take a look 
at the SynchList class (in threads/synchlist.h and threads/synchlist.cc ) to see how you might 
do this. To demonstrate that your code works, as in Lab 1, create a driver file analogous to the file 
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threadtest.cc that makes calls on the synchronized version of the DLList class. Make the changes 
to threads/main.cc so that an execution of the nachos command causes the function in the new 
driver file to be executed instead of the function ThreadTest in the file threadtest.cc . Use the 
synchronized version of DLList  to test both versions of your locks and condition variables. 

3.2.2 Implementing a Multithreaded Table (20 points) 

Implement a thread-safe Table class, which stores a collection of untyped object pointers indexed by 
integers in the range [ 0. . size-1 ]. You may use Table in later labs to implement internal operating 
system tables of processes, threads, memory page frames, open files, etc. Table has the following 
methods, defined in the header file Table.h, which is provided in the course directory (subdirectory aux): 

Table(int size) -- Create a table to hold at most size entries. 
int Alloc (void* object) -- Allocate a table slot for object, returning index of the allocated entry. 

 Return an error (-1) if no free table slots are available. 
void* Get (int index) -- Retrieve the object from table slot at index, or NULL if not allocated. 
void Release (int index) -- Free the table slot at index. 

3.2.3 Implementing a Bounded Buffer (20 points) 

This is a classical synchronization problem called bounded producer/consumer. Implement a thread-safe 
BoundedBuffer class, based on the definitions in */aux/BoundedBuffer.h . 

BoundedBuffer(int maxsize) -- Create a bounded buffer to hold at most maxsize bytes. 
  
void Read (void* data, int size) -- Read size bytes from the buffer, blocking until enough bytes are  
     available to completely satisfy the request. Copy the bytes into memory starting at address data  
void Write (void* data, int size) -- Write size bytes into the buffer, blocking until enough space is  
     available to completely satisfy the request. Copy the bytes from memory starting at address data . 

BoundedBuffer will be used in Lab 5 to implement pipes, an inter-process communication (IPC) 
mechanism fundamental to Unix systems. The basic idea is that the pipe or BoundedBuffer passes data 
from a producer thread (which calls Write ) to a consumer thread (which calls Read). The consumer 
receives the bytes placed in the buffer with Write , in the same order as those bytes were written by the 
producer. If the producer generates data too fast (i.e., the buffer overflows with more than maxsize bytes) 
then Write puts the producer to sleep until the consumer can catch up and read some data from the buffer, 
freeing up space. If the consumer reads data too fast (i.e., the buffer empties), then Read puts the 
consumer to sleep until the producer can catch up and generate some more bytes. 

Note that there is no restriction on which threads call Read and which call Write . Your implementation 
should not assume that only only two threads use it, or that the calling threads play fixed roles as producer 
and consumer. If a given BoundedBuffer is used by multiple threads, then you should take care to 
preserve the atomicity of Read and Write requests. That is, data written by a given Write should never 
be delivered to a reader interleaved with data from other Write operations. This invariant should hold 
even if writers and/or readers are forced to block because the buffer fills up or drains. 

Hint: You may find it useful to base your implementation on the Nachos SynchList class. 

3.2.4 (EXTRA CREDIT) Implementing a Priority Scheduler (20 points) 

Trace through the code in threads/thread.cc, threads/scheduler.h and threads/scheduler.cc to 
understand how the default nachos scheduler chooses the next thread to run (either when a thread 
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explicitly yields the CPU, or when a timeslice completes). To implement a non-preemptive priority-based 
scheduler, modify the thread scheduler to always return the highest priority thread. You might want to 
copy scheduler.h and scheduler.cc into files that have different names and modify these copies instead 
of the original ones. You will also need to create a new constructor for Thread to take another parameter – 
the priority level of the thread. Please leave the old constructor as is, since you will need it for backward 
compatibility. You may assume that there are a small, fixed number of priority levels – for this 
assignment you will only need two. 

Test your scheduler implementation by using it to run your bounded buffer implementation. Can changing 
the relative priorities of the producer and consumer threads have any effect on the output? For instance, 
what happens with two producers and one consumer, when one of the producers is higher priority than the 
other? What if the two producers are at the same priority, but the consumer is at high priority? To get the 
desired behaviors, make sure that you have calls to Thread::Yield in your producer and consumer code 
(just for this part of the lab). 

3.2.5 Some Notes for Lab 2 

Your implementations of locks and condition variables should use ASSERT checks as described in 
Section 2.2 (See Tracing and Debugging Nachos Programs) to enforce any usage constraints necessary 
for correct behavior. For example, every call to Signal and Wait passes an associated mutex; what could 
go wrong if a given condition variable is used with more than one mutex? What will happen if a lock 
holder attempts to acquire a held lock a second time? What if a thread tries to release a lock that it does 
not hold? These ASSERT checks are worth points on this assignment, and they will save you headaches 
in later assignments. 

You will also need to consider other usage issues. For example, what should your implementation do if 
the caller tries to delete a mutex or condition variable object while there are threads blocked on it? 

You should be able to explain why your implementation is correct (e.g., what will happen if we put a 
yield between lines X and Y), and to comment on its behavior (fairness, starvation, etc.) under various 
usage scenarios.  

Warning: The Nachos condition variable interface is ugly in that it passes the associated mutex on every 
call to Wait or Signal, rather than just binding the mutex once in the condition variable constructor. This 
means you must add code to remember the mutex on the first call to Wait or Signal , so that you can 
verify correct usage in subsequent calls. But make no mistake: each condition variable is used with 
exactly one mutex, as stated in synch.h . Be sure you understand why this is so important. 

