Programming Rework in Software Processes

Aaron G. Cass
Department of Computer Science
University of Massachusetts
Amherst, MA 01003-4610

acass@cs.umass.edu

ABSTRACT

Our long-term research in process programming is based
on the hypothesis that software processes can and should
be captured accurately and formally, using executable for-
malisms to support execution, analysis, and understanding.
Many process languages have been developed over the years
for modeling processes formally. In this paper, we argue that
for automated support, we need not a process modeling lan-
guage, but a process programming language — a language
with semantics sufficient to support the execution of process
definitions. Specifically, we argue that invocation semantics
are required for accurately describing real-world develop-
ment processes.

We use the common phenomenon of rework as an exam-
ple of a process feature which requires invocation semantics
for adequate specification. In this paper, we argue that re-
work can only be accurately described using invocation se-
mantics borrowed from general purpose programming lan-
guages. We argue this in the general case and demonstrate a
specific case via an example using Little-JIL, our hierarchi-
cal process programming language.

1. INTRODUCTION

Our long-term research in process programming [10] is based
on the hypothesis that software processes can and should
be captured accurately and formally, using executable for-
malisms to support execution, analysis, and understanding.
In this paper, we demonstrate that these formalizations of
processes benefit from semantic features from general pur-
pose programming languages. In particular, we demonstrate
the use of invocation semantics for clearly describing soft-
ware processes with rework.

Software development is the controlled construction of many
intricately interconnected artifacts (e.g. requirements, de-
signs, test cases, and code) that together describe a prob-

Leon J. Osterweil
Department of Computer Science
University of Massachusetts
Amherst, MA 01003-4610

ljo@cs.umass.edu

lem to be solved and its software solution. At any particular
point during development, a developer will be working on a
particular artifact, and might discover a need to revisit pre-
viously developed artifacts, and thus re-perform some activ-
ities associated with those artifacts. For example, at design
time, we might discover missing or ill-defined requirements
and need therefore to “go back” to revisit and revise require-
ments artifacts. This activity is commonly referred to as “re-
work”, a term that is used widely and loosely, but seems to
us to be generally misunderstood. In this paper we demon-
strate how rigorous process formalisms can be used to pro-
vide deeper understanding of this, and similar, software en-
gineering terms. These deeper understandings can also lead
to more effective support for software development.

Because of the key role that rework plays in real-world soft-
ware development processes, any software process model
should accurately describe rework. However, rework seems
to be a challenge to model in available work-flow and pro-
cess formalisms. Such shortcomings are unfortunate, not
just because they fail to elucidate, but also because they fail
to provide the basis for effective automated support.

It is our contention that, during rework, developers do not
simply “go back” to earlier development phases. For exam-
ple, in a design activity, if a requirements artifact must be
revised, the engineers do not abandon the design phase and
go back to plunge into the midst of the requirements phase
in order to re-do requirements. Rather, rework is triggered
by some event(s) during design with the result that some ac-
tivities that had initially been carried out during the require-
ments phase, are now reexecuted, but now in the different
context of the design phase. In this new context, the arti-
facts on which the activity is performed may be different,
may come from a different activity, and may be output to a
different activity. The activity may also consume different
resources and errors may be handled differently in this new
context. The essence of the concept of rework is the pro-
vision of a new context within which previous activities are
re-performed. This understanding leads us to conclude that,
to provide effective automated support for software devel-
opment, context must be allowed to vary for different execu-
tions of software development activities.

Our hypaothesis is that by integrating specification of triggers
and contexts, we can accurately describe rework, thereby



enabling the accurate definition of real-world software pro-
cesses. This will thus allow execution, analysis, and under-
standing of those processes as they are actually carried out.
We argue that in order to specify process activities that be-
have differently in different contexts, the equivalent of pro-
cedure invocation borrowed from general purpose program-
ming languages is required. Therefore, invocation semantics
are required to define and provide automated support for real
software development processes.

