
A Quick Guide to using GBD + Emacs
Brian Card

CSC 335 – Spring 2009
6/11/09

 Developing C++ programs through the terminal can be a painful experience if you are used to
all of the development tools that Eclipse provides for Java programming. The closest thing I could find
to a real development environment was using Emacs, which can be used in a graphical and command
line forms. Of course, as true with Linux in general, the worst thing about Emacs is learning Emacs, so
I recommend that you do the (very helpful) tutorial if you don't know how to use it. It will take a good
3 or so hours to complete, but it is well worth it because you will be lost without it.
 That being said Emacs integrates nicely with GDB, which is a command line debugger.
Through Emacs you can set breakpoints in your code by clicking on a line in the source code, and even
step through the source code while debugging. While primitive compared to the Eclipse debugger, its
the best I could find. I have set up a tutorial to using this feature with the nachos project. It's a little
picky, but if you stay close to this guide it should work.

1. ssh to antipasto using the -X option. This will allow you to use the graphical Emacs instead of
the command line one. This will only work if you are running Linux.

2. Navigate to the folder that you will be working in and open Emacs by typing emacs.

This window will appear:

I like to have two vertical windows at the top for code and one wide horizontal one for the debugger,
but it's up to you. Press the Control key and the “x” key at the same time, then press “2” by itself
(notated C-x 2) to split the window in half, then press (C-x 3) to half it again.

After some resizing...

Open up the file you want to debug. For this example we will look at the main.cc file and watch it run
through the debugging printouts. Click in the top left window and type (C-x C-f) then “main.cc” to
open the file (if you mess up (C-g) cancels).

Go to the Options menu and click Syntax Highlight to get some color.
For this example we want to set a breakpoint at the first line in the main() function (line 90, use (alt-x)
then type “goto-line” then press enter and type 90 to jump to that line).
First we need to start the debugger. Click on the bottom frame (or whatever window you want the
debugger to occupy) and click the tools menu and select “Debugger (GUD)...”.

Type “nachos” and press enter.

If you wanted to run nachos with some options (like -d to debug), you can type “set args ...” into the
debugger where the ... represents your arguments. We will use the -d t enable debugging.

You'll notice that when the cursor is in the bottom window the menu bar changes and you get Gud,
Complete, In/Out, and Signals menus. The Gud is the only important one and has commands and
shortcuts for the debugger.

The first break point has to be inserted manually. Type “b main” into the debugger and press enter (b is
short for break).

Type “r” and press enter to run.

The program has started running and has now stopped at line 90, at the beginning of the main()
function (actually a little after, but that's ok). You'll notice in your code that there is an arrow at the
DEBUG statement. This is the next line the debugger will execute. Type “s” into the debugger to step
into the function at the highlighted line.

You'll notice that the empty window was filled with the utility.cc file where the DEBUG function lives.
Emacs automatically opened this for you and scrolled to the line that will be executed next. If you have
more windows, you can have many different sections of source code to step through. Emacs will
toggle back and forth between them as necessary. Press enter to execute the previous command again
(in this case “s” for step).

The arrow jumped to the top of the window where the DebugIsEnabled() function is. If you scrolled up
a bit you would see the function declaration. Type “n” for next to step through this function without
entering the sub functions. If we wanted to check the value of a variable, type “p var” what var is the
name of the variable. Lets look at enableFlags to see if it really was NULL.

Hmm, it is, I guess that's why this line won't print (actually, it never will, I don't even know why it's
there). GDB use C style syntax for the variable calls and is context dependent. So, if we were inside a
rectangle class and we wanted to see what the “width” variable contained, we would type “p width”.
However, if we were in the function that created the rectangle (say the created rectangle is called rec),
we would type “p rec->width” to see the width. Type “n” a couple more times to run through the debug
code.

The cursor jumped back to the main.cc frame and execution continues. You'll notice now that when
you click inside the main.cc or utility.cc windows you will have a “Gud” menu bar. This only appears
if you have entered the code in that window. With this menu bar you can finally ad breakpoints at
arbitrary lines by clicking on a line and selecting “Set Breakpoint”.

That's pretty much it. There are a few good things to know, like typing “f” into the debugger will open
the window where the current line is (if you get messed up somehow). If you want to jump from
breakpoint to breakpoint, type “c” for continue. Typing “info b” shows the breakpoints, to get rid of
one find it's number and type “disable num”, where num is the number. There are some nice things in
the tools menu, like compile, which means you never have to leave Emacs to compile your code (in
addition, typing (alt-x) then typing “shell” will open a shell in the selected window.
 Emacs is complicated but powerful. Good tools are essential to creating good software; you
don't want to spend most of your time fighting the system instead of getting work done. Hope this
guide helps, good luck!