Warning: The definition of semaphores does not guarantee that a thread awakened in V will get a chance 
to run before another thread calls P . In particular, the Nachos implementation of semaphores does not 
guarantee this behavior. That is, V increments the count and wakes up a blocked thread if the count 
transitioned from zero to one, but it is the responsibility of the awakened thread to decrement the count 
again after it wakes up in P . If another thread calls P first, then it may consume the count that was 
"meant for" the awakened thread, which will cause the awakened thread to go back to sleep and wait for 
another V . 

Note: for debugging, you may use the -s debug flag. However, there are no current DEBUG statements 
with the s debug flag, so you will need to add some to your code. See Section 2.2 (See Tracing and 
Debugging Nachos Programs). 
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3.3 Lab 3: Programming with Threads 

Your mission in this assignment is to use the Nachos thread system to solve two synchronization 
problems. You will first implement two primitives that will prove helpful for the two problems. The 
objective of the assignment is to improve your skill in writing correct concurrent programs and dealing 
with the now-familiar pitfalls: race conditions, deadlock, starvation, and so on.  

You will be using the synchronization facilities you implemented as part of the previous assignment, so 
before you can proceed, you will need to fix them if your implementation was broken. 

3.3.1 Implementing an EventBarrier Primitive (15 points) 

Use the Nachos synchronization primitives to create an EventBarrier class that allows a group of threads 
to wait for an event and respond to it in a synchronized fashion. EventBarrier incorporates useful 
properties from both condition variables and semaphores. Like a condition variable, an EventBarrier is 
associated with an event (or condition); threads may wait for the event or signal that the event has 
occurred. Like a binary semaphore, EventBarrier requires no external synchronization, and it keeps 
internal state to "remember" a previous signal; a wait returns immediately if the event is already signaled. 
Unlike condition variables or semaphores, a signaled EventBarrier stays in the signaled state until all 
threads have responded to the signal, then it reverts to the unsignaled state. To ensure that all threads have 
an opportunity to respond, it creates a "barrier" that holds back the signaling thread and responding 
threads until all participating threads have finished responding to the event. This behavior makes 
EventBarrier a powerful primitive for thread coordination. 

Here is the interface for EventBarrier :  

void Wait() -- Wait until the event is signaled. Return immediately if already in the signaled state. 
void Signal() -- Signal the event and block until all threads that wait for this event have responded. The 
EventBarrier reverts to the unsignaled state when Signal() returns. 
void Complete() -- Indicate that the calling thread has finished responding to a signaled event, and block 
until all other threads that wait for this event have also responded. 
int Waiters() -- Return a count of threads that are waiting for the event or that have not yet responded to 
it.  

Note that despite its name, EventBarrier::Signal is more like Condition::Broadcast than it is like 
Condition::Signal , since EventBarrier::Signal wakes up all threads waiting for the event.  

You may implement EventBarrier using any combination of mutexes, condition variables, and/or 
semaphores, but do not stoop to disabling interrupts. Test your EventBarrier implementation in whatever 
way you think best. Be sure your implementation correctly handles threads that call Wait while the 
EventBarrier object is in the signaled state; all participating threads must wait until the late arrival has 
responded to the event and called Complete . Also, your implementation should handle the case where 
threads call Wait again immediately after returning from Complete ; these threads should block in Wait 
until the EventBarrier is signaled again.  

3.3.2 Implementing an Alarm Clock Primitive (15 points) 

Implement an AlarmClock class. Threads call Alarm::Pause(int howLong) to go to sleep for a period 
of time. The alarm clock can be implemented using the simulated Timer device (cf. timer.h ). When the 
timer interrupt goes off, the Timer interrupt handler in system.cc must wake up any thread sleeping in 
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Alarm::Pause whose interval has expired. There is no requirement that an awakened thread starts 
running immediately after the interval expires; just put them on the ready queue after they have waited for 
at least the specified interval ( howLong ). We have not created a header file for Alarm , so you may 
define the rest of the class interface as you see fit. You may use any convenient unit for howLong . 

Warning : Do not change the behavior of the timer hardware to implement alarms. You may modify the 
timer interrupt handler, but do not modify the timer class itself. It is also not acceptable for you to create a 
new (simulated) hardware timer device for your implementation.  

Warning : Nachos will exit if there are no runnable threads, even if there is a thread waiting for an alarm. 
You must find a way to prevent that from happening. This is one rare case in which the ``right'' solution is 
to modify code in machine . You are welcome to modify the machine in this case only, but it is not 
required. If you do not modify the machine, you will need to devise a hack to prevent Nachos from 
exiting when there are threads waiting for an alarm. A cheap if ugly fix is to fork a thread that yields in a 
tight loop iff there is at least one thread waiting for an alarm.  

Warning : It is never correct for an interrupt handler to sleep. Think about the effect of this constraint on 
your scheme for synchronization. In addition, you should design your code to minimize the amount of 
work that must be done at interrupt time. 

Warning : Boxed Nachos does not deliver timer interrupts unless the -rs option is used. You may use the 
-rs option, but it is better to tweak the initialization code so that it has the correct behavior with or without 
-rs .  

3.3.3 Synchronization Problem 1: Bridge (30 points) 

You have been hired by MTA to synchronize traffic over a narrow light-duty bridge on a public highway. 
Traffic may only cross the bridge in one direction at a time, and if there are ever more than 3 vehicles on 
the bridge at a time, it will collapse under their weight. In this system, each car is represented by one 
thread, which executes the procedure OneVehicle when it arrives at the bridge: 
OneVehicle( int direc ) {

ArriveBridge(direc);

CrossBridge(direc);

ExitBridge(direc);

}

In the code above, direc is either 0 or 1: it gives the direction in which the vehicle will cross the bridge. 