In this paper, we describe our approach to define rework ac-
curately and completely, using process definition languages
incorporating invocation semantics and adequate concepts of
scoping. To make these points clear, we give an example
which employs the reinstantiation and scoping mechanisms
of Little-JIL [16], our hierarchical process programming lan-
guage.

2. RELATED WORK

Others have argued the need for rework in general in soft-
ware development processes. Rework is assumed in many of
the popular software development lifecycles. Some of these
have described the life-cycle as a nominal flow with rework
activities that cause cycles in the nominal flow, while oth-
ers show development as a continuous cycle of development
and rework [1, 8]. In much of this work, however, the pro-
cesses are not modeled precisely enough to capture the com-
monly understood concept of rework. As a consequence,
attempts to provide automated support for software develop-
ment based upon these definitions fail to support rework, as
current practitioners know it.

Still others have argued that software development is in-
herently opportunistic [12] and therefore provide automated
support for development without fully modeling the devel-
opment process in which this support is provided. Specific
kinds of rework have also been studied (for example, refac-
toring [6]). While this work is useful, automated support is
generally lacking because triggers, and the resultant rework,
are not formally defined and not integrated into the overall
development process.

In contrast to the wealth of informal guidance in software
development, workflow and process researchers have stud-
ied the software development process as a formal object.
This research has produced many special-purpose process
languages.

For example, there are a large number of workflow model-
ing languages based mostly on data flow diagrams (DFDs)
(WIDE [3] is an example from this class of system). A key
deficiency of such languages is their lack of scoping seman-
tics. While DFD languages often support decomposition,
invocation in differing scopes is not supported. Thus, an ac-
tivity in a DFD may be represented by a box, which can then
be elaborated into an entire sub-DFD that is used to provide
elaborative detail. Certainly the elaborative diagram is de-
fined to be within the scope of the box that is its parent. But
most DFD languages require that such elaborations be de-
fined only once, and always as the elaboration of the single

parent. Incorporation of the elaboration as a sub-activity of
another parent is illegal within the simple semantics of such
languages. But it is precisely this incorporation of a single
structure of sub-activities within various contexts that is the
essence of real rework.

Kellner [9] uses Statecharts [7] to model processes to sup-
port timing simulations. The modeled processes include re-
work by separate states at which modification occurs. Us-
ing Statecharts, transitions to these states are easy to define.
However, the states are only defined in one scope and the
outgoing transitions are fixed. Therefore, the models cannot
show how developers can change to the rework context, and
then resume the context from which they came upon com-
pletion of rework.

We note that the semantics being described here are inher-
ent in the classical notion of procedure invocation, but are
absent from most modeling formalisms (e.g. data flow dia-
grams). In this paper, we argue that invocation semantics are
required for accurately describing real-world development
processes which, by nature, must include rework. Some pro-
cess languages have been developed that have invocation se-
mantics, as they are based on general purpose programming
languages[13, 14]. However, these often do not have the
right abstractions to support effective process description.

HFSP (Hierarchical and Functional Software Process) [15],
a functional process programming language, supports rework
directly with a redo clause which can be used in an HFSP
program to indicate reinstantiation of a step with different
parameters. However, instead of reinstantiating the rework
activity in the new context, thus preserving the history of
the previous executions of the activity, the redo is a rewriting
of the enaction tree as if the original activity was executed
originally with the new input.

3. OUR APPROACH

Our approach is to represent rework as a reinstantiation (or
reinvocation) of a previously instantiated step in a (poten-
tially different) context. A rework context is much like a
scope in a general purpose programming language — the be-
havior of activities can be modified by changing the scope
from which they obtain certain information. In a procedure
invocation, the statements in the procedure might exhibit dif-
ferent behaviors based on the parameters passed to the pro-
cedure. This allows the reuse of the procedure to obtain dif-
ferent behavior. Additionally, the computation is decoupled
from where the results are needed — the procedure does the
computation, but multiple callers can make use of it.

