
Using Task Models for Cascading Selective Undo

Aaron G. Cass and Chris S. T. Fernandes

Union College, Schenectady, NY 12308 USA,
{cassa, fernandc }@union.edu

Abstract. Many studies have shown that selective undo, a variant of the widely-
implemented linear undo, has many advantages over the prevailing model. In
this paper, we define a task model for implementing selective undo in the face of
dependencies that may exist between the undone action and other subsequent user
actions. Our model accounts for these dependencies by identifying other actions
besides the undone one that should also be undone to keep the application in a
stable state. Our approach, which we callcascading selective undo, is built upon
a process-programming language originally designed in the software engineering
community. The result is a formal analytical framework by which the semantics
of selective undo can be represented separately from the application itself. We
present our task model, the selective undo algorithm, and discuss extensions that
account for differing kinds of inter-action dependencies.

1 Introduction

Most applications that support an undo command use alinear undomodel. Under this
model, only the most recent user action is retracted, and multiple consecutive executions
of the undo command iterate backwards through the history list. In general, given user
actionsA1, ..., An, issuing an undo command will only undo actionAn, and one cannot
undo any actionAi without also undoing actionsAi+1, ..., An.

However, theselective undomodel, introduced by Berlage [3] and studied more
formally by Myers and Kosbie [7], has long been studied as an alternative to the linear
model. In selective undo, a user can undo an arbitrary actionAi without undoing other
actions. This has significant advantages over the linear model. First, collaborative en-
vironments necessitate the implementation of a non-linear model. If multiple users are
editing the same shared document over a network simultaneously, then any particular
user’s most recentlocal action may not be the most recentglobal action in the system.
Therefore, any undo implementation must be selective by nature.

Second, selective undo encourages a user’s exploration of an application, especially
when the application allows for tasks to be done in an arbitrary order. Consider a word
processor user who wants to change a document from a current stateA to another state
B, but is unsure of the exact steps she should take to accomplish this. It would be
preferable for the user to be able to perform a series of tentative steps fromA towards
B all the while knowing that she could return to stateA at any time via undo – even if
other unrelated tasks, such as the changing of a word at the behest of the spell checker,
were performed during the exploration process. Selectively undoing the tentative steps
without changing the results of the spell checking allows for greater flexibility than the
linear model.



One of the biggest challenges in the implementation of selective undo, however, is
in defining what should happen to subsequent user actions in the history list that are
semantically dependent on the selectively undone item. Consider the following word
processor commands:

1. Type “hello”.
2. Italicize “hello”.
3. Copy “hello”.
4. Paste in position x.

Selectively undoing the second action could result in the removal of italics from either
the original and the pasted text or just the original text, depending on how we define
the pasted text’s relationship to the original. Indeed, the repercussions of not dealing
with dependencies can be more severe than just an unexpected change in formatting.
In general, the selective undoing of a user action that creates an objectA will result in
ambiguity over how to interpret a subsequent user action in the history list that affects
the value of some property ofA. Dependencies such as these must be considered for
a selective undo mechanism to handle complex tasks. In previous work, these depen-
dencies are accounted for in limited ways, such as treating some tightly dependent user
actions as null operations during undo [5] or disallowing the undo action if the result
will not be meaningful [3]. We propose a different alternative – allowing an undone ac-
tion to cause the undoing of other user actions until a meaningful state is reached (with
appropriate user feedback and override controls). We believe thiscascading selective
undooffers more flexibility than previous approaches.

In this paper, we introduce a paradigm for cascading selective undo that explicitly
models and tracks dependencies that exist between user actions. We model these de-
pendencies using a process language originally designed for the software development
community. We believe this to be a good match since software engineering is a domain
in which dependencies between user tasks frequently occur, and thus provides fertile
ground for determining appropriate undo semantics. In addition, tools already exist in
the software engineering community for capturing dependencies in complex process or
workflow models. Conversely, the tools which are used for software development can
greatly benefit from a feature allowing selective undo.

Section 2 discusses related work in the area of selective undo. Section 3 explains
our approach, detailing why we believe structure should be placed on user tasks, out-
lining motivating examples, and presenting our algorithm for cascading selective undo.
Section 4 highlights future extensions to this approach, and Section 5 gives concluding
remarks.