Write the procedures ArriveBridge and ExitBridge (the CrossBridge procedure should just print out a 
debug message), using any synchronization scheme of your choosing involving mutexes, condition 
variables, and/or semaphores. ArriveBridge must not return until it is safe for the car to cross the bridge 
in the given direction (it must guarantee that there will be no head-on collisions or a bridge collapse). 
ExitBridge is called to indicate that the caller has finished crossing the bridge and should take steps to let 
additional cars cross the bridge. To test your program, create some number of vehicles, which repeatedly 
use the bridge in different directions: use your Alarm clock implementation to model the non-bridge 
activity of a vehicle. 

You should attempt to make your solution fair and starvation free. In order to understand what this 
involves, try answering the following question about your scheme: if a car arrives while traffic is 
currently moving in its direction of travel across the bridge, but there is another car already waiting to 
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cross in the opposite direction, will the new arrival cross before the car waiting on the other side, after the 
car on the other side, or is it impossible to say?  

3.3.4 Synchronization Problem 2: Elevator (40 points) 

Implement an elevator controller for a building with F floors, using threads and a synchronization scheme 
of your choosing, involving mutexes, condition variables, and/or semaphores. You may find the 
EventBarrier primitive you have implemented useful here. 

The elevator controller is split between two classes, Elevator and Building . We have provided skeletal 
definitions of these classes in elevator.h . The definitions include two sets of methods: one set for internal 
use and another set that defines the external interface to the riders. You will need to add new internal 
methods to these classes to allow communication between the Elevator and Building classes, but do not 
modify the signatures of the methods that have already been defined.  

The driver program that uses elevators will first create a single instance of Building , which will in turn 
create one Elevator object for each elevator in the building. Each elevator runs as a separate thread. Each 
elevator thread should enter an endless loop in an Elevator method, then use the internal elevator control 
interfaces ( OpenDoors , CloseDoors , VisitFloor and the Building methods) to serve rider requests in 
an orderly fashion.  

After creating the building, the test program creates one or more riders, each of which runs as a separate 
thread. The riders use the elevator rider interface ( CallUp , CallDown , AwaitUp , AwaitDown , Enter , 
Exit , RequestFloor ) to request services from the elevator and its controller. These rider methods 
synchronize with the controller methods using shared state in the Elevator class and the Building class. 
You will implement these classes. Note: there is no thread for the Building; its code executes only when 
an elevator or a rider thread calls one of its methods.  

Part 1 . Implement the elevator controller for a single elevator, including the Building and Elevator 
methods defined in elevator.h , and any new methods needed by your implementation. Your solution 
should avoid rider starvation as well as all obvious races, e.g., doors open while the elevator is in transit, 
riders entering and exiting while the doors are closed, etc. You may assume that the elevator is of 
unbounded size, i.e., it can hold all arriving riders. When your elevator stops at a floor, it should wait until 
all exiting riders have exited and all boarding riders have boarded.  

Include a rider test program that demonstrates the operation of your elevator for multiple riders. Your 
rider program should be ``well-behaved'' in the following sense: any rider that calls the elevator for the up 
or down direction should then immediately wait until an elevator traveling in the requested direction 
arrives, then get on it, then request a floor in the correct direction, then get off at the correct floor. 

Part 2 . Extend your solution in Part 1 to handle elevators that can hold only N riders at a time, where N 
is a compile-time constant. In this case, your Enter primitive should return a failure status if a rider 
attempts to get on while the elevator is full. 

Warning: Many teams find this problem very difficult. Start early. Think before you code. Consider 
several possible frameworks for a solution, then pick the best one. Strive for a simple and elegant 
solution, even if it less than optimal in terms of performance. 
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3.4 Lab 4: Multiprogrammed Kernel 

Up until now, all of your test programs have executed entirely within the Nachos kernel. In a real 
operating system, the kernel not only uses its procedures internally, but allows user programs to access 
some of its routines via system calls. An executing user program is a process. In Lab 4 you will modify 
Nachos to support execution of multiple processes, using system calls to request services from the kernel.  

Since your kernel does not trust user programs to execute safely, the kernel and the (simulated) hardware 
will work together to protect the system from damage by malicious or buggy user programs. To this end, 
you will implement simple versions of key mechanisms found in real operating system kernels: virtual 
addressing, protected system calls and kernel exception handling, and preemptive timeslicing. Virtual 
addressing prevents user processes from accessing kernel data structures or the memory of other 
programs; your kernel will use process page tables to safely allow multiple processes to reside in memory 
at the same time. With protected system calls and exceptions, all attempts by a user program to enter the 
kernel funnel through a single kernel routine, the ExceptionHandler routine; your kernel will “bullet-
proof” this routine so that buggy or malicious user programs cannot cause the kernel to crash or behave 
inappropriately. Finally, your kernel will use preemptive scheduling to share the simulated CPU fairly 
among the active user processes, so that no process can take over the system. All of these protection 
mechanisms require cooperation between the hardware and the operating system kernel software. Your 
implementation will be based on "hardware" support in the Nachos MIPS simulator, which resembles a 
real MIPS processor. 

The key to Lab 4 is to implement the system calls for process management: the Exec , Exit and Join 
system calls. New processes are created with Exec : once running as a process, a user program can invoke 
the Exec system call to create new "child" processes executing other user programs -- or more 
instantiations of the same program. When the program is finished, it may destroy the containing process 
by calling Exit . A parent process may call Join to wait for a child process to complete.  

If all processes are created by other processes, then who creates the first user process? The operating 
system kernel creates this process itself as part of its initialization sequence. This is bootstrapping . You 
can "boot" the Nachos kernel by running nachos with the -x option ( x for "execute"), giving the name of 
an initial program to run as the initial process. The Nachos release implements the -x option by calling 
StartProcess in progtest.c to handcraft the initial process and execute the initial program within it. The 
initial process may then create other processes, which may create other processes...and so on. 