As with general purpose programming languages, the design
of a process programming language affects the kinds of ac-
tivities that can readily be described and automated. We pro-
pose that a process programming language with invocation
semantics that allow the parameterization of a process step in
different contexts can be used to accurately describe rework
and therefore provide the basis for automated support.

Consider a portion of a phased software development pro-



Text Description

Requirements Eludication J_» Declare and Define Rgmt S

Requirements Review

Figure 1: Example Requirement Phase DFD

cess. After requirements specification activities are com-
pleted, the developers proceed to design activities. During
the requirements specification activity, as requirements ele-
ments are developed, they are reviewed, both independently
and for inter-requirements consistency. As design proceeds,
design reviews are also conducted, including ones that check
the conformance of the design with requirements. As a result
of these reviews, it might be discovered that there are design
elements with no corresponding requirements elements, in-
dicating that there are missing requirements. At this point,
the developers should engage in a rework activity. Without
leaving the design phase, some requirements specification
activities must be performed.

Figure 1 shows a data flow diagram (DFD) for an iteration
of requirements activities. The DFD shows a Requirements
Elucidation step followed by a Declare and Define Rgmt Step,
which takes a text description of what requirement to de-
velop. When the requirement is done, a review is conducted.
All of this is within the scope of the requirements phase.
However, if we later discover during the design phase that
the requirements must be re-visited, some of the activities
will have to be reexecuted in new scopes. For example,
we might find in a design review that a new requirement is
needed. This need can be addressed by reexecuting Declare
and Define Rgmt, giving it a text description from a design
step (instead of the requirements elucidation step).

This rework is difficult, if at all possible, to describe accu-
rately using traditional DFD semantics. If a step in viewed
as a procedure, in a DFD the procedure definition is not sep-
arable from the invocation — the step is only performed in a
single context. It might seem that adding a data-flow edge
from the design step to Declare and Define Rgmt with new pa-
rameters would be adequate. However, in addition to having
the inputs come from the design step, we need the outputs
to go to the design step. In other words, we need to resume
where we left off after reworking the requirements. The tra-
ditional DFD semantics do not support this resumption with-
out copying the rework step statically into the new context.
Copying is particularly troublesome and error-prone if the
rework step has sub-steps.

Even though DFD semantics don’t support rework very well,
rework is very easy to describe using invocation semantics
from general purpose programming languages. Procedures
can be defined that can later be invoked from multiple differ-
ent scopes. The procedures can therefore be parameterized
differently for different invocations. A process programming
language with invocation semantics similar to those in gen-
eral purpose programming languages can thus support the
following kinds of desired parameterizations:

®
v DevelopmentA

Requirements High-Level Design

Figure 2: A phased software development process

e Parameter flow. Parameter flow consists not just of
the values of the parameters, but also the sources and
destinations of those parameters. In a procedure invo-
cation, the caller passes parameters and gets the results.

e Exception handling. A process step, much like a pro-
cedure, might throw an exception if some portion of
the activities cannot be performed correctly. In a pro-
gramming language like Ada or Java, the exception
handling is scoped by placing the procedure invoca-
tion within a block with an attached exception handler.
Therefore, to change the way that exceptions from a
procedure are handled, we can simply scope the differ-
ent invocations with different containing blocks. This
is useful for processes as well. For example, in the re-
quirements phase we might wish to respond to a failed
requirements review by redeveloping the offending re-
quirement and then continuing with the rest of require-
ments. If we are re-reviewing the requirements as part
of reworking requirements in the context of design, we
might instead consider a more complicated process in-
volving changes in design as well as requirements.

Therefore, it seems that a general purpose programming lan-
guage could support rework with invocation semantics. Pro-
cess languages based on standard programming languages
have been proposed [13, 14] that could therefore support re-
work. We argue, however, that these languages have tended
not to have the right abstractions to support effective pro-
cess definition. Therefore, we propose that a special-purpose
process language borrow invocation semantics from general
purpose programming languages in order to support rework.

