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How does eukaryotic gene prediction work?
Michael R Brent

Computational prediction of gene structure is crucial for interpreting genomic sequences. But how do the algorithms involved work 
and how accurate are they?

Gene-prediction programs are used primar-
ily to annotate large, contiguous sequences 

generated by whole-genome sequencing. Most 
programs used for this purpose aim to predict 
the complete exon-intron structures of the 
protein-encoding portions of transcripts (open 
reading frames or ORFs). Some programs also 
predict 5′ untranslated regions, and a few pre-
dict only the boundaries of isolated exons. 
The resulting predictions are often distributed 
through web portals such as the University of 
California Santa Cruz genome browser (http://
genome.ucsc.edu/), where users can examine 
and compare predictions in regions of inter-
est. If whole-genome prediction sets are not 
available for a sequence in question, users can 
submit genomic sequences to online gene-pre-
diction servers such as the Twinscan/N-SCAN 
server (http://mblab.wustl.edu/nscan/)1. Gene 
predictions can also be used as a springboard 
to obtaining more direct evidence of gene 
structures through high-throughput reverse 
transcription (RT)-PCR and sequencing using 
primers designed on the basis of gene predic-
tions.

What are the major approaches to gene 
prediction?
Gene-prediction programs can be broadly 
divided into those whose only inputs are the 
sequences of one or more genomes (de novo 
predictors) and those that also consider cDNA 
sequences and/or their predicted translations 
(expression-based predictors). Originally, de 
novo predictors used only the genome sequence 
to be annotated (the target sequence), but the 
past five years have witnessed substantial gains 

in accuracy using one or more additional 
genomes (see below). Expression-based systems 
work by aligning cDNA or protein sequences 
to one or more genome locations based on 
sequence similarity. Some expression-based 
systems are designed to output only alignments 
of expressed sequences to the loci from which 
they were transcribed (native or cis alignment); 
other systems include alignments of expressed 
sequences transcribed from other loci or even 
other species (trans alignment).

Expression-based systems that use only 
native alignments tend to produce exon-intron 
structures that are quite accurate. Their primary 
limitation is that there are many genomes for 
which little or no cDNA sequence is avail-
able. Even fairly deep sequencing of randomly 
selected cDNA clones fails to elucidate the 
structures of the 20–40% of genes in a typical 
eukaryotic genome that are expressed only at 
low levels or under rare conditions. Including 
trans alignments in an annotation increases its 
sensitivity, but the accuracy of trans alignments 
depends on the degree of similarity between the 
expressed sequence and the locus to which it is 
aligned. For loci that cannot be annotated by a 
high identity cDNA or protein alignment, de 
novo systems—which are the primary focus of 
this tutorial—can provide more accurate pre-
dictions.

How well does de novo gene prediction 
work?
The accuracy of de novo gene prediction has 
improved steadily since the introduction of 
GENSCAN2 ten years ago. GENSCAN correctly 
predicts an ORF at ~10% of human gene loci 
that contain a known ORF (gene sensitivity). 
The next major improvement came in 2001, 
with the advent of dual-genome de novo pre-
dictors such as TWINSCAN3. Dual-genome 
predictors use alignments between the target 
genome and a related genome (the informant), 

and can now predict a perfect open reading 
frame for more than one-third of known pro-
tein-encoding human genes4. In more com-
pact genomes, exact ORF accuracy can reach 
60–70%. In general, accuracy increases as 
the number and sizes of introns in a genome 
decrease. Some systems can now use multiple 
informants, but results so far indicate rapidly 
diminishing returns as the number of infor-
mants increases4.

The greatest limitation of GENSCAN was 
that it predicted too many genes (~45,000 in 
human) and exons (~315,000 in human), many 
of which were false positives. For comparison, 
today’s best estimates place the number of 
human protein-coding genes at 20,000–21,000 
(Michele Clamp, personal communication). 
The best dual-genome predictors have nearly 
eliminated this problem, but fragments of pro-
cessed pseudogenes can still show up as false-
positive exons. Such fragments can now be 
eliminated by integrating dual-genome de novo 
predictors with automated pseudogene detec-
tors6. In the past, the number of predicted genes 
was also inflated by the fact that some programs 
could not process entire chromosomes at once. 
Splitting chromosomes before processing would 
split genes that crossed boundaries The best 
dual-genome predictors have nearly eliminated 
this problem, but fragments of processed pseu-
dogenes can still show up as false-positive exons. 
Such fragments can now be eliminated by inte-
grating dual-genome de novo predictors with 
automated pseudogene detectors5. In the past, 
the number of predicted genes was also inflated 
by the inability of some programs to process 
an entire chromosome at once. Disassembling 
chromosomes before processing would split 
genes that crossed boundaries. This problem 
was recently solved by a new, memory-efficient 
algorithm that eliminates the need for separate 
analysis of chromosome fragments6. With 
pseudogene detection and whole-chromosome 
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How do de novo gene predictors work?
De novo gene predictors are based on some 
variant of hidden Markov models (HMMs)8. 
To get an intuition for HMMs, imagine that you 
found a scrap of paper containing the typed let-
ters “hst” and suppose that these letters are a 
fragment of a message written in English. It is 
not likely that the sender intended to type “hst,” 
as relatively few English words contain an “h” 

followed by “s,” rare examples notwithstand-
ing (Fig. 1a). An alternative hypothesis that 
solves this problem is that the sender intended 
to type “hot.” However, typing “o” for “s” is an 
unlikely error, as “o” is nowhere near “s” on the 
keyboard. A more likely hypothesis is that the 
sender intended to type “hat”: “h” is frequently 
followed by “a” in correctly spelled English 
words, and “a” is frequently mistyped as “s”. 
This situation can be modeled by an HMM. 
In HMM terminology, the intended letters are 
called hidden states, or simply states, and the 
letters on the paper are called observations. For 
each state, the HMM specifies the probabil-
ity that it will be followed by each other state 
(transition probabilities) and the probability 
that it will result in each possible observed let-
ter (emission probabilities). For any particular 
HMM and any particular sequence of obser-
vations, the Viterbi algorithm can be used to 
efficiently find the most likely sequence of hid-
den states.