2 Related Work

The semantics as to how selective undo should work have not converged in the litera-
ture. Many implementations use thescript paradigm [2], in which the result of undoing
actionAi alone is equivalent to the result reached by executing user actions:

A1, ..., Ai−1, Ai+1, ..., An



in that order. That is, if the list of user actions is viewed as a script, undoing one action is
equivalent to removing that action from the script, with no other changes. This can result
in side effects the user may or may not have intended, such as the changing of the pasted
text’s formatting in the example above. On the other hand, selective undo as discussed
in the GINA system [3] simply restores the values of an undone item’s properties to
what they were immediately before the original execution of the user action. For our
example above, this results in the removal of italics from just the original text. This
ambiguity in the definition of selective undo points to the disparity between the way
undo is perceived by interface programmers compared to users [1, 6]. Relationships
between actions are often known to users of an application because they know how
they are trying to use the system, but the system does not know the relationships and
therefore cannot act on them.

Myers and Kosbie [7] later adopted the selective undo semantics used in GINA
when they implemented their Amulet user interface. By implementingcommand ob-
jects, they organized user actions into a hierarchy which allowed higher-level com-
mands to be invoked by lower-level commands. Their system not only supported se-
lective undo, but selective reusability of arbitrary commands on new objects. However,
since Amulet supported GINA semantics, their support for dependencies associated
with selective undo is limited to undoing the values of command objects’ properties. If
a user used two command objectsA andB where the output of usingA was piped as
input intoB, the selective undoing ofA may leaveB in a semantically unstable state.

Regarding undo in collaborative frameworks, Abowd and Dix [1] point out that
evendefiningundo from a user’s perspective can be a daunting task. Chen and Sun [4]
use the script model to implement their Any Undo feature (described in [11]) in the
GRACE collaborative graphical editing system. Prakash and Knister [9] augment their
DistEdit package–a group text editor building kit–with a form of selective undo where
a Conflict function is used to check to see if two operations are dependent on each
other in such a way that one cannot be undone with the other also being undone. And
Ressel and Gunzenhäuser [10] use dynamic transformation rules to effect undo in a
collaborative system by allowing transformations to affect future transformations in a
pre-determined way. However, in all of these systems, any accounting of dependencies
is done through the implicit encoding of them into the undo algorithms themselves. A
major novel aspect of the model we propose is that dependencies and undo semantics
are abstracted to an external representation. This allows the semantics of undo to be
separately represented apart from the application code itself.

3 Our Approach

Before detailing a couple of examples that will be used to explain our approach, let us
first explain that the approach assumes that an application imposes structure on how a
particular user interacts with it. We argue (a) that imposing some structure on the use
of technology can have distinct benefits for supporting users and (b) that many applica-
tions already do this. Consider, for example, automated teller machines (ATMs). Most
ATMs ask the user to enter a personal identification number (PIN) before any other
action. The underlying reason to request a PIN is that the user must be authenticated



before the system withdraws money from their bank account. However, the system need
not authenticate the user as the first action – it can wait to get authentication when it is
directly needed. However, there are good (usability and security) reasons to request the
PIN first. Therefore, imposing structure has benefits and is currently done in applica-
tions of many sorts.

Of course, not all structures are good for all uses or all users. A task structure de-
signed to help one usePowerPointto create an organization chart will clearly not help
one create a slide presentation. So, instead of forcing one structure, we propose that
multiple structures be made available, thus creating differentapplicationsthat use the
underlying application as a basic technology – in essence, the user interacts with the
composition of the underlying application and a structure that specifies away of using
the application. We also propose that these models be relatively high-level, thus allow-
ing the user to flexibly use the low-level application for low-level tasks but guiding them
to string the low-level tasks together to solve the higher-level objectives.

Note that users of current applications have (at least a rough) understanding of the
way they wish to use their applications. Unfortunately, the user does not have a way
to indicate to an application how the application will be used and therefore cannot get
specific guidance from the application itself. We propose that users can choose the
way they want to use a system by choosing a particular task model, thus informing the
system of their choice. The system can therefore use the chosen task model to constrain
use of the system, thus guiding the user in their task.