3.4.1 Details of Lab 4 

This assignment may sound difficult, but most of the basic infrastructure is already in place. In particular: 
(1) the thread system and timer device already support preemptive timeslicing of multiple user threads, 
(2) the thread context switch code already saves and restores MIPS machine registers and the process 
page table, and (3) the Nachos distribution includes skeletal code to set up a new user process context, 
load it from an executable file, and start a thread running in it. As with all the programming assignments 
this semester, you can complete Lab 4 with at most a few hundred lines of code. The hard part is figuring 
out how to build on the Nachos code you already have -- and debugging the result if you don't get it right 
the first time. 

Most of the new files that you will be using are in the nachos/code/userprog directory. You will build 
your nachos executables in userprog instead of threads : be sure you build and run the "right" nachos . 
Even before you make any changes, you can build a Nachos executable that allows you to run a single 
user program, however, there is only skeletal support for exceptions or system calls. Most of the heavy 
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lifting for Labs 4 and 5 is rooted in userprog/exception.cc and addrspace.cc. The Nachos system call 
interface is defined in Section 4 (See Nachos System Call Interface) and in userprog/syscall.h . The 
StartProcess code in progtest.cc is useful as a starting point for implementing Exec . Also, be sure to 
read The Nachos MIPS Simulator and the header file machine/machine.h that defines your kernel's 
interface to the simulated machine.  

First you will need basic facilities to load processes into the memory of the simulated machine, and some 
sort of process table to keep track of active processes. Spend some time studying the AddrSpace class, 
and look at how the StartProcess procedure uses the AddrSpace class methods to create a new process, 
initialize its memory from an executable file, and start the calling thread running user code in the new 
process context. The current code for AddrSpace and StartProcess works OK, but it assumes that there 
is only one program/process running at a time (started with StartProcess from main by the nachos -x 
option), and that all of the machine's memory is available to that process. Your first job is to generalize 
the code for StartProcess and AddrSpace, and use it to implement the Exec system call. 

1. Implement a memory manager module to allow your kernel to allocate page frames of the 
simulated machine's memory for specific processes, and to keep track of which frames are free 
and which are in use. You may find your Table class from Lab 3 useful here.  

2. Modify AddrSpace to allow multiple processes to be resident in the machine memory at the 
same time. The default AddrSpace constructor code assumes that all of the machine memory is 
free, and it loads the new process contiguously starting at page frame 0. You must modify this 
scheme to load the process into page frames allocated for the process using your memory 
manager.  

Your code should always succeed in loading the process if there is enough free memory for it, 
thus you must allow address spaces to be backed by noncontiguous frames of physical memory. 
For now it is acceptable to fail if there is not enough free machine memory to load the executable 
file. Note: To cleanly handle these failures, you will need to move the AddrSpace loading code 
out of the constructor and into a new AddrSpace method to allow you to report a failure. It is 
poor programming practice to put code that can fail into a class constructor, as the Nachos 
designers have done in this release.  

3. If necessary, update StartProcess to use the new AddrSpace interface so that you do not break 
the nachos -x option.  

4. Modify AddrSpace to call the memory manager to release the pages allocated to a process when 
the process is destroyed. Make sure your AddrSpace code also releases any frames allocated to 
the process in the case where it discovers that it does not have enough memory to load the entire 
process.  

Next, use these new facilities to implement the Exec and Exit system calls as defined in 
userprog/syscall.h (also see Section 4, See Nachos System Call Interface). If an executing user processes 
requests a system call (by executing a trap instruction) the machine will transfer control to your kernel by 
calling ExceptionHandler in exception.cc. Your kernel code must extract the system call identifier and 
the arguments, decode them, and call internal procedures that implement the system call. In particular, 
your system call code must convert user-space addresses to Nachos machine addresses or kernel 
addresses before they can be dereferenced. Here are a couple of issues you need to attend to: 

1. When an Exec call returns, your kernel should have created a new process and started a new 
thread executing within it to run the specified program. However, you do not need to concern 
yourself with setting up OpenFileIds until the next assignment. For now, you will be able to run 
user programs, but they will not be able to read any input or write any output.  
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2. For Exec , you must copy the filename argument from user memory into kernel memory safely, 
so that a malicious or buggy user process cannot crash your kernel or violate security. The 
filename string address ( char* ) passed into the kernel as an argument is a process virtual 
address; in order for the kernel to access the filename it must locate the characters in the kernel 
address space (i.e., in the machine's physical "main memory" array) by examining the page table 
for the process. In particular, you must handle the case where the filename string crosses user 
page boundaries and resides in noncontiguous physical memory. You must also detect an illegal 
string address or a string that runs off the end of the user's address space without a terminating 
null character, and handle these cases by returning an error ( SpaceId 0) from the Exec system 
call.  

You may impose a reasonable limit on the maximum size of a file name. Also, use of 
Machine:ReadMem and Machine:WriteMem is not forbidden as the comment in machine.h 
implies. 

3. Exec must return a unique process identifier ( SpaceId ), which can be used as an argument to 
Join, as discussed in Section 4.1 (See Process Management). Your kernel will need to keep a 
table of active processes. You may find your Table class from Lab 3 useful here.  

4. You may find it convenient to implement process exit as an internal kernel procedure called by 
the Exit system call handler, rather than calling the lower-level procedures directly from 
ExceptionHandler . This will make it easy to "force" a process to exit from inside of the kernel 
(e.g., if the process has some kind of fatal error), by calling the internal exit primitive from 
another kernel procedure (e.g., ExceptionHandler ) in the process' context. In general, this kind 
of careful internal decomposition will save you from reinventing and redebugging wheels, and it 
is always good practice. 

Next, implement the Join system call and other aspects of process management, extending your 
implementation of Exec and Exit as necessary. 

1. Be sure you handle the argument and result of the Join system call correctly. The kernel Join 
primitive must validate any SpaceId passed to it by a user process. It must also validate that the 
calling process has privilege to Join ; in this case, the caller must be the parent of the target 
process. Finally, your Join implementation must correctly return the exit status code of the target 
process.  