One can imagine a simple application of 
HMMs to de novo gene prediction in which 
the observations are nucleotides of the target 
sequence and the hidden states are the functions 
they serve in RNA processing and translation, 
such as the first and second base of an intron 
(splice donor), a base in the middle region of 
an intron or the first, second and third base of a 
codon. Most gene predictors use a more elabo-
rate type of HMM called a generalized hidden 
Markov model (GHMM). The observation cor-
responding to each state of a GHMM may be a 
DNA sequence of any length, whereas in ordi-
nary HMMs, the observation is always a single 
nucleotide. The states correspond to functions 
such as coding exon, splice donor region of 
an intron, middle region of an intron and so 
on (Fig. 1b). As the input DNA sequence does 
not include the segment boundaries shown in 
Figure 1b, the Viterbi algorithm for GHMMs 
must consider the most likely segmentation 
of the DNA sequence as well as the most likely 
state sequence for each segmentation.

For each state, there is a model that defines 
the probability of each possible observation 
string. For example, consider the first six 
nucleotides of an intron (splice donor region). 
In plants and animals, ~99% of introns begin 
with GT. The third nucleotide is almost always 
A or G, whereas the fourth is A ~70% of the 
time. By compiling these statistics for the first 
six nucleotides of the intron and assuming 
that the base found in one position does not 
depend on the bases found in the other posi-
tions, one can generate a simple probability 
model known as a weight matrix9. The widely 
used sequence logos provide a graphical rep-
resentation of a weight matrix (Fig. 1c). The 
weight matrix can be used to calculate the 

inputs, the number of human genes predicted 
by the N-SCAN system fell to 20,138—remark-
ably close to the current estimates cited above, 
although, of course, predicting the right num-
ber of genes does not mean that all the predicted 
genes are correct!

A detailed analysis of the accuracy of various 
gene-prediction programs spanning the entire 
range of methods can be found in reference 7.
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Figure 1 Hidden Markov models form the basis for most gene-prediction algorithms. (a) Use of a hidden 
Markov model (HMM) to interpret a message containing typographical errors: transition probabilities 
model letter sequences in correctly spelled English words, whereas emission probabilities model the 
probability of each possible typographical error. (b) De novo gene predictors use generalized hidden 
Markov models (GHMMs), in which states correspond to variable-length segments of the DNA sequence 
sharing some common function in transcription, RNA processing or translation. (c) Sequence logos 
representing weight matrices for the last six bases of an intron (left) and the first six bases of an intron 
(right). (d,e) For dual-genome predictors, the observations are segments of an alignment between two 
genomes. The pattern of mismatches and gaps in d suggests a protein-encoding region, whereas the 
pattern of mismatches and gaps in e suggests a noncoding region.
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probability that the start of a randomly selected 
intron will consist of any given 6-mer. Some 
states, such as those for the middle regions of 
introns and exons, use a probability model that 
allows variable-length observation strings. For 
any DNA sequence S, the probability that the 
middle region of an intron will consist of S is 
calculated by multiplying the probabilities of 
each of the bases of S, given the five previous 
bases. For example, the probability of the last 
A in TAGATA would be estimated by finding 
all instances of the previous five nucleotides, 
TAGAT, in the introns of the training set, and 
computing the fraction of those that are fol-
lowed by A. These fractions are stored in a 
large table that the program consults for each 
position in the putative intron middle S.

Dual- and multi-genome de novo programs 
use similar GHMMs, but the observations 
are segments of an alignment of two or more 
genomes. For example, Figure 1d shows an 
alignment with no gaps and with mismatches 
that are separated by multiples of three. This 
pattern supports the hypothesis that the sub-

stitutions all occur in the third codon posi-
tion because such substitutions are frequently 
silent. Thus, this alignment is more likely to cor-
respond to a coding exon than to the middle 
of an intron. Figure 1e shows the same target 
sequence in an alignment with a frame-shift-
ing gap and two adjacent mismatches, which 
undermines the hypothesis that it encodes a 
protein. The most accurate systems also use 
position-specific substitution models for splice 
sites and other signals.

Recently, a new variant on the GHMM for-
malism, the semi-Markov conditional ran-
dom field (SMCRF) has become a focus of 
interest for building de novo gene-prediction 
systems10,11. This formalism is more flexible, 
allowing a wider range of biological features 
to be incorporated into the model with fewer 
technical concerns. Although their accuracy on 
mammalian genomes has not yet exceeded that 
of the best multi-genome GHMM, SMCRFs 
show great promise for extending this remark-
able ten-year run of steadily increasing gene-
prediction accuracy.
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