Sylvain EUDIER

Tomas GOLD

Artificial Intelligence Project #3

Search algorithms used:

Our artificial agent is based on a combination of several algorithms. First we implemented the Alpha-Beta search with pruning. Later on, we found the Negascout algorithm that works in all cases better than Alpha Beta search. This algorithm is combined with IDS to take advantage of the 1 minute limit by evaluating as many nodes as possible. In combination with IDS and Negascout, we used the so-called Killer move technique, that is we sorted the results with a Quicksort algorithm to first begin with the most promising positions.
Heuristics functions used:

The first evaluation function we had was the very simple #white pieces - #black pieces. Results were not very good so we decided to aim toward a more complex, more efficient algorithm. The idea has been to write down all of our ideas and then to translate them into an evaluation function.

Example: We want to move forward so we can be eaten. And we don’t want to go the sides, in the ‘corners’. We represented this by assigning values to the board, values increasing from the back to the king’s row. The ‘corner’ squares are 1 unit less than the horizontal values and we finally end up with a fully defined checker board. On this point, the code is explicit enough for this. (CAI->smart()).

We also decided that getting a king at the beginning is really bad for the player but is very interesting if you can force your opponent to get one.

Different values are assigned to pieces and kings and the game is divided into 3 parts: start, middle and end game. The concept behind this was to optimize the IDS algorithm and define a lower bound to start with. The lack of time prevented us from deepening this idea and specialize the searches for these phases.

Representation of the states for our agent:
The first version of our agent represented the states by 3 arrays of boolean to says whether it is empty, or a black stone or a piece. However, a last-minute improvement gave replaced these arrays by 32 bits integers. Much faster and smaller. In addition to these arrays, we have some boolean variables to store the actual player, some constants…
Tournament analysis:

The second heuristics we developed seemed to us to be really complete and powerful. It was closer to an actual thinking heuristics than a simple, dumb difference. However, during the games, while we tried to use it, we in fact lost the first game. The simpler heuristic (pieces difference) just revealed to be much faster and yielded to better results, in part due to the deep search depth. We guess the heuristic was ‘thinking too much’, evaluating moves far ahead with ‘smart’ positions. If the opponent’s heuristic is just applying a sort of brute force computation, it doesn’t work. An mandatory improvement would have been to introduce randomness in the algorithm to avoid the specialization effect, like in local beam search.