2. To implement Join correctly and efficiently, you will need to keep a list of all children of each 
process. This list should be maintained in temporal order, so that you can always determine the 
most recently created child process. This will be necessary when you implement pipes in Lab 5.  

3. Synchronization between Join and Exit is tricky. Be sure you handle the case where the joinee 
exits before the joiner executes the Join . Your kernel should also clean up any unneeded process 
state if Join is never called on a given exiting process. 

4. Try to devise the simplest possible synchronization scheme for the code and data structures that 
manage process relationships and Exit/Join , even if your scheme is inefficient. One possibility 
might be to use broadcasts on a single condition variable shared by all processes in the system. 

Last but not least, it is time to complete the “bullet-proofing” of your kernel. Implement the 
Nachos kernel code to handle user program exceptions that are not system calls. Exceptions, like address 
protection and the kernel/user mode bit, are important hardware features that allow the hardware and OS 
kernel to cooperate to ``bullet-proof'' the operating system from user program errors. The machine (or 
simulator) raises an exception whenever a user program attempts to execute an instruction that cannot be 
completed, e.g., because of an attempt to reference an illegal address, a privileged or illegal instruction or 
operand, or an arithmetic underflow or overflow condition. The kernel's role is to handle these exceptions 
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in a reasonable way, i.e., by printing an error message and killing the process rather than crashing the 
machine. No, an ASSERT that crashes Nachos does not qualify as a reasonable way to handle a user 
program exception.  

Finally, you should test your code by exercising the new system calls from user processes. To test your 
kernel, you will create some simple user programs as described in Section 2.5 (See Creating Test 
Programs for Nachos Kernels). These test programs will execute on the simulated MIPS machine within 
Nachos as discussed in Section 2.4 (See The Nachos MIPS Simulator). 

1. Write a test program(s) to create a tree of processes M levels deep by calling Exec N times from 
each parent process, and joining on all children before exiting. You may hard-code M and N in 
your test programs as constants, since Exec as defined provides no way to pass arguments into 
the new program.  

2. Create a modified version of the tree test program in which each parent process exits without 
joining on its children. The purpose of this program is to (1) test with larger numbers of 
processes, and (2) test your kernel's code for cleaning up process state in the no-join case.  

3. Since your kernel allows multiple processes to run at once, you have been careful to employ 
synchronization where needed inside your kernel. Run your tree test programs with timeslicing 
enabled (using the Nachos -rs option) to increase the likelihood of exposing any synchronization 
flaws.  

3.4.2 (EXTRA CREDIT) Implementation of Thread Fork and Yield (20 points) 

Implement the Fork and Yield system calls as discussed in Section 4.4 (See Nachos System Call 
Interface). Note that you will need to modify your implementation of Exit to support the semantics 
described there. Test your implementation by having a user program fork a thread to call a routine in the 
same address space, and then ping pong between the two threads. 
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3.5 Lab 5: I/O 

For Lab 5, you will extend your multiprogrammed kernel with support for I/O, by implementing the 
system calls for reading and writing to files, pipes, and the console: Create , Open , Close , Read , and 
Write . You will exercise your kernel by implementing a simple command interpreter (shell) that can run 
multiple test programs concurrently. 

Use the FileSystem and OpenFile classes as a basis for your file system implementation. For now, your 
implementations of the file system calls will use the default ``stub'' file system in Nachos since 
FILESYSTEM_STUB is defined. The stub file system implements files by directly calling the 
underlying host (e.g., Solaris) file system calls; thus you can access files in the host file system from 
within Nachos using their ordinary Unix file names. 

Lab 5 includes the following requirements and options. 

1. Implement, test, and debug the Create , Open and Close system calls. Be sure to correctly handle 
the case where a user program passes an illegal string to Open / Create or an illegal OpenFileId 
to Close. Recall the discussion of similar concerns for Exec and Join in Section 3.4 (See Lab 4: 
Multiprogrammed Kernel).  

The Open system calls return an OpenFileId to identify the newly opened file in subsequent 
Read and Write calls. Note that it is not acceptable to use an OpenFile* or other internal kernel 
pointer as an OpenFileId , because a user program could cause the kernel to follow an illegal 
pointer. Instead, you will need to implement a per-process (per- AddrSpace ) open file table to 
assign integer OpenFileIds and to map them to OpenFile object pointers by indexing into the 
protected kernel table. Your Table class from Lab 3 may be useful here. Of course, your process 
must properly clean up the file table along with other process state when a process exits. 

2. Implement, test and debug the Read and Write system calls for open files. Again, you must be 
careful about moving data between user programs and the kernel. In particular, you must ensure 
that the entire user buffer for Read or Write is valid. However, your scheme for moving bulk 
data in or out of the kernel for Read and Write must not arbitrarily limit the number of bytes that 
that the user program can read or write.  

3. Modify Exec to initialize each new process with OpenFileIds 0 and 1 bound by default to the 
console. As defined in syscall.h , OpenFileIds 0 and 1 always denote the console device, i.e., a 
program may read from OpenFileId 0 or write to OpenFileId 1 without ever calling Open . To 
support reading and writing the console device, you should implement a SynchConsole class that 
supports synchronized access to the console. Use the code in progtest.cc as a starting point. 
Your SynchConsole should preserve the atomicity of Read and Write system calls on the 
console. For example, the output from two concurrent Write calls should never appear 
interleaved.  

Warning : Failure to carefully manage the order of initialization is often a source of bugs. To use 
the console, you must create a Nachos Console object. Create this object with new late in 
Initialize in system.cc , after the interrupt mechanism is initialized. 