There are, of course, issues to consider when integrating in-
vocation semantics. For example, what parameter passing
modes are useful for process programs? Are there restric-
tions on parameter types (for example, can process steps be
passed to other process steps)?

4. EXPERIENCE

To investigate the approach, we have applied it, using our hi-
erarchically scoped process programming language, Little-
JIL [16, 17], to develop software process programs including



®
v RequirementsA

Inter-rgmts
consistency
check

v Develap Rgmt EIementA

rqgmtReviewFailed

v Declare and Define qutA

Requirements Review

v Declare Rqmt EIementA v Define Rgmt EIementA

Figure 3: Requirements activities

rework. Figure 2 shows a Little-JIL program for a part of the
phased software development process described above. A
Little-JIL program is a hierarchy of steps, each of which has
an interface and defines a scope. Little-JIL is a visual lan-
guage in which every step is represented by a named black
bar. The step interface is represented by annotations on the
filled circle above the name of the step. The interface rep-
resents the view of the step as seen from the parent step.
Little-JIL also allows steps to be referenced from other parts
of the program. A reference represents a reinstantiation and
invocation in the new scope, and is key to describing rework.
Little-JIL passes parameters as value, result, or value-result.

In Little-JIL, we have tried to give first-class status to those
abstractions that help describe real-world processes. Be-
cause of this, the aspects of rework contexts described above
are easily captured in a Little-JIL program. In this section,
we describe how scopes define parameter flow and exception
handling for a reinstantiated step, using a Little-JIL elabora-
tion of the process described above.

In Figure 2, the right-arrow in the root step indicates that
the substeps are to be executed left-to-right, starting with
Requirements and continuing next with High-Level Design. Fig-
ures 3! and 4 show elaborations of the Requirements and High-
Level Design steps, respectively.

The triangle to the right of Declare and Define Rqmt in Fig-
ure 3 indicates a post-requisite, a step that is executed when
Declare and Define Rgmt completes. In this case, the post-
requisite is a Requirements Review. If the post-requisite com-
pletes without any errors, then Declare and Define Rgmt cOm-
pletes successfully. However, if errors are found in the Re-

quirements Review, a rqmtReviewFailed exception can be thrown.

YIn this and other Little-JIL figures, we show some information
in comments (shaded boxes) because the editor we use for creating
Little-JIL programs does not show all information in one view. The
comments are not meant to indicate that the program is incomplete
or imprecise.

®
v High-Level DesignA

ﬁq mtsinconsistent

v Develop Design EIementsA

. MissingRgmts

Declare Design Elements
v A Add new requirements elements

design-rqmts
confarmance
check

v Define Design EIementsA

v Declare Design EIementA

Figure 4: High-Level Design activities

In Little-JIL, exception handling is scoped by the step hier-
archy. So, in this case, the rgmtReviewFailed exception will
propagate to the Develop Rgmt Element step. The handler at-
tached here indicates that we should restart the Develop Rgmt
Element step, and recreate that requirement element.

Once requirements elements have been declared and defined,
we proceed to High-Level Design. As can be seen in Figure 4,
after all design elements have been declared (by Declare De-
sign Elements), & design-rqmts conformance check post-requisite
is executed. During this review, we could check that all de-
sign elements have associated requirements elements. If we
discover that there are design elements without associated
requirements, we can throw a MissingRgmts exception. In this
context, this is handled by the exception handler called Add
new requirements elements, Which is elaborated in Figure 5.

Add new requirements elements first defines a new requirements
concept for use as input to the Declare and Define Rgqmt Step,
which was defined earlier in the Requirements phase in Fig-
ure 3. This reference to Declare and Define Rgmt is an example
of rework.