Note also that the task models are not created by the end users of the system. While
end users can certainly be involved in the specification of ways of using applications,
we imagine that these models will be generated by domain experts. These experts will
create specific task models that they expect with be of value, either because they de-
scribe very common tasks, popular uses of the underlying application, or uses needed
within a particular organization.

The task models can be arbitrarily flexible, effectively removing all constraint on
use. So, the approach we describe does not require imposing arbitrary structure – but
we expect that when structure is imposed, we can give the user benefits. In particular,
knowing the structure of the task the user is trying to accomplish can help us provide
what we believe is a more natural mechanism for theundocommand that takes this
structure into account. It is the meaning of undo in these structured situations that we
discuss in this paper. We start with an explanation of two examples that illustrate the
desired behavior of undo in different scenarios.

3.1 Motivating Examples

Consider, as a running example, a scenario in which two authors are using a presentation
application, such asPowerPoint, to create a single presentation, and they wish to impose
a structure upon their presentation in the form of sections, subsections, etc. with the
slide being the most basic unit of a section. They wish to have a Table of Contents slide
at the beginning of the presentation that shows a list of the section names. This slide
is then repeated at the beginning of each section with the next immediate section name
highlighted.



We consider two examples to demonstrate the mechanics of cascading selective
undo.

Example 1.Consider the following user actions:

1. User 1 begins the process of adding a section by creating a section header.
2. User 2 updates the Table of Contents slide to include the new section.

Suppose User 1 then decides against the creation of the new section and undoes step
1. Since the Table of Contents slide content is dependent on the existence of sections,
the update in step 2 should also be undone. In other words, the undo should cascade
to step 2. It is this dependency that must be represented. At first glance, this action is
equivalent to what would happen under the linear undo model, but the second example
shows how selective undo reacts in a more complex situation.

Example 2. Consider the following set of user actions. To save space, we have
grouped multiple user actions into single steps in places where the point of the example
is not affected:

1. User 1 creates slidesA1 throughAn.
2. User 1 creates section title slidesS1 throughSm.
3. User 1 creates the Table of Contents slide.
4. For each slideAi, User 1 places it into its appropriate section,Sj .
5. User 2 creates slidesAn+1 throughAn+k.

Suppose that after User 2 creates the lastk slides, User 1 realizes that the section struc-
ture is not appropriate and wishes to delete it, perhaps because the new content does
not fit in the existing structure. Selectively undoing step 2 would accomplish this. In-
tuitively, we want our undo mechanism to be aware that the presentation structure is
independent of the slides, so that undoing step 2 would cascade to steps 3 and 4 but
not to step 5. While this accomplishes the same goal as deleting the structure manually,
undo is more efficient because the structure, with all of its nested subsections, may be
spread throughout the presentation, making it difficult for the user to find and delete all
occurrences by hand.

Both of these examples show how cascading could be used to bring the user docu-
ment back to a stable state. We now describe the language and algorithms that we have
developed to accomplish this.

3.2 Modeling Dependencies

Any number of formalisms could adequately model control dependencies between tasks.
However, some software engineering researchers have developedprocess-programming
languages [8], which not only model task dependencies, but also enable automated ex-
ecution of these task models to track user progress on the tasks. We chose to use Little-
JIL [13], a recently-developed, feature-rich, graphical process-programming language.
One of the authors (Cass) has been involved with the development of this language and
the infrastructure that supports it, and has used it to develop a software design tool. We
now show how this language can be used in the context of the previously-described
examples.



Fig. 1. A Little-JIL program that shows the overall process, elaborated further in other
figures, for creating a structured presentation.

Figures 1, 2, and 3 show a task model1 for the application presented in the previous
section. The task model represents the overall task as an elaborated hierarchy of tasks,
while thekind of a parent task determines the order of execution of its child tasks. The
Create Structured Presentation task in Figure 1 is of theparallel kind, as indicated
by the two horizontal bars. Because it is a parallel task, its children,Add Slides and
Add Structure, can be performed in any order, to be chosen by the users of the system.
In essence, we are saying here that these tasks do not depend on one another for the
reasons outlined in the previous section.