Warning: Once you create a Console object, you may be annoyed that nachos no longer shuts 
down when there is nothing to do, as discussed in Section 2.4 (See The Nachos MIPS Simulator). 
For the rest of the semester, get in the habit of killing nachos with ctrl-c when each run is 
complete. You may even start to enjoy it. 
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4. Implement pipes using the interface and semantics defined in Section 4.3 (See Pipes). Your 
BoundedBuffer class from Lab 3 may be useful here.  

Spend some time devising test programs to exercise your kernel: 

1. Write a user program that exercises the system calls and triggers exceptions of different kinds. 
You do not need to exhaustively test all the types of exceptions; that's boring.  

2. Write a shell using the sample in test/shell.c as a starting point. The shell is a user program that 
loops reading commands from the console and executing them. Each command is simply the file 
name of another user program. The shell runs each command in a child process using the Exec 
system call, and waits for it to complete with Join . If multiple commands are entered on the 
same line (e.g., separated by a semicolon), the shell executes all of them concurrently and waits 
for them to complete before accepting the next command.  

You may define your own shell command syntax and semantics. Real shells (e.g., the Unix tcsh ) 
include sophisticated features for redirecting program input and output, passing arguments to 
programs, controlling jobs, and stringing multiple processes together using pipes. Your shell 
should demonstrate use of pipes, but the Nachos kernel interface is not rich enough to support 
most of the other interesting features. 

Note that your shell implementation will be considerably simplified if you extend your Exec 
implementation to support command-line arguments. The strategy for supporting this is 
intentionally being left unspecified to see what kinds of creative solutions you folks can come up 
with. Note however that whatever your strategy, you will have to write your own string parsing 
and comparison utilities using primitive memory read/write operations (there is no libc for user 
programs that you can link against). 

3. Test your kernel by using your shell to execute some test programs as concurrent processes. 
Adequate testing is a critical aspect of any software project, and designing and building creative 
test programs is an important part of this assignment.  

One useful utility program is cp , which copies the contents of a file to a destination file. If the 
destination file does not exist, then cp creates it. Your implementation of cp will exercise 
command line arguments using the following syntax: cp source-file destination-file ). 

You may find cat useful to demonstrate pipes: cat filename copies the file named by filename to 
its standard output ( OpenFileId 1); cat with no arguments simply copies its standard input ( 
OpenFileId 0) to its standard output.  
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3.6 Lab 6: Virtual Memory 

In this assignment you will modify Nachos to support virtual memory. The new functionality gives 
processes the illusion of a virtual memory that may be larger than the available machine memory. 

The assignment consists of two parts. In Part 1, you will implement demand paging using page faults to 
dynamically load your program's pages on demand, rather than initializing page frames for the process at 
Exec time. Next, you will implement page replacement , enabling your kernel to evict any virtual page 
from memory in order to free up a physical page frame to satisfy a page fault. Demand paging and page 
replacement together allow your kernel to "overbook" memory by executing more processes than would 
fit in machine memory at any one time, using page faults to "juggle" the available physical page frames 
among the larger number of process virtual pages. If it is implemented correctly, virtual memory is 
undetectable to user programs unless they monitor their own performance. 

The operating system kernel works together with the machine's memory management unit (MMU) to 
support virtual memory. Coordination between the hardware and software centers on the page table 
structure for each process. You used page tables in Labs 4 and 5 to allow your kernel to assign any free 
page frame to any process page, while preserving the illusion of a contiguous memory for the process. 
The indirect memory addressing through page tables also isolates each process from bugs in other 
processes that are running concurrently. In Lab 6, you will extend your kernel's handling of the page 
tables to use three special bits in each page table entry (PTE): 

•  The kernel sets or clears the valid bit in each PTE to tell the machine which virtual pages are 
resident in memory (a valid translation) and which are not resident (an invalid translation). If a 
user process references an address for which the PTE is marked invalid, then the machine raises a 
page fault exception and transfers control to your kernel's exception handler.  

•  The machine sets the use bit (reference bit) in the PTE to pass information to the kernel about 
page access patterns. If a virtual page is referenced by a process, the machine sets the 
corresponding PTE reference bit to inform the kernel that the page is active. Once set, the 
reference bit remains set until the kernel clears it. 

•  The machine sets the dirty bit in the PTE whenever a process executes a store (write) to the 
corresponding virtual page. This informs the kernel that the page is “dirty”: if the kernel evicts 
the page from memory, then it must first “clean” the page by preserving its contents on disk. 
Once set, the dirty bit remains set until the kernel clears it. 

3.6.1 Implementing Demand Paging 

In the first phase, you should preallocate a page frame for each virtual page of each newly created process 
at Exec time, just as in Labs 4 and 5. As before, return an error from the Exec system call if there are not 
enough free page frames to hold the process new address space. But now, Exec should initialize all the 
PTEs as invalid . 

When the process references an invalid page, the machine will raise a page fault exception. Modify your 
exception handler to catch this exception and handle it by preparing the requested page on demand. This 
will likely require a restructuring of your AddrSpace initialization code. Faults on different address space 
segments are handled in different ways. For example, a fault on a text page should read the text from the 
executable file, and a fault on a stack or uninitialized data frame should zero-fill the frame. However you 
initialize the frame, clear the exception by marking the PTE as valid, then restarting execution of the user 
program at the faulting instruction. When you return from the exception, be sure to leave the PC in a state 
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that reexecutes the faulting instruction. If you set up the page and page table correctly, then the instruction 
will execute correctly and the process will continue on its way, none the wiser. 

Test your demand paging implementation before moving on to page replacement. See the notes on testing 
in Section 3.6.3 (See Testing Your VM System). 

3.6.2 Implementing Page Replacement 

In the second phase, your kernel delays allocation of physical page frames until a process actually 
references a virtual page that is not already loaded in memory. 