4.1 Varying Parameter Flow

As shown in Figure 5, the Declare and Define Rgmt step is
used within the scope of Add new requirements elements. This
means that the design concept input to Declare and Define
Rgmt is passed from Add new requirements elements. This al-
lows varying of parameter values and additionally allows the
source and destination of to vary in much the same way as a
procedure call in a general purpose programming language.

4.2 Varying Exception Handling

Little-JIL’s exception handling mechanism is slightly more
complex than parameter flow, but especially important in
supporting real-world processes. There are four aspects of
exception handling that must be specified in a Little-JIL pro-
cess program:



O

Inter-rqmts

VAdd new requirements elements consistency

v Define new rgmt COnCEpt&DECIarE and Define Rgmt

check

rgmtReviewFailed

v Complicated Fix ProcessA

Figure 5: Rework in the context of design

1. Which exceptions a step can throw
2. At which scope they will be handled
3. What steps will execute to handle them

4. How will the process continue after exception handling

Recall that Declare and Define Rqmt has a Requirements Review
post-requisite that can throw a rqmtReviewFailed exception. In
the Requirements phase, the exception is handled at the scope
defined by Develop Rgmt Element, no step is executed to han-
dle the exception, and the process continues by redefining
the requirements element (indicated by the angled arrow).
However, in the design phase rework context, we can define
a different exception handling rule. As shown in Figure 5,
we have defined a Complicated Fix Process handler for the
rqmtReviewFailed exception. Instead of simply re-doing the
requirements element, Complicated Fix Process, which could
be further elaborated, might involve changing the design ele-
ments related to this requirement element. The continuation
after this handling can also be different in this new context
— in this case, we continue the Add new requirements elements
step (as indicated by the right arrow on the edge). Thus, we
can change the scope at which the exception is handled, what
steps handle the exception, and how the process continues.

This example has shown that rework can be described with
invocation semantics that allow parameterization of data flow
and exception handling. This allows the development to pro-
ceed as a phased development process, getting the benefits of
those phases, while still allowing activities to be reexecuted
as needed. Furthermore, because Little-JIL is executable, re-
work specified this way can actually be executed according
to a rigorous semantics, thus providing automated support.

4.3 Additional semantics

In addition to parameter flow and exception handling bor-
rowed from general purpose programming languages, Little-
JIL allows the specification of resource management [11] —
managers of processes are very concerned about resource al-
location and utilization, so resource management has first-
class status is Little-JIL. Figure 6 shows a step Declare and
Define Rgmt With a resource specification which indicates that
the agent for the step must be a Rgmt Engr?. At run-time, the

2In this example, we give only the type Rgmt Engr. However, the
specification can be any legal query that our externally defined re-

Develop Rgmt Element

@ agent: Rgmt Engr agent | RgmtTeam

Declare and Define Rgmt

Figure 6: Resource Specification

specification is interpreted by a resource management com-
ponent as a query for a resource from the resource model.
The resource manager will choose a resource from those
available in the resource model that satisfy the specification.

When we use step Declare and Define Rqmt in the design phase
as a rework activity, different resources can be acquired for
two reasons. First, the state of the resource model might
be different — different resources might be available or new
resources might have been added or removed due to staffing
changes. Second, Little-JIL allows specification of a narrow-
ing of the space of resources to be considered for a particular
acquisition. The specification on the edge in Figure 6 indi-
cates that the agent must come from the RqmtTeam, which is a
resource collection passed from the parent step. In the rein-
vocation in the design phase, however, we can constrain the
agent specification with a different annotation on the edge
(or, in fact, not constrain it at all to indicate that any Rqmt
Engr will do).