Figure 1 also shows the cardinality mechanism of the language. The question mark
on the edge aboveAdd Structure indicates that this task is optional in this context. The
users of the system need not add any structure to the presentation. However, if they
decide to add structure, they must add one or more sections, as indicated by the plus
sign on the edge aboveAdd Section. Note thatAdd Structure is parallel, indicating that
the sub-tasks involved in adding sections do not depend on each other – sections are
independent.

Note also the two tasksCreate Slide andAdd Section. Create Slide is a leaf task, a
primitive task actually performed by a user, as indicated by the lack of a task kind.Add
Section on the other hand, is areference, as indicated by lack of the triangles on either
side of the task name2, and is therefore further elaborated somewhere else.

In this caseAdd Section is elaborated in Figure 2. As indicated by the arrow,Add
Section is a sequentialtask and thus its child tasks must be performed in left-to-right
order. The user must add a section header first, update the corresponding table of con-
tents slides, and then elaborate the section. What is not shown in the diagram is that
not all of these tasks need be performed by the same user. In fact, it is relatively easy

1 We use the wordtask modelto emphasize that we do not specifically require a process-
programming language. In the software engineering literature, task models are calledprocess
programsand tasks are calledsteps.

2 These triangles represent pre- and post-requisites, which are not used in this example.



Fig. 2.An elaboration of theAdd Section step from Figure 1.

to arrange for some of the tasks to be automated – for example, the system could au-
tomatically update the table of contents pages because such pages are fully determined
by the section and subsection headers added by users.

Note that this particular way of creating presentations is not novel, and in fact
there are applications that directly support this method (for example, the Beamer [12]
LATEX package). However, we aim for a more flexible, general approach that would sup-
port multiple ways of using the same underlying tools to perform different tasks – by
encoding the different ways of using the tools in task models, the system can support
and guide the users to use the tools in different, useful ways.

Note that there are other task kinds not used in our example (see Table 3.2). By
changing the task kinds, we can easily create different user experiences. For example,
changing the kind of theCreate Structured Presentation task tosequentialindicates that
one should create slides first and then add structure. For novice users, one might want to



Table 1.The different task kinds supported by Little-JIL.

Kind Symbol Description

Sequential Child tasks must be performed in left-to-right order.

Parallel Child tasks can be performed in any order, possibly overlapping.

Choice One child task, chosen by the users, must be performed.

Try Child tasks are tried in a specified order; task is done when one child
succeeds.

give more precise guidance, while for experts, one might want more choice and parallel
tasks.

Continuing with the example,Elaborate Section involves (optionally) adding sub-
sections and adding slides to the section (if we did not want to add slides to the section,
we would not have added the section).Add Subsections is defined similarly toAdd
Structure. Both referenceAdd Slides to Structure, which is elaborated in Figure 3.

Though not shown, the language also supports aparameter-passingmechanism. For
example, to enableAdd Slides to Structure to be used in the two previously-described
contexts, we can define it to take as a parameter the name of the section or subsection
to which to add slides.Update TOC Slides would also take the section or subsection
header as a parameter.

Fig. 3. An elaboration of theAdd Slides to Structure step from Figure 2. The star (*)
cardinality indicates that zero or more slides may be added by the user.



Add Slides

Create Slide Create Slide Create Slide

Fig. 4.A possible instance tree for theAdd Slides task.

3.3 The Main Cascade Algorithm

Given the dependencies modeled in a task model of the kind outlined above, and given
a user request to undo one of the tasks, a cascading selective undo algorithm must
calculate thecascade, i.e. the set of tasks that must also be undone if the requested task
is to be undone. The algorithm must ensure that if only the selected task and the tasks
in its cascade are undone, the system will arrive at a meaningful state. In other words,
the algorithm must ensure that the system after the undo command is completed is one
that could have been reached by following the task model on a path from the starting
state.