First, complete the gutting of your code to create an address space: remove the code to allocate page 
frames and preinstall virtual-physical translations when setting up the page table. Instead, merely mark all 
the PTEs as invalid.  

Next, extend your page fault exception handler to allocate a page frame on-the-fly when a page fault 
occurs. If memory is full, it will be necessary to free up a frame by selecting a victim page to evict from 
memory. To evict a page, the kernel marks the corresponding PTE(s) invalid, then frees the page frame 
and/or reallocates it to another virtual page. The system must be able to recreate the victim page contents 
if the victim page is referenced at a later time; if the page is dirty, the system must save the page contents 
in backing store or swap space on local disk or out on the network. An important part of this lab is to use 
the Nachos file system interface to allocate and manage the backing store. You will need routines to 
allocate space on backing store, locate pages on backing store, push pages from memory to backing store 
(for pageout), and pull from backing store to memory (for pagein). Be sure to clear the dirty bit when you 
mark a PTE for the victim page as invalid. 

In this way, your operating system will use main memory as a cache over a slower and cheaper backing 
store. As with any caching system performance depends largely on the policy used to decide which pages 
are kept in memory and which to evict. As you know, we are not especially concerned about the 
performance of your Nachos implementations (simplicity and correctness are paramount), but in this case 
we want you to experiment with one of the page replacement policies discussed in class. Use FIFO or 
random replacement if you are short on time, but we will be more impressed if you implement an LRU 
approximation, examining and clearing the use bit in each PTE in order to gather information to drive the 
policy. We would like to see you implement a policy with an asynchronous paging daemon that responds 
to memory conditions, but we recognize that time may be short and we will not penalize you heavily if 
you do not. In any case, choose your policy carefully based on your group's design criteria (e.g. 
simplicity, performance, simplicity, correctness, fun) and be able to explain your choices. 

Another important design question is the handling of dirty pages. Some rather poor kernels allow 
processes to fill memory with dirty pages. Consider what can happen when memory is full of dirty pages. 
If a page fault occurs, the kernel must find a victim frame to hold the incoming page, but every potential 
victim must be written to disk before its frame may be seized. Cleaning pages is an expensive operation, 
and it could even lead to deadlock in extreme cases, if for example a page is needed for buffering during 
the disk write. For these reasons, "real" operating systems retain a reserve of clean pages that can be 
grabbed quickly in a pinch. Maintaining such a reserve generally requires a paging daemon to 
aggressively clean dirty pages by pushing them to disk if the reserve begins to drain down. This makes 
correct management of the dirty bits more interesting. Again, implement the best scheme you can in the 
available time. This will make the experience (and the demos) more interesting and rewarding. 
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Warning: The simulated MIPS machine provides enough functionality to implement a fully functional 
virtual memory system. Do not modify the "hardware". In particular, the simulator procedure 
Machine::Translate is off limits. 

3.6.3 Testing Your VM System 

Lab 6 builds directly upon Labs 4 and 5, so you will mostly be working with the same set of files. In 
addition, there is a test case available in test/matmult.c . This program exercises the virtual memory 
system by multiplying two matrices. Of course, you may not increase the size of main memory in the 
Nachos machine emulation, although for debugging, you may want to decrease this number. You may 
find it useful to devise your own test cases - they can be simpler patterns of access to a large array that 
might let you test and debug more effectively.  

Devising useful test programs is crucial in all of these assignments. Give thought to how you plan to 
debug and demo your kernels. Initial testing with only a single user process may be a good idea so that 
you can trace what is going on in a simpler environment. In later testing, you want to stress things more 
and run multiple programs.  

Lab 6 implies that pages are brought into memory only if they are actually referenced by the user 
program. To show this, one could devise test cases for various scenarios, such as (1) the whole program 
is, in fact, referenced during the lifetime of the program; (2) only a small subset of the pages are 
referenced. Accessing an array selectively (e.g. all rows, some rows) can give different page reference 
behavior. We don't particularly care if the test program does anything useful (like multiplying matrices), 
but it should generate memory reference patterns of interest. 

Your test programs should also demonstrate the page replacement policy and correct handling of dirty 
pages (e.g., allocating backing storage and preserving the correct contents for each page on backing 
store). Again the test cases can generate different kinds of locality (good and bad) to see how the paging 
system reacts. Can you get the system to thrash, for example? Have you built in the kinds of monitoring 
and debugging that lets you see if it is thrashing? Try reducing the amount of physical memory to ensure 
more page replacement activity.  

Consider what tracing information might be useful for debugging and showing off what your kernel can 
do. You might print information about pagein and pageout events, which processes are affected (whose 
pages are victimized) or responsible (who is the faulting process) for each event, and how much of the 
virtual address space is actually loaded at any given time. It is useful to see both virtual and physical 
addresses. It may also be useful to print the name of the executable file that each process is running, as a 
way to identify the process.  



 34

4 Nachos System Call Interface 
This section defines the system call interface for your Nachos kernel. 

Note on returning errors from system calls : One of the broken things about Nachos is that it does not 
provide a clean way to return system call errors to a user process. For example, Unix kernels return 
system call error codes in a designated register, and the system call stubs (e.g., in the standard C library or 
in start.s ) move them into a program variable, e.g., the global variable errno for C programs. We are not 
bothering with this in Nachos. What is important is that you detect the error and reject the request with no 
bad side effects and without crashing the kernel. I recommend that you report errors by returning a -1 
value where possible, instead of returning a value that could be interpreted as a valid result. If there is no 
clean way to notify the user process of a system call error it is acceptable to simply return from the call 
and let the user process struggle forward. 

4.1 Process Management 

There are three system calls for executing programs and operating on processes. 