We should note that, even though resource allocation is not
borrowed directly from general purpose programming lan-
guages, it is analogous to shared-memory approaches like
tuple-spaces in Linda [2]. A Linda function can use the
shared tuple space by retrieving a tuple from the tuple space
by specifying a template. The current state of the shared
memory will determine what tuple is retrieved, just as the
state of the resource model can affect the acquisition of re-
sources in Little-JIL. Also, the template could be derived
from input parameters to the function, so the function’s use
of the shared space can be modified by changing input pa-
rameters, much like a resource acquisition is affected by the

source manager can execute. For example, we could specify that
Declare and Define Rgmt needs a Rgmt Engr with attributes indi-
cating that he or she knows UML use cases.



narrowing specification on the incoming edge to a Little-
JIL step. One major difference, however, between a Little-
JIL step with a resource allocation specification and a Linda
function that uses a shared tuple space is that the use of the
resource manager is shown directly in the interface to the
Little-JIL step — resource management is a first-class part of
the interface.

It is our experience that affording resource management first-
class status in this way allows us to more accurately define
rework by allowing an important parameterization of behav-
ior in the rework context. This, combined with the param-
eter flow and exception handling parameterizations that we
accomplish by step invocation, has enabled us to effectively
write process programs for software development processes
that seem to us to be significantly more faithful to conven-
tional notions of rework.

These process programs can then be executed using Juli-
ette [4], our interpretation environment for Little-JIL. Juli-
ette faithfully executes the programs according to the Little-
JIL semantics by assigning work to execution agents at ap-
propriate times. The agents choose among those steps as-
signed to them which steps to execute, and when. In this
way, we can allow the flexibility that is needed by oppor-
tunistic development, while still providing an overall frame-
work for the process, including rework. Thus, by using rig-
orous semantics, both custom and borrowed from general
programming languages, we can provide automated support
for realistic software development processes.

5. FUTURE WORK

Formalization of rework as reinstantiation in context has not
only allowed a description of more realistic processes, but
has also helped to focus our language design effort on giving
first-class status to those abstractions that support even more
realistic process specifications, thus allowing them to act as
parameters in a reinstantiation of a step. We are currently
investigating ways to add a data sharing mechanism for steps
and it will be represented in the interface of a step and its
behavior will be subject in part to the context in which the
step is used.

This paper has focused on the invocation of rework activities
based on design and requirements review triggers. In order
to provide even more accurate representation of software de-
velopment decision making, we are working of formalizing
the triggers as constraints on and between artifacts [5].

Other future work will be focused on more reactive process
descriptions. In this paper, we have shown rework triggered
by post-requisites to steps. This proactive control is useful
for describing rework caused by planned reviews, but it does
not support more opportunistic triggers — for example, a de-
veloper discovers alone while thinking about a project that
some artifact previously developed must be reworked. We
would argue that these opportunistic reworkings should be
supported in process programs and still require contexts that
can be parameterized. However, a reactive mechanism for
the trigger is needed.

Additionally, because invocation semantics have proved so
useful for process descriptions, we continue to explore the
need for other semantics that are common to programming
languages (e.g. various forms of iteration), but generally ab-
sent from modeling languages like data flow diagrams. Our
work is driven by the hypothesis that processes can be pro-
grammed, not just modeled, and that automated support re-
quires executable semantics. Based on the success of this
work, we expect to find other semantics from programming
languages useful in describing a full range of software de-
velopment processes.

6. CONCLUSIONS

Our experience writing several process programs with this
approach has shown that important parameterizations of con-
text must be described in order to accurately describe real-
world software processes. In order to allow these parameter-
izations to affect the behavior of activities in different con-
texts, we need an equivalent to procedure invocation. Thus,
our work has shown that the concepts of scope, abstrac-
tion, and invocation which have long been staples of general
purpose programming languages are also useful in process
programming languages for capturing the semantics of real-
world processes.

By integrating specification of rework triggers and parame-
terization of contexts into executable process programs, we
have provided a framework to support more realistic rework
in processes. Therefore, using semantics borrowed from
general purpose programming languages along with some
that are unique to process programming, we can support the
execution, analysis, and understanding of real-world soft-
ware development processes.