To clarify the context in which such algorithms must work, let us note here that the
task model isinstantiatedas the users interact with the system. The tasks in the task
model representtypesof tasks that are instantiated in different contexts. For example,
Elaborate Section is instantiated with different parameters. As another example, con-
sider theinstance treeshown in Figure 4, which is one possible instantiation of the
Add Slides sub-tree from the task model. In this example, there are three instances of
Create Slide, indicating that users have created three slides using the system. Note that
the instances are different. In particular, the first instance ofCreate Slide is different
from the second instance – the second instance is optional because the first one will
have satisfied the cardinality of the task. Both instances share the same parent instance
(an instance ofAdd Slides), but they differ in this important context. The task model is
therefore a model of task types, while the algorithm must work with task instances.

Simpler task-modeling formalisms that model task instances directly afford rela-
tively simple cascade logic – if a dependency edge exists between the task instances,
the target task is in the cascade of the source task. However, such simpler task-modeling
formalisms would not allow reuse of tasks in different contexts, would not model
naturally-hierarchical tasks, and would not allow specification of cardinality. Our al-
gorithm, on the other hand, must compute the dependency relationship between pairs
of task instances based on relationships between task types. The input, therefore, to our
algorithm is a task instance to be undone, while the output is the set of all task instances
that must also be undone to cause the system to arrive at a state consistent with the task
model. The main algorithm, which deals only with control dependencies specified by
the task kinds, follows:



COMPUTECASCADE(t)
Input: Task instancet to be undone.
Output: Cascade fort.

1: C ← {t}
2: if t is root taskthen
3: returnC
4: p← t.parent
5: k ← p.kind
6: C ← C ∪ COMPUTECASCADE(p)
7: if k = SEQUENTIAL∨ k = TRY then
8: C ← C ∪ subtrees(p.childrenAfter(t))
9: returnC

The algorithm, as outlined above, assumes that task instances have the following
attributes:

– parent: The parent of task instance.
– kind: The task kind of the associated task.

In addition to these attributes, task instances need achildrenAfterfunction, which
returns the children of the task that are to the right of the given child – that must come
after the given child in the sequential ordering of the sub-tasks. We also use asubtrees
function to find all tasks in the subtrees rooted at those children.

Theorem 1 COMPUTECASCADE(t) correctly computes the setC of all existing tasks
dependent ont by a control dependency specified in the task model.

Proof. Consider a tasks dependent ont by a control dependency in the task model.
Because the only dependencies we consider are those specified by the task kinds,s
depends ont because they share a common ancestor,A, that makes that dependency
explicit. Parallel and choice kinds do not control the order of execution of their sub-
trees, soA is neither parallel nor choice – it must be of sequential or try kind. We
know thats is not in a sub-tree to the left oft’s sub-tree atA – this would imply thats
necessarilyhad to be performed beforet, not the other way around. Therefore,s is in a
sub-tree to the right oft’s sub-tree atA. Because the recursion starts att and moves up
the tree, the algorithm eventually reaches a child ofA and then line 8 of the algorithm
addss to the setC.

Similar logic can be used to show that no task is added toC if it is not dependent
on t. Therefore, we have shown that the setC is equivalent to the set of tasks dependent
on t.

Let us now return to the motivating examples to see how the above algorithms would
produce the desired results. Figure 2 shows the tasks relevant to Example 1: namelyAdd
Section Header andUpdate TOC Slides. When theAdd Section Header task is undone,
the sequential control dependency of its parent causes line 8 of the main cascade algo-
rithm to execute. This causes all children of the sequential nodeAdd Section which are
to the right ofAdd Section Header to also be undone, including the update of the table



of contents. Note that if theElaborate Section task had also been completed by the user
(to include subsections, for example) then that task would have been undone as well.

Example 2 involves a larger part of the task model. Steps 1 and 5 of the example,
dealing with the creation of slides, is handled by the subtree rooted at theAdd Slides
node in Figure 1. Steps 2-4, dealing with structure, is handled by the subtree rooted at
theAdd Structure node in the same figure, whose child nodeAdd Section is fully mod-
eled in Figure 2. In this example, undoing the creation of all of the section title slides
is equivalent to undoingall of theAdd Section tasks. In other words, it is equivalent to
undoing the parent node,Add Structure. When the algorithm is applied, all nodes on
the path from theAdd Structure node to the root of the task model, which in this case is
just theCreate Structured Presentation node, will also be undone. However, note that
because theAdd Slides task has an explicit parallel dependency relationship withAdd
Structure, none of the slide creation steps will be undone, which is exactly the desired
result for steps 1 and 5 of Example 2. The final step is to observe that, unlike the pre-
vious example, the user wishes to undo a non-leaf node. For that case, we also wish
to undo all leaf node tasks that are descendants ofAdd Structure. This will cause the
individual user steps 2, 3, and 4 of Example 2 also to be undone, as desired. Note that
this requires additional work beyond computing the cascade – we consider descendant
tasks separately from the cascade.