SpaceId Exec (char *executable, int pipectrl) 

Creates a user process by creating a new address space, reading the executable file into it, and 
creating a new internal thread (via Thread::Fork ) to run it. To start execution of the child process, 
the kernel sets up the CPU state for the new process and then calls Machine::Run to start the 
machine simulator executing the specified program's instructions in the context of the newly created 
child process. Note that Nachos Exec combines the Unix fork and exec system calls: Exec both 
creates a new process (like Unix fork ) and executes a specified program within its context (like Unix 
exec ). 

Exec returns a unique SpaceId identifying the child user process. The SpaceId can be passed as an 
argument to other system calls (e.g., Join ) to identify the process, thus it must be unique among all 
currently existing processes. However, your kernel should be able to recycle SpaceId values so that it 
does not run out of them. By convention, the SpaceId 0 will be used to indicate an error. 

The pipectrl parameter is discussed in Section 4.3 (See Pipes). User programs not using pipes should 
always pass zero in pipectrl . 

void Exit (int status) 

A user process calls Exit to indicate that it is finished executing. The user program may call Exit 
explicitly, or it may simply return from main , since the common runtime library routine (in start.s ) 
that calls main to start the program also calls Exit when main returns. The kernel handles an Exit 
system call by destroying the process data structures and thread(s), reclaiming any memory assigned 
to the process, and arranging to return the exit status value as the result of the Join on this process, if 
any. Note that other processes are not affected: do not confuse Exit with Halt . 

Note : if you are implementing threads as discussed in Section 4.4 ( See Threads), then Exit destroys 
the calling thread rather than the entire process/address space. The process and its address space are 
destroyed only when the last thread calls Exit , or if one of its threads generates a fatal exception. 

Warning : the Exit system call should never return; it should always destroy the calling thread. 
Returning from Exit may cause mysterious traps to the Halt system call. To see why, look at the 
startup instruction sequence in test/start.s . 
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int Join (SpaceId joineeId) 

This is called by a process (the joiner ) to wait for the termination of the process (the joinee ) whose 
SpaceId is given by the joineeId argument. If the joinee is still active, then Join blocks until the 
joinee exits. When the joinee has exited, Join returns the joinee's exit status to the joiner. To simplify 
the implementation, impose the following limitations on Join : the joiner must be the parent of the 
joinee, and each joinee may be joined on at most once. Nachos Join is basically equivalent to the 
Unix wait system call. 

4.2 Files and I/O 

The file system calls are similar to the Unix calls of the same name, with a few differences. 

void Create (char *filename) 

Create an empty file named filename . Note this differs from the corresponding Unix call, which 
would also open the file for writing. User programs must issue a separate Open call to open the newly 
created file for writing. 

OpenFileId Open (char *filename) 

Open the file named filename and return an OpenFileId to be used as a handle for the file in 
subsequent Read or Write calls. Each process is to have a set of OpenFileIds associated with its 
state and the necessary bookkeeping to map them into the file system's internal way of identifying 
open files. This call differs from Unix in that it does not specify any access mode (open for writing, 
open for reading, etc.)  

void Write (char *buffer, int size, OpenFileId id) 

Write size bytes of the data in the buffer to the open file identified by id .  

int Read (char *buffer, int size, OpenFileId id) 

Try to read size bytes into the user buffer . Return the number of bytes actually read, which may be 
less than the number of bytes requested, e.g., if there are fewer than size bytes available. 

void Close (OpenFileId id) 

Clean up the "bookkeeping" data structures representing the open file.  

4.3 Pipes 

The Exec system call includes a pipectrl argument as defined in Section 4.1 (See Process Management). 
This argument is used to direct the optional binding of OpenFileIds 0 (stdin) and 1 (stdout) to pipes 
rather than the console. This allows a process to create strings of child processes joined by a pipeline. A 
pipeline is a sequence of pipes, each with one reader and one writer. The first process in the pipeline has 
stdin bound to the console and stdout bound to the pipeline input. Processes in the middle of the pipeline 
have both stdin and stdout bound to pipes. The process at the end of the pipe writes its stdout to the 
console. 

The Nachos interface for creating pipes is much simpler and less flexible than Unix. A parent process can 
use nonzero values of the pipectrl argument to direct that its children are to be strung out in a pipeline in 
the order in which they are created. A pipectrl value of 1 indicates that the process is the first process in 
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the pipeline. A pipectrl value of 2 indicates a process in the middle of the pipeline; stdin is bound to the 
output of the preceding child, and stdout is bound to the input of the next child process to be created. A 
pipectrl value of 3 indicates that the process is at the end of the pipeline. 

To handle these pipectrl values, the kernel must keep a list of all children of each process in the order 
that they are created. 

Pipes are implemented as producer/consumer bounded buffers with a maximum buffer size of N bytes. If 
a process writes to a pipe that is full, the Write call blocks until the pipe has drained sufficiently to allow 
the write to continue. If a process reads from a pipe that is empty, the Read call blocks until the sending 
process exits or writes data into the pipe. If a process at either end of a pipe exits, the pipe is said to be 
broken : reads from a broken pipe drain the pipe and then stop returning data, and writes to a broken pipe 
silently discard the data written.  

4.4 Threads 

Nachos systems with thread support should define the semantics of Exit in the following way. Exit 
indicates that the calling thread is finished; if the calling thread is the last thread in the process then it 
causes the entire process to exit (e.g., wake up joiner if any). The status value reported by the last thread 
in the process to call Exit shall be deemed the exit status of the process, to be returned as the result from 
Join . 

void Fork (void(*function)()) 

Creates a new thread of control executing in the calling user process address space. The function 
argument is a procedure pointer, a user-space virtual address: the new thread will begin executing at 
this address in the same address space as the thread calling Fork . The new thread must have its own 
user stack in the user address space, separate from all other threads. It must be able to make system 
calls and block independently of other threads in the same process. 

void Yield() 

Called within a user program to yield the CPU. Yield triggers a Thread::Yield within Nachos, 
allowing some other ready thread to run. 