Acknowledgements

We would like to thank Alexander Wise for many fruitful
conversations and for his efforts both supporting Little-JIL
and writing process programs that use the idioms developed
in this work. We also thank Heather M. Conboy for her sug-
gestions for improving this paper.

This research was supported in part by the Air Force Re-
search Laboratory/IFTD and the Defense Advanced Research
Projects Agency under Contract F30602-97-2-0032 and by
the U.S. Department of Defense/Army and the Defense Ad-
vance Research Projects Agency under Contract DAAHO1-
00-C-R231. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes, not-
withstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of the U.S. Dept. of Defense, the Air
Force Research Laboratory/IFTD, the Defense Advanced Re-
search Projects Agency, the U. S. Army, or the U.S. Govern-
ment.

7. REFERENCES



[1] B. W. Boehm. A spiral model of software
development and enhancement. IEEE Computer,
21(5):61-72,1988.

[2] N. Carriero and D. Gelernter. How to Write Parallel
Programs A First Course. MIT Press, 1990.

[3] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi.
Specification and implementation of exceptions in
workflow management systems. ACM Trans. on
Database Systems, 24(3):405-451, Sept. 1999.

[4] A. G. Cass, B. S. Lerner, E. K. McCall, L. J.

Osterweil, and A. Wise. Logically central, physically
distributed control in a process runtime environment.
Technical Report 99-65, U. of Massachusetts, Dept. of

Comp. Sci., Nov. 1999.

[5] A. G. Cass and L. J. Osterweil. Design guidance
through the controlled application of constraints. In

Proc. of the Tenth Int. Workshop on Soft. Specification

and Design, Nov. 5-7, 2000. San Diego, CA.

[6] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[7] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working

environment for the development of complex reactive
systems. IEEE Trans. on Soft. Eng., 16(4):403 — 414,

Apr. 1990.

[8] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified

Software Development Process. Object Technology
Series. Addison-Wesley, 1999.

[9] M. I. Kellner. Software process modeling support for

management planning and control. In Proc. of the
First Int. Conf. on the Soft. Process, pages 8-28.
IEEE-PRESS, Oct 1991. Redondo Beach, CA.

[10] L. J. Osterweil. Software processes are software, too.

In Proc. of the Ninth Int. Conf. on Soft. Eng., Mar.
1987. Monterey, CA.

[11] R. M. Podorozhny, B. S. Lerner, and L. J. Osterweil.

Modeling resources for activity coordination and
scheduling. In Proceedings of Coordination 1999,
pages 307-322. Springer-Verlag, Apr 1999.
Amsterdam, The Netherlands.

[12] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles.
Argo: A design environment for evolving software

architectures. In Proc. of the Nineteenth Int. Conf. on

Soft. Eng., pages 600-601. Assoc. of Computing
Machinery Press, May 1997.

[13] S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil.

APPL/A: A language for software-process
programming. ACM Trans. on Soft. Eng. and
Methodology, 4(3):221-286, July 1995.

[14]

[15]

[16]

[17]

S. M. Sutton, Jr. and L. J. Osterweil. The design of a
next-generation process language. In Proc. of the Sixth
European Soft. Eng. Conf. held jointly with the Fifth
ACM SIGSOFT Symp. on the Foundations of Soft.
Eng., pages 142-158. Springer-Verlag, 1997. Zurich,
Switzerland.

M. Suzuki, A. lwai, and T. Katayama. A formal model
of re-execution in software process. In Proc. of the
Second Int. Conf. on the Soft. Process, pages 84-99.
IEEE-PRESS, Feb. 1993. Berlin, Germany.

A. Wise. Little-JIL 1.0 Language Report. Technical
Report 98-24, U. of Massachusetts, Dept. of Comp.
Sci., Apr. 1998.

A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, and S. M. Sutton, Jr. Using Little-JIL to
coordinate agents in software engineering. In Proc. of
the Automated Software Engineering Conf., Sept.
2000. Grenoble, France.