3.4 Extensions to the Approach

The algorithm presented above details proper semantics for cascading selective undo
for cases in which nominal control flow defines all the dependencies between tasks.
However, the approach can be extended to take advantage of cardinality specifications
and data dependencies.

Cardinality Open-ended cardinalities open up an interesting possibility for selective
undo. Consider, for example, undoing a task instance that is attached to an edge with
+ cardinality, such as one of theCreate Slide instances shown in Figure 4. If the user
wants to undo all tasks instances attached to the edge, it is clear that the parent must also
be undone because the cardinality specification requires at least one sub-task. However,
if we are undoing only some of the tasks, leaving at least one completed task attached
to the edge, the cardinality can be satisfied by the remaining tasks. In the case where the
parent is a parallel task, we can safely avoid further cascading (aside from the recursive
searching for sequential and try ancestors) because the siblings do not depend on one
another. The algorithm for this approach is similar to the one above, except for the
special case noted here.

Note, however, that this extension would not always produce the result the user
wanted – if the user wants to undo a task so that they can redo it in a different way or
with different information, then we require that the parent task be undone, because in
order for tasks to be performed, their parent tasks must not have been completed. We
therefore plan to investigate ways of giving the user the choice of these two interpreta-
tions – perhaps presenting both cascades.



Data DependenciesIn some situations, data dependencies between tasks can be known
a priori. For example, a task that modifies a slide clearly depends on the task that created
the slide. In the current system, we model some of these data dependencies using the
parameter-passing mechanism, which specifies parameter passing between parent and
child tasks. If a taskB depends on data from a sibling taskA, we indicate this by passing
a parameter fromA to its parent and subsequent passing of the same parameter from
this parent toB. Note that this is not limited to direct siblings – we can specify data
flow between any two tasks that share a common ancestor. However, this mechanism
only allows specification of data dependencies betweenA andB if A andB are already
related by a control dependency. In particular, if the common ancestor is a parallel
task, the system cannot guarantee that the parameter received byB is the one produced
by A – A might not yet have executed at the time thatB starts. Therefore, the set of
data dependencies specified in our task models is a subset of the control dependencies
already specified.

In some situations, this is not enough to model all known data dependencies. For
example, we might wish to have anAdd Section Cross-Reference task as an optional
child of Create Slide in our running example. This task might need the section header as
a parameter from theAdd Section Header task that created the section, which therefore
means thatAdd Section Cross-Reference must happenafter the correspondingAdd
Section Header task. In the current language, we cannot specify this data dependency
without forcing sequential control dependency between the two tasks. Our plan is to add
independent data dependencies to the language. Of course, when we have added these
new dependencies, our undo algorithms will have to consider them in computing the
proper cascade for a user’s undo request. This should be possible by taking the union
of the data dependency cascade with the one computed by the main algorithm.

Note that not all data dependencies can be knowna priori. Consider a development
environment for creating Java programs. At runtime, the user might create a method in
a previously-created class, even though the task model did not require that the method
be created in exactly this class. If the user requests that we undo the creation of the
class, clearly the creation of the method must be part of the cascade. Because this data
dependency is created by the user’s actions and not required bya priori dependencies,
the previously-outlined approach cannot capture it. Berlage [3] suggests that these kinds
of dependencies should be modeled in the tool and that they can be used to disallow
undo commands that result in “meaningless” states. We suggest taking this a step further
by using these dependencies in calculating the proper cascade. Our new algorithms will
have to support this.

4 Future Work

In addition to the extensions outlined above, the development of which we already have
underway, we plan further improvements to the approach as well as development of
visualizations to support users in using it. We further plan to run experiments to assess
the usability of the approach.



Fig. 5. One possible visualization of a cascade. The user has selected “Create Section”
to undo.

4.1 Dealing with Exceptions

Little-JIL [13] also has an exception handling mechanism, which allows the specifica-
tion of scoped handlers that respond to exceptions thrown from tasks up the hierarchy.
This presents some additional issues for selective undo. If a user action causes an ex-
ception to be thrown, then undoing that action should cause a cascade to the exception
handler, which should also be undone. Because exception handlers are themselves rep-
resented as task hierarchies, consisting of an arbitrary number of subtasks with control
dependencies between them, undoing an exception handler involves undoing those sub-
tasks.

Cascading of undo operations to exception handlers is not currently handled by our
system, but will be in future implementations. One interesting open question is if users
should be allowed todirectly undo exception handlers themselves, perhaps with the
intent of redoing the handling in a different manner. This is under investigation.

4.2 Limiting Scope of Undo

There are scenarios in which an operation cannot be undone. For example, an applica-
tion might have a finite history list or it might model a real-world permanency. (One
cannot undo a transaction if the seller has already spent the money or the buyer has
already consumed the good.) In these situations where a full cascade is not possible,
the application should disallow undo. However, the undo logic may not realize that it is
in this situation until a cascade is already in progress. In this case, we must be able to
reverse the effects of the cascade. Alternatively, the cascade could throw an exception,
to be handled as we discussed above. There are plans to address these issues in future
versions.

4.3 Visualization for the Approach

An important aspect we have not yet discussed is how a cascading undo will be repre-
sented to the user, both before and during the cascade. When the user selects an action to
be undone, it should be clear what the cascade will affect. In Example 1, one wouldn’t
want the user to be surprised when the Table of Contents slide is altered. One possible
visualization would be to simply show the user all affected actions, including system
actions. An example appears in Figure 5. Alternatively, we could couple a user’s se-
lection with an explanation of why other actions were being affected. Explicit control
dependencies would allow such explanations to be created dynamically.



4.4 Task Model Inference

The approach described here assumes that the task model is known ahead of time. Sev-
eral task models might exist for a particular application, but the user chooses one of
those models when they begin using the system. Of course, this can be limiting. In the
longer term, we plan to explore approaches that would infer the task model the user in-
tends to use by monitoring low-level user actions. Then, instead of first choosing a task
model, the user can explore with relatively more freedom early on in a session before
giving enough context to the system that the system can then start to help the user make
continued progress.

Of course, if the user can choose a task model at the beginning of use, they can also
change task models mid-way through a session. Again, under the current approach,
the user must make an explicit choice. However, we envision an approach that would
monitor user actions and reinterpret the user’s choice at those points when the user
attempts tasks that are not in the currently “chosen” task model.

4.5 Evaluation of the Approach

There are several important questions to answer with respect to the usefulness of selec-
tive undo to end users. Some of these questions are:

1. Does our interpretation of selective undo semantics match user expectations?
2. Would a user choose to use selective undo over linear undo?
3. Would a user choose to use selective undo instead of performing an alternate set of

tasks? (a more general case of the above question)

We have begun experiments to help answer these questions. Here we describe one
completed experiment and two yet to be carried out.

In the first experiment, we have tried to determine whether a user would choose to
apply selective undo instead of the traditional linear model. We provided subjects with a
series of drawing tasks, and asked them to show the state the drawing should be in after
one of the tasks is undone. We then coded their responses to infer which undo model
each subject performed. In this experiment, we found that cascading undo is chosen
more than the other two and linear undo is chosen extremely infrequently.

However, we cannot conclude from this experiment that undo is more desirable than
performing an alternate set of tasks. To explore this question, we plan an experiment
where we guide subjects to create and edit elements in a document to reach a certain
state before asking each subject to transform the document to a different state. If this
different state is well-chosen, the subjects can choose a selective undo to reach the state,
but they can also use a different set of tasks (creation, editing, or deleting tasks) to reach
the same visible state. We predict that subjects will choose selective undo over using a
different sequence of tasks, except perhaps if the alternate sequence is very short.

In another experiment, we wish to determine if users can predict what will happen
(i.e. the end state) if either linear or selective undo is used in a given context. We will
give the user a series of tasks on a familiar application and then tell the user that either
linear undo or selective undo will be used at a particular point. We will then ask the user
to predict what the document will look like after that particular type of undo has been



executed. We expect to use a broad, computer-literate population for this experiment in
order to determine if a particular paradigm for selective undo is the “natural” one.

5 Conclusions

We have presented cascading selective undo, which maintains the advantages over lin-
ear undo that have long been touted while also capturing dependencies between user
tasks that are necessary in many contexts to ensure that undo results in a meaningful
state. Our approach exploits task models designed by application developers and chosen
by users – task models that we argue provide much needed guidance in complex do-
mains and provide additional context information to the system when the user requests
an undo action.

Our novel approach uses Little-JIL, a process modeling language from the software
engineering community, to explicitly represent task models with control dependencies.
Little-JIL provides precise representation of control dependencies that have allowed us
to develop algorithms that determine appropriate cascading of undo at any point in the
user experience. It is also robust enough to allow for complex task models where the
semantics of selective undo are not straightforward. Extensions to our main algorithm
account for the complexities in the model, including cardinality, exception handling,
and data dependencies.

We are currently planning experiments to test the viability of selective undo to end
users. Results will allow us to refine our model, the language upon which it is based,
and implementations of selective undo. We already have a Little-JIL-based implemen-
tation of a software design tool that shows that the language is capable of representing
complex executable task models. It does not yet support undo (selective or otherwise),
but based on the knowledge gained from the current work, and the experiments outlined
in the section on future work, we plan to add a selective undo mechanism to the tool
in the near future, and thus learn whether the approach described here is feasible for
developers as well as for users.

References

1. G. D. Abowd and A. J. Dix. Giving undo attention.Interacting with Computers, 4(3):317–
342, 1992.

2. J. E. Archer, Jr., R. Conway, and F. B. Schneider. User recovery and reversal in interactive
systems.ACM Transactions on Programming Languages and Systems, 6(1):1–19, 1984.

3. T. Berlage. A selective undo mechanism for graphical user interfaces based on command
objects.ACM Transactions on Computer-Human Interaction, 1(3):269–294, 1994.

4. D. Chen and C. Sun. Undoing any operation in collaborative graphics editing systems. In
GROUP, pages 197–206, 2001.

5. A. Dix. Moving between contexts. In P. Palanque and R. Bastide, editors,Design, Specifica-
tion and Verification of Interactive Systems ’95, pages 149–173. Springer, 1995. Toulouse,
France.

6. R. Mancini, A. J. Dix, and S. Levialdi. Dealing with undo. InProc. of INTERACT’97,
Sydney, Australia, 1997. Chapman and Hall.



7. B. A. Myers and D. S. Kosbie. Reusable hierarchical command objects. InProc. of the ACM
Conf. on Human Factors in Computing (CHI 96), pages 260–267. ACM Press, 1996.

8. L. J. Osterweil. Software processes are software, too. InProc. of the Ninth International
Conf. on Software Engineering, Mar. 1987. Monterey, CA.

9. A. Prakash and M. J. Knister. A framework for undoing actions in collaborative systems.
ACM Transactions on Computer-Human Interaction, 1(4):295–330, Dec. 1994.

10. M. Ressel and R. Gunzenhäuser. Reducing the problems of group undo. InGROUP, pages
131–139, Phoenix AZ, USA, 1999.

11. C. Sun. Undo any operation at any time in group editors. InComputer-Supported Coopera-
tive Work (CSCW), pages 191–200, 2000.

12. T. Tantau. User’s Guide to the Beamer Class, Version 3.06. http://latex-
beamer.sourceforge.net, Oct 2005.

13. A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and S. M. Sutton, Jr. Using
Little-JIL to coordinate agents in software engineering. InProc. of the Automated Software
Engineering Conf., Grenoble, France., Sept. 2000.


	Using Task Models for Cascading Selective Undo
	Aaron G. Cass (Union College), Chris S. T. Fernandes (Union College)

